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 8 

Abstract: Flood frequency analyses (FFAs) are needed for flood risk management. Many methods exist 9 

ranging from classical purely statistical approaches to more complex approaches based on process 10 

simulation. The results of these methods are associated with uncertainties that are sometimes difficult to 11 

estimate due to the complexity of the approaches or the number of parameters, especially for process 12 

simulation. This is the case of the simulation-based FFA approach called SHYREG presented in this paper, 13 

in which a rainfall generator is coupled with a simple rainfall-runoff model in an attempt to estimate the 14 

uncertainties due to the estimation of the seven parameters needed to estimate flood frequencies. The six 15 

parameters of the rainfall generator are mean values, so their theoretical distribution is known and can be 16 

used to estimate the generator uncertainties. In contrast, the theoretical distribution of the single hydrological 17 

model parameter is unknown; consequently, a bootstrap method is applied to estimate the calibration 18 

uncertainties. The propagation of uncertainty from the rainfall generator to the hydrological model is also 19 

taken into account. This method is applied to 1112 basins throughout France. Uncertainties coming from the 20 

SHYREG method and from purely statistical approaches are compared, and the results are discussed 21 

according to the length of the recorded observations, basin size and basin location. Uncertainties of the 22 

SHYREG method decrease as the basin size increases or as the length of the recorded flow increases. 23 

Moreover, the results show that the confidence intervals of the SHYREG method are relatively small despite 24 

the complexity of the method and the number of parameters (seven). This is due to the stability of the 25 

parameters and takes into account the dependence of uncertainties due to the rainfall model and the 26 

hydrological calibration. Indeed, the uncertainties on the flow quantiles are on the same order of magnitude 27 

as those associated with the use of a statistical law with two parameters (here generalised extreme value 28 
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Type I distribution) and clearly lower than those associated with the use of a three-parameter law (here 1 

generalised extreme value Type II distribution). For extreme flood quantiles, the uncertainties are mostly due 2 

to the rainfall generator because of the progressive saturation of the hydrological model. 3 

 4 

Keywords: flood frequency estimation, uncertainty, flood hazard, stochastic model, bootstrap. 5 

 6 

1. Introduction 7 

Flood frequency estimation is essential for flood management. It is used to map floodplain areas, design 8 

hydraulic structures (dams, retaining basins, storm water systems) and infrastructures (roads, bridges), and 9 

define the frequency of flood events for natural disaster assessments and alert methods (Javelle et al., 2010). 10 

The study of hydrological hazard uses flood frequency analysis (FFA) and has led to the development of 11 

various methods ranging from purely statistical approaches to simulation approaches. The development of 12 

these methods is often influenced by the availability of observation data and by the objectives to be met 13 

(Boughton and Droop, 2003; Castellarin et al., 2012; Pathiraja et al., 2012). 14 

Purely statistical methods are used to directly fit a probability distribution to the empirical frequency 15 

distribution of the hydrological variable studied. The choice of probability distributions used to estimate 16 

flood flows is based on the extreme value theory (Coles, 2001). In FFA, common probability distributions 17 

are the generalised extreme value (GEV) distribution (Hosking and Wallis, 1993), the generalised Pareto 18 

distribution and the three-parameter lognormal distribution. To extend the series length and improve extreme 19 

flood frequency estimation, several methods consider historical flood data and sometimes paleo-flood 20 

information (Gaume et al., 2010; Payrastre et al., 2011; Stedinger and Cohn, 1986). To study ungauged or 21 

poorly gauged sites, a regional flood frequency analysis (RFFA) is used (Darlymple, 1960; Hosking and 22 

Wallis, 1993; Hosking and Wallis, 1997; Merz and Blöschl, 2005; Ribatet et al., 2007; Stedinger and Tasker, 23 

1985). 24 

Due to the nonlinearity of hydrological processes, extrapolating frequency distributions to extreme values 25 

remains problematic (Katz et al., 2002). Indeed, calibrating a model based on common observations does not 26 

guarantee extrapolation to extreme values. That is why some purely statistical methods rely on estimation of 27 

rainfall frequency to extrapolate flow probability distribution (Guillot and Duband, 1967; Margoum et al., 28 
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1994). This has resulted in several simulation approaches emerging over the last decade. Such approaches 1 

mimic some of the statistical properties of rainfall observations and the rainfall–runoff relationship in order 2 

to generate rainfall and runoff series that can be used subsequently as observed series. At the beginning, they 3 

were developed especially to fulfil the temporal data requirements associated with design floods (Eagleson, 4 

1972). Nowadays, these methods are widespread and tend to be used in the FFA (Li et al., 2014). Models 5 

differ in the type of rainfall generator and/or rainfall-runoff model used (Blazkova and Beven, 2004; Onof et 6 

al., 2005; Shen et al., 1990), a summary of which is presented in (Boughton and Droop, 2003). In France, 7 

there are two different simulation approaches, called the SCHADEX (Simulation Climato-Hydrologique 8 

pour l'Appréciation des Débits EXtrêmes) approach developed by Electricité de France (EdF) (Paquet et al., 9 

2013) and the SHYREG (Simulation of Hydrographs for flood frequency estimation – REGionalized) 10 

approach developed by Irstea (Arnaud and Lavabre, 2002; Aubert et al., 2014). 11 

The SHYREG method and other more classical FFA or RFFA methods were evaluated in a national French 12 

research project (national Extraflo project, https://extraflo.cemagref.fr) in which different training/testing 13 

decompositions on a set of more than 1,000 French gauging stations are used and reliability and stability 14 

indexes are proposed to assess the results (Renard et al., 2013). On one hand this study showed that RFFA 15 

approaches are preferable to FFA approaches (Carreau et al., 2013; Kochanek et al., 2014). On the other 16 

hand, methods based on the exploitation of rainfall data are preferable for estimating extreme floods 17 

(Kochanek et al., 2014). Indeed, during extreme rainfall events, the soil becomes saturated and the behaviour 18 

of flood levels mainly depends on the duration and intensity of maximum rainfall. In this comparison project, 19 

the SHYREG method was found to be the most stable (ability to yield similar estimates when different data 20 

are used for calibration) and one of the most reliable methods tested (Arnaud et al., 2016). Moreover, this 21 

method provides realistic flood scenarios directly used for dam design (Carvajal et al., 2009) and takes into 22 

account the non-stationarity of phenomena much better (Cantet et al., 2011). These advantages make it a 23 

very valuable method, but knowledge of its uncertainties is required. 24 

 25 

FFA or RFFA, assessed by any method, is subject to uncertainties that need to be estimated. These 26 

uncertainties stem from the finite sample size of the data set from which the methods were calibrated, which 27 

are usually illustrated by confidence intervals. Moreover, the nonlinearity of processes leads to greater 28 
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uncertainties towards extreme values. Indeed, the observed data, used to calibrate the rainfall model and the 1 

hydrological model, do not necessarily correspond to extreme phenomena. Moreover, the observation of 2 

extreme peak floods presents greater uncertainties (Ruiz-Bellet et al., 2017) that can increase the 3 

uncertainties on flood quantile estimation (Mirzaei et al., 2015). For purely statistical methods, the 4 

estimation of confidence intervals can be easily obtained assuming stationarity (which may not be the case in 5 

a changing climate). Different approaches can be used, ranging from statistical development based on 6 

asymptotic formulae to simulation methods based on resampling processes. For example, confidence 7 

intervals of the generalised extreme value distribution can be estimated by formulae depending on the 8 

specific parameter estimation techniques (Dupuis and Field, 1998), using the profile-likelihood approach 9 

(Coles, 2001), bayesian approaches (Coles et al., 2003) or bootstrap approaches (Burn, 2003; Schendel and 10 

Thongwichian, 2015). To reduce uncertainties due to sampling data or shortness of recorded length flow, 11 

RFFA methods or partial duration series can be used (Gado and Nguyen, 2016). In the context of non-12 

stationarity, methods can also be employed to take into account this non-stationarity while estimating the 13 

associated uncertainties (Sraj et al., 2016). 14 

Resampling approaches, also called bootstrap approaches, are nonparametric estimation approaches that 15 

present the advantage of avoiding making assumptions on the asymptotic behaviour of distribution and are 16 

easy to implement. They involve creating random samples from the original data sample using a 17 

bootstrapping process which entails randomly selecting data with replacements (Efron, 1979). This approach 18 

was employed for uncertainty analysis of rainfall frequency estimation (Dunn, 2001; Overeem et al., 2008), 19 

flood frequency estimation (Burn, 2003; Mirzaei et al., 2015) and flood forecasting (Sehgal et al., 2014; 20 

Tiwari and Chatterjee, 2010). 21 

When a simulation method is used, estimating uncertainties appears difficult because it involves more 22 

complex models, sometimes a combination of models, often with many parameters. Increasing the 23 

complexity of the model and the number of parameters can increase the number of degrees of freedom and 24 

therefore the sources of uncertainties. In this case, Bayesian approaches are adapted to take into account both 25 

observation uncertainties and the imperfect model structure. These methods combine a priori knowledge on 26 

parameters with a likelihood function of data to provide an a posteriori distribution of parameter sets. Then 27 

using simulation processes with sampled parameters, for example based on the Markov Chain Monte Carlo 28 
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(MCMC) method, uncertainty analysis can be expressed through the posterior results. This is the base of the 1 

generalised likelihood uncertainty estimation (GLUE) introduced by Beven and Binley (1992) and widely 2 

applied to stochastic rainfall models (Cameron et al., 2000; Cameron et al., 1999) and hydrological models 3 

(Beven and Binley, 2014; Beven and Freer, 2001; Freer et al., 1996; Montanari, 2007; Stedinger et al., 2008). 4 

These approaches have also been tested on the stochastic rainfall model presented in this study (Muller et al., 5 

2009). 6 

 7 

This paper focuses on the estimation of the uncertainties of the SHYREG simulation-based method with a 8 

bootstrap approach. This method was developed by our team and we performed the multiple calibrations 9 

implemented by the resampling method on more than 1000 basins in France. The complexity of this method 10 

tends to suggest that it would lead to estimated quantiles with substantial uncertainty. For comparison, the 11 

uncertainties obtained under the same sampling conditions by fitting classical probability distributions were 12 

also investigated. Here distributions from the GEV family were adopted. Since the objective was not to 13 

assess the relative merits of different types of distribution, a single family was employed. Instead, the impact 14 

of the number of degrees of freedom was studied by fitting both a GEV Type II distribution (three 15 

parameters) and a GEV Type I distribution (also called Gumbel distribution, with only two parameters). A 16 

resampling approach was chosen to assess the uncertainties of flood quantiles estimated with the SHYREG 17 

simulation method. This study focused only on the uncertainties stemming from the sampling of calibration 18 

data and their impact on the calibration of the method’s parameters. We focus on parameter uncertainty 19 

estimation for the rainfall model and on sampling uncertainty for hydrological modelling. These 20 

uncertainties created in both the rainfall and the hydrological models separately were investigated, as well as 21 

their propagation from one model to the other. Finally, the amplitude of the confidence intervals regarding 22 

the time-step, the size of the drainage area, the specific flows and the location of the catchments was also 23 

studied. 24 

 25 

2. Methodology 26 

 27 

2.1. The SHYREG method 28 
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 1 

The SHYREG method is the regionalised version of the simulation-based SHYPRE (Simulation of 2 

HYdrograph for flood PREdiction) method. The SHYPRE method was initially developed to simulate flood 3 

scenarios on a given catchment. It combines a stochastic hourly rainfall model with a conceptual rainfall-4 

runoff model (Arnaud and Lavabre, 2002; Cernesson et al., 1996). This event-based approach focuses on 5 

analysis and modelling of hourly rainy events. A rainy event is defined as a series of daily rainfalls greater 6 

than 4 mm among which one exceeds at least 20 mm, but it is analysed at an hourly time step. In France, the 7 

number of such events was mapped and varies between three and 25 events per year. Cantet and Arnaud 8 

(2014) showed that the rainfall generator succeeds in simulating extreme rainfall of different durations 9 

(ranging from 1 h to 72 h). For example, to generate 1,000,000 years of flood events, we generate the 10 

number of events per year for each year (using the Poisson distribution law) and the associated independent 11 

rainfall events. These are transformed into flood events, which are associated with a simulation of a 12 

1,000,000-year period. The method thus generates a set of independent flood hydrographs from which 13 

empirical flood quantiles are estimated, for different durations and different return periods, without fitting a 14 

theoretical probability law. To ensure the stability of the empirical frequencies, the simulation periods are 15 

1000 times longer than the longest return period of interest (Cantet and Arnaud, 2014).  16 

The SHYREG method was developed after SHYPRE and is based on the same principle. Its objective is the 17 

regional determination of extreme floods. Its implementation requires the regionalisation of both the hourly 18 

rainfall generator and the rainfall-runoff model. 19 

First the rainfall model is parameterised by 20 parameters estimated for two seasons (June to November and 20 

December to May) to take into account a typology of rainfall evens. For each season, these 20 parameters, 21 

estimated from hourly data, are regionalised (Arnaud and Lavabre, 2010). During this step, 15 of these 22 

parameters are set to a uniform value because they are not very important or not variable in France. The 23 

other five are determined directly by linear regressions with three parameters derived from daily data, which 24 

are more widespread than hourly data (Arnaud et al., 2008). Consequently, the regionalisation of the hourly 25 

rainfall generator parameters is based on the mapping of three daily rainfall parameters. These parameters 26 

(         ) are related to rainfall characteristics of intensity, duration and frequency (see Table 1) and they are 27 

determined and mapped using 2,812 rain gauge stations located throughout France, taking into account local 28 
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environmental and topographical characteristics. The regionalised parameters are used to parameterise the 1 

hourly rainfall generator and make it possible to simulate at-site hourly rainfall time series. These hourly 2 

rainfall time series lead to the empirical estimation of rainfall quantiles for different time durations on a 1-3 

km² square anywhere in France (Arnaud et al., 2008). 4 

 5 

Parameter Description Unit Range over France 

or value if imposed. 

Rainfall generator parameters 

           

 

Mean number of rainfall events per year (for two seasons) N/A From 1.5 to 15 for 

each season 

           

 

Mean of the events’ maximum daily rainfall (for two seasons) mm From 20 to 70 

           

 

Mean of the events’ duration (for two seasons) day From 1.6 to 3.5 

Elementary rainfall-runoff model 

  

(imposed) 

Maximum capacity of production reservoir: imposed by 

hydrogeological classes 

 

mm From 200 to 600 

     

 

Initial recharge level rate of A reservoir: homogeneous over a 

basin but optimised for each basin. 

N/A From 0 to 1 

  

(imposed) 

Maximum capacity of routing reservoir: imposed. Its initial 

level is also imposed at       

mm 50 for summer 

100 for winter 

Areal reduction factor 

         

(imposed) 

Coefficient of areal reduction function for flows lasting more 

than 24 h 

N/A 0.01 – 0.24 – 5 

 

         

(imposed) 

Coefficient of areal reduction function for flows lasting less 

than 24 h 

N/A 0.25 – 10 – 0.9 
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Table 1: List and description of the method’s parameters. 1 

 2 

Secondly, hourly rainfall events are transformed into flood events by a simplified rainfall-runoff model. The 3 

rainfall-runoff model is simplified to allow its regionalisation and to be able to convert hourly rainfall into 4 

flood flow at a 1-km² pixel resolution. The transformation to the pixel resolution is necessary because of the 5 

at-site nature of the rainfall generator (this is not a rainfall field generator). This elementary hydrological 6 

model is the Irstea GR type (www://cemagref.fr/webgr/). It consists of a production reservoir with a capacity 7 

  (mm), a routing reservoir with a capacity   (mm) and a 2-h unit hydrograph. This elementary rainfall-8 

runoff model is used in event mode to convert the hourly rainfall scenarios into flood scenarios at the pixel 9 

scale (Arnaud et al., 2016; Arnaud et al., 2011). To simplify the model, the A and B parameters are imposed 10 

on all French watersheds (citer Yoann) (see Table 1 for further detail). Only the first reservoir’s initial 11 

recharge level, noted     , is needed to calibrate the rainfall-runoff transformation. This rate controls the 12 

runoff and evolves during the rainy event. A value of (0) corresponds to an initially empty reservoir. A value 13 

of (1) means an initially full (or saturated) reservoir and corresponds to a situation in which all the rain water 14 

will flow. Between these two values, at each time step, the rain water is shared in two parts: the first one will 15 

fill the production tank and the second will contribute to the runoff. The value of      is the same for all 16 

pixels of a given watershed, except those covered by urbanised areas where a value is imposed. 17 

Consequently, flood events are simulated for the entire range of possible values for     , at each pixel. The 18 

flood quantiles are extracted empirically from these simulated events for each square kilometre. These 19 

‘elementary flows’ are noted  
   

. To estimate river flow quantiles, elementary flow quantiles are aggregated 20 

(summed) from all the   pixels in the catchment. Then an areal reduction factor is applied to simultaneously 21 

take into account both rainfall areal reduction and flood routing. This factor only depends on the catchment 22 

area     and the duration of flow     and is represented by equations (1), (2) and (3). 23 

                
 
                (1) 24 

  25 

                          
 
             

 
                (2) 26 

 27 
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with the term       
    

      
              

         (3) 1 

where   is catchment area in km² and        is the flow quantile (of duration   and return period  ) 2 

calculated at the catchment outlet. Parameters   ,   
 and  

 
 are assumed constant over metropolitan France 3 

and were estimated in a preliminary study with calibration data (Aubert et al., 2014). 4 

Then calibrating the SHYREG method consists in determining which value of      makes it possible to 5 

properly simulate flood events statistically equivalent to the observed events at gauged stations. The 6 

optimised parameter is the value that minimises the average absolute relative error between six quantiles 7 

obtained from observations (peak flows and daily runoff for 2-, 5- and 10-year return periods) and the same 8 

six quantiles provided by the SHYREG method. The quantiles from observations are estimated by fitting a 9 

GEV probability distribution. A lower bound for the shape coefficient is imposed at 0, which is equivalent to 10 

bounding the GEV distribution by a Gumbel distribution. An upper bound is also imposed at 0.4, in order to 11 

limit the influence of extreme values when fitting. Note that the choice of probability distribution is 12 

relatively insignificant as long as observed frequencies (T<10 years) are used. This probability distribution is 13 

here called ‘bounded’ GEV. Therefore, for each gauged catchment, the SHYREG method can be calibrated 14 

by optimising a single parameter, on which the regionalisation process will be based to apply the method 15 

over the entire drainage network (including ungauged catchments) (Organde et al., 2013). 16 

Overall, only six parameters are needed to simulate rainfall (actually three parameters for two seasons), and 17 

an additional one is necessary to perform the rainfall-runoff transformation. 18 

Note that currently the areal reduction factor is not parameterised by the slope or the land use. This point is 19 

actually the topic of an on-going study but is not within the scope of the present paper. The calibration of the 20 

     parameter partially takes into account a part of the flow variability which may be related to the slope of 21 

the basin or the land use. 22 

The study presented here concerns only the uncertainties generated at the calibration stage of the SHYREG 23 

method, and therefore the uncertainties on the estimation of these seven parameters. 24 

 25 

2.2. Uncertainty estimation methodology 26 

 27 
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This paper focuses on the uncertainties due to calibration against observations. These observations are 1 

rainfall time series used to calibrate the set of parameters of the rainfall generator (noted  ) and flow time 2 

series (or by default the annual maximum floods from river gauges with sufficiently long time series to 3 

estimate up to 10-year quantiles) to calibrate the hydrological parameter (    ). The uncertainties of the 4 

method result partially from uncertainties bound to the estimation of both sets of parameters (  and     ) 5 

associated with both implemented models (the rainfall generator and the hydrological model). Other 6 

parameters of the method are assumed to be known throughout the study area (French territory). This is why 7 

the uncertainties related to these parameters are not calculated in this study. The uncertainty bound to the 8 

calibration of the models’ parameters were considered in different ways, as explained below. In the 9 

following, we note ‘observed’ for the parameter estimated with observed data values and ‘resampled’ for the 10 

parameter estimated with resampled data values. 11 

 12 

2.2.1. About the hourly rainfall generator 13 

For the rainfall model, we studied the uncertainties due to parameter estimation. Indeed, the set of six 14 

parameters (           
for i = 1–6) was obtained by calculating six averaged values (three variables for two 15 

seasons) over the observed data (see section 3). These average values are calculated over a large number of 16 

values ( ). Indeed, parameters           (see Table 1) were estimated by a set of at least 25 values, 17 

corresponding to the number of years of observation. The others (        ) are estimated on a number of 18 

values ranging from 37 to more than 300, corresponding to the product of the number of events per season 19 

by the number of years. Thus, each rainfall parameter follows the distribution of an average calculated on a 20 

large number of values, which corresponds to a Gaussian distribution if we assume the Laplace central limit 21 

theorem can be applied. This Gauss distribution has a mean equal to the average of the variable ( ), and a 22 

standard deviation is equal to the standard deviation of the variable ( ) reduced by the square root of the 23 

sample size ( ). So we can consider that the six-parameter set                        . According to the 24 

Gauss distributions, different sets of parameters (          ) can then be generated. These sets allow one to 25 

run the rainfall generator and thus to obtain different frequency distributions on rainfall representing the 26 

uncertainty on the calibration stage of the rainfall generator. A previous study was conducted using the data 27 
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of a single station, based on frequency and Bayesian analysis (Muller et al., 2009). It is assumed that the six 1 

parameters are independent and the parameter resampling is processed by independent random selections in 2 

the parameter distributions.  3 

 4 

2.2.2. About the rainfall-runoff model 5 

For the hydrological model, we studied the uncertainties due to observation sampling. As noted above, the 6 

hydrological parameter is calibrated to respect the current flood quantiles (2-, 5- and 10-year return periods 7 

of peak flow and daily flow) estimated by fitting a probability distribution on maximum flow values. This 8 

parameter is noted             . Contrary to the rainfall parameter, the frequency distribution of this 9 

parameter is unknown beforehand. To estimate its variability, a bootstrap procedure was employed. The 10 

parameter was calibrated for various samples of the observations. Note that the annual maximum values of 11 

observed floods were assumed to be independent and identically distributed.  12 

The sampled parameter (note              ) was then assessed following these steps: 13 

- For a basin on which   is the number of observed annual maximum values, a new sample of   values 14 

was generated by a random sampling with replacements. 15 

- A ‘bounded’ GEV distribution was fitted on this new sample to determine the quantiles of 2-, 5- and 10-16 

year return periods. These quantiles were used to estimate the parameter               as well as to 17 

evaluate the confidence interval of the ‘bounded’ GEV distribution for higher return periods (up to 1000 18 

years). Other distributions, such as the Gumbel distribution, were fitted on this sample to be compared 19 

later to GEV and SHYREG values. 20 

- The calibrated parameter                               allowed estimating quantiles n from 2 to 1000 21 

years using the SHYREG method.  22 

- The above points were repeated NB times (NB is the number of samplings carried out using the 23 

bootstrap method). 24 

- From these NB distributions, a confidence interval and the median distribution were calculated. 25 
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Thus, both procedures determined the uncertainties associated with the estimation of the method's 1 

parameters. These uncertainties on the parameters were directly expressed in terms of uncertainties in rainfall 2 

and flow quantiles provided by the SHYREG method. 3 

 4 

2.3. Test configuration 5 

 6 

In this paper, uncertainties were derived from both the rainfall generator and hydrological modelling. 7 

Various tests were carried out to study the influence of each cause of uncertainty on the overall uncertainties 8 

of the model output. These cases are presented below and illustrated in Figure 1: 9 

 10 

Figure 1: Configuration of calibration / simulation cases for the SHYRE method. 11 

 12 

 Case 1: This case evaluated only the uncertainty due to the rainfall information by providing 13 

distributions of rainfall along with a confidence interval. It also assessed the propagation of this 14 

uncertainty on the flow frequency distributions without changing the parameterisation of the 15 

hydrological model. 16 

 Case 2: This case evaluated only the uncertainty due to the flow information, always considering the 17 

same source of information for rainfall. We obtained confidence intervals only on the flow frequency 18 

distributions. 19 

 Case 3: This case evaluated the uncertainties due to rainfall and flow observations, considering them 20 

independent. Rainfall events were generated from a set of parameters             , and then they 21 

were converted into flows by a parameter                , which was calibrated from the resampled 22 

observed flow with the non-resampled rainfall (generated with          ). In this case, independence 23 

between the uncertainties of the two models was assumed. 24 

 Case 4: Contrary to case 3, the parameter                  was determined by taking into account 25 

the rainfall generated with the new parameterisation of the rainfall generator             . This case 26 

assumed that there was a dependency between the rainfall (and its resampling) and the calibration of 27 
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the rainfall–runoff relationship. This means that the uncertainty caused by the “resampled” rainfall 1 

can be balanced by the calibration of the hydrological model. This was already the case when the 2 

calibration was performed using the (not resampled) observed rainfall data. 3 

 4 

3. Data 5 

The SAFRAN data (Quintana-Seguí et al., 2008; Vidal et al., 2010) were used for rainfall to estimate the 6 

mean and the standard deviation for the different parameters of the rainfall generator and the sample size on 7 

which parameters were calculated. For this study the recorded length of rainfall was set at 25 years, between 8 

1977 and 2002. This observation period is related to our availability of data. The use of a longer observation 9 

period would have undoubtedly reduced the uncertainty associated with estimating the rainfall model’s 10 

parameters. For example, the parameter    is presented in Figure 3. It represents the spatial distribution of 11 

the mean and the reduced standard deviation (    ) of the events’ maximum daily rainfall. We can see that 12 

the highest values are located in the Mediterranean climate area. To simplify the simulations, the rainfall 13 

generator was run with the values of the parameter estimated at the catchment centroids. 14 

This study was conducted on data from gauged basins available in the HYDRO French database 15 

(http://www.hydro.eaufrance.fr/). These data correspond to 1112 basins located in Figure 2. Their surface 16 

areas range from 1 to 2000 km², with a median of 180 km². The monitoring stations were selected in the 17 

regionalisation study of the SHYREG method (Aubert et al., 2014; Organde et al., 2013). The selection of 18 

the stations was based on different criteria such as the advice of station managers, the presence of a 19 

sufficiently long series (over 20 years), the absence of upstream dams and the goodness-of-fit of a GEV 20 

distribution. 21 

Figure 2: Location and characteristics of the 1112 basins studied. 22 

These stations have collected hydrometric information for over 20 years (with a median of 40 years). These 23 

data allowed us to fit statistical distributions (‘bounded’ GEV, Gumbel) to estimate flood quantiles and to 24 

calibrate the parameter      . 25 

 26 

Figure 3: Example illustrating the variability of sampling characteristics for one rainfall generator 27 

parameter corresponding to the intensity of a rainy event. 28 
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 1 

4. Results and discussion 2 

 3 

The four cases presented above were tested by carrying out NB=500 simulations using parameter samplings. 4 

Therefore, 500 frequency distributions of rainfall and flows provided by the different methods were 5 

obtained. From these distributions, the median        and 5% and 95% (resp.     and     ) prediction 6 

bounds were calculated for each flood (and rainfall) quantile to determine a 90% confidence interval (noted 7 

CI90%). 8 

For example, Figure 4 shows (in gray) the different distributions obtained from sampled parameters (only 9 

100 resampled distributions), and in colour the median distribution (solid line) and 90% confidence intervals 10 

(dashed lines) are represented. The example illustrates the difference between confidence intervals associated 11 

with each FFA method and their asymptotic behaviour towards extreme frequencies. 12 

 13 

Figure 4: Confidence intervals of peak flow quantiles associated with the SHYREG method (taking into 14 

account different sources of uncertainties; cases 1–4), with the Gumbel distribution and with GEV 15 

distribution: example of the Ill at Didenheim station. 16 

 17 

The objective of this paper was to analyse the confidence intervals, according to various factors (number of 18 

years of observation used to calibrate the models, impact of the hydrological or rainfall patterns, location of 19 

stations, return period studied, etc.). To summarise the information on confidence intervals, the ratio between 20 

a 90% confidence interval and the median values was calculated on each station and for different quantiles: 21 

    
          

    
 

This criterion provided an idea of the relative ‘amplitude’ of the confidence interval of a method for a given 22 

quantile. The frequency distribution of this amplitude estimated on the 1112 stations is represented with a 23 

boxplot that illustrates the 5, 25, 50, 75 and 95% percentile values (Figure 5). 24 

 25 

4.1. Analysis of the different cases 26 

Author-produced version of the article published in Journal of Hydrology, 2017, 554, 360-369. 
The original publication is available at http://www.sciencedirect.com/science/article/pii/S002216941730611X 
DOI: 10.1016/j.jhydrol.2017.09.011



 

15 

 1 

The confidence interval amplitude (   ) was calculated for different variables (rainfall or peak flow) of 2 

different return periods (2-, 10-, 100-, 1000-year quantiles) using different methods (SHYREG, Bounded 3 

GEV, Gumbel). The boxplots in Figure 5 are associated with rainfall estimated by the SHYREG method (in 4 

black), peak flow estimated by the SHYREG method (in blue), peak flow estimated by Gumbel distribution 5 

(in green) and peak flow estimated by GEV ‘bounded’ distribution (in red). For peak flow estimated by the 6 

SHYREG method, the different boxplots are related to the four cases tested (as described above). 7 

 8 

Figure 5: Distribution of the confidence interval amplitude for 2-, 10-, 100- and 1000-year quantiles, 9 

associated with rainfall estimated by the SHYREG method (in black), peak flow estimated by the SHYREG 10 

method for cases 1–4 (in blue), peak flow estimated by Gumbel distribution (in green) and peak flow 11 

estimated by ‘bounded’ GEV distribution (in red). 12 

 13 

Figure 5a and 5b present the CIA associated with 2- and 10-year quantiles. These quantiles are close to the 14 

empirical distribution because they are in the domain of observation. On the one hand, the uncertainties on 15 

rainfall were lower than the flow uncertainties. Among the uncertainties on flows, the uncertainty caused by 16 

the sole rainfall observations (case 1) was relatively close to that attributed to only the flow observations 17 

(case 2). Logically, the uncertainties due to both rainfall and flow considered independently led to larger 18 

confidence intervals (case 3). On the other hand, taking into account the dependency between the two 19 

sources of uncertainty reduced the amplitude of the confidence intervals of the SHYREG method estimates 20 

(case 4).  21 

For low frequencies, the uncertainties associated with SHYREG, the Gumbel distribution and the ‘bounded’ 22 

GEV distribution were on the same order of magnitude. This result was understandable because SHYREG is 23 

calibrated against low-frequency quantiles estimated with a ‘bounded’ GEV distribution and is therefore 24 

subject to the same source of uncertainty. 25 

For extrapolation towards the rare and extreme frequencies, the results were different (Figure 5c and 5d). 26 

Globally, the amplitude of the uncertainties on rainfall remained lower than the flow uncertainties. In the 27 

domain of extrapolation, very high uncertainties associated with the use of a three-parameter frequency 28 
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distribution were observed. Using this distribution seems to be poorly adapted in an at-site context, notably 1 

because of a very heavy tail of the GEV type II (although ‘bounded’). To consolidate the estimate of the 2 

GEV distribution shape parameter (3rd parameter), a regional approach (Hosking and Wallis, 1993) may be 3 

necessary. This can reduce uncertainty over estimates of extreme values. The use of a GEV distribution in a 4 

regional approach should lead to confidence intervals close to those resulting from the use of a Gumbel 5 

distribution (since the shape parameter is generally fixed on the area studied; see for example Kochanek 6 

2014). We can see that uncertainties associated with the use of the Gumbel distribution (two parameters) 7 

were close to those associated with the SHYREG method (seven parameters). Even if the uncertainty 8 

amplitudes were similar, they were associated with quantiles that can be completely different. The quantile 9 

estimates are considered more accurate when using the SHYREG method. Indeed, the conclusions of the 10 

ANR Extraflo project do not recommend using a Gumbel distribution to estimate quantiles of extreme floods 11 

(Kochanek et al., 2014). 12 

The comparison of different cases associated with the SHYREG method is presented in the blue boxplot 13 

(Figure 5). We can see from the 10-year return period plot that the quantiles estimated by the SHYREG 14 

method were marginally influenced by the calibration of the hydrological parameter, in comparison with the 15 

uncertainties due to rainfall (comparison of cases 1 and 2). The gradual saturation of the catchment in the 16 

hydrological model towards the rare and extreme events makes the method more sensitive to rainfall 17 

information than to observed flows. It can also be observed that consideration of the uncertainties stemming 18 

from both rainfall and observed flows must be taken into account in a dependent way because the calibration 19 

of the hydrological parameter depends on the information available on rainfall. This consideration reduced 20 

uncertainties on the flows (comparison of cases 3 and 4). 21 

 22 

4.2. Detailed analysis  23 

 24 

Here, we focused on case 4, which took into account the dependence between the two sources of uncertainty 25 

(the observations of both rainfall and flows). 26 

 27 
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Figure 6 shows the distribution of uncertainty amplitudes for groups of basins classified according to 1 

different criteria: the recorded length of observation (graphs a and b), basin size (graphs c and d) and specific 2 

flow (to distinguish more or less productive basins) (graphs e and f, where basins are ranked by increasing 3 

specific flow). For each criterion, basins were clustered in order to produce groups of equal size. Only 4 

uncertainties calculated on 10- and 1000-year quantiles of peak flows are illustrated. 5 

 6 

Figure 6: Distribution of amplitudes for groups of basins classified according to the recorded length of 7 

observation (a, b), basin size (c, d) and S0/A value (to distinguish more or less productive basins) (e, f): case 8 

4. 9 

 10 

Regarding the impact of length of flow recorded, uncertainties decreased when the length of observation 11 

recorded increased. This result, although trivial, made it possible to quantify the variation of the uncertainty 12 

with the length of observation recorded. Note that this impact was more visible on current quantiles than 13 

extreme quantiles. 14 

Regarding the impact of basin size, uncertainties seemed to be greater for small basins, which may be 15 

explained by two points: first, observing the extreme values is more difficult on small basins, which are more 16 

randomly affected by extreme rainfall events than large basins, and secondly, it is more difficult to reproduce 17 

the rainfall-runoff processes accurately on small basins related to available rainfall data (see e.g. Merz and 18 

al., 2009). 19 

Regarding the impact of the hydrological characteristics (S0/A values), uncertainties tended to be lower on 20 

‘productive’ basins (high S0/A values). This may be explained by the fact that on these basins, saturation is 21 

obtained more quickly, so the uncertainty due to the calibration of the hydrological model has a lower 22 

impact. This result was obtained for extreme values (1000-year quantiles). Figure 7 illustrates the spatial 23 

distribution of the confidence interval amplitudes, which are calculated for 100-year quantiles of rainfall and 24 

peak flows.  25 

 26 

Figure 7: Location of basins with the respective amplitudes of uncertainties, for 100-year quantiles of 27 

rainfall and peak flow. 28 
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 1 

We see that rainfall presented greater uncertainties on the Mediterranean region. The flows were 2 

characterised by larger uncertainties than rainfall over the entire country. This spatial distribution was 3 

difficult to interpret, however, because it mixed basins of different sizes, different lengths of observation 4 

recorded and different hydrological parameter values. 5 

 6 

 7 

5. Conclusion 8 

The work aimed to evaluate the uncertainties related to a flood frequency estimation method based on 9 

simulation processes, the SHYREG method, by comparing them with those of purely statistical approaches 10 

(GEV type I and type II distributions). This comparison was made on 1112 basins over France. The 11 

simulation processes method provides a flood frequency analysis at the basins’ outlet from a regionalized 12 

hourly rainfall generator and an elementary hydrological model. Calibration consists in searching the 13 

hydrological parameter that minimises error between observed and modelled quantiles up to 10-year floods. 14 

This paper proposes a methodology to evaluate uncertainties from both rainfall and flow calibration data 15 

sampling. We studied parameter estimation uncertainty for the rainfall model and sampling uncertainty for 16 

hydrological modelling. In the latter, we used a bootstrap method to resample the flow observations to 17 

determine the variability of the hydrological parameter and their impact on the estimation of the quantiles of 18 

rainfall and floods. 19 

The main results showed that: 20 

 It is important to take into account the dependence of uncertainties due to rainfall and flow 21 

observations and therefore not to overvalue the final uncertainties. 22 

 The uncertainties on the rainfall quantiles were lower than the uncertainties on the flow quantiles. 23 

 The uncertainties of the SHYREG method decreased as the basin size increased or as the recorded 24 

length of flow increased. 25 

 The uncertainties on the SHYREG flow quantiles were on the same order of magnitude as those 26 

associated with a two-parameter statistical distribution (Gumbel) and clearly lower than those 27 

associated with a three-parameter distribution (GEV type II).  28 
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 1 
The paper brings out a number of advantages of using methods based on simulation processes in FFA, such 2 

as the SHYREG method. Using a hydrological model takes into account the non-linearity of the hydrological 3 

processes: i.e. it models the fact that extreme flows are strongly influenced by extreme rainfall, and thus 4 

reduces the uncertainties of extreme flood quantiles compared to methods based only on the use of flows. 5 

Moreover, the uncertainties due to rainfall can be partially reduced during the calibration of the hydrological 6 

model parameters.  7 

More specifically concerning the SHYREG method, its confidence intervals were relatively low compared to 8 

the complexity of the method (seven parameters). These results can be related to the stability of the methods. 9 

Compared to Gumbel distribution, which is considered stable but not accurate, the SHYREG method has 10 

shown its qualities in terms of accuracy (Arnaud et al., 2016; Kochanek et al., 2014).  11 

The final goal of the SHYREG method is to estimate the flow quantiles on ungauged basins in regionalising 12 

the hydrological parameter. Here, we studied only the uncertainties associated with the calibration of the 13 

method: i.e. we propose a confidence interval of flow quantiles on the gauged catchments. An ongoing 14 

project takes into account the uncertainty of regionalisation to propose flow quantiles and their uncertainties 15 

on all rivers in France.  16 

 17 

 18 

 19 
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Figure captions 1 

Figure 1: Configuration of calibration / simulation cases for the SHYRE method. 2 

Figure 2: Location and characteristics of the 1112 studied basins. 3 

Figure 3: Example illustrating the variability of sampling characteristics for one rainfall generator 4 

parameter corresponding to the intensity of a rainy event. 5 

Figure 4: Confidence intervals of peak flow quantiles associated with the SHYREG method (taking into 6 

account different sources of uncertainties - case 1 to 4), with the Gumbel distribution use and with the GEV 7 

distribution use: example of the Ill at Didenheim station. 8 

Figure 5: Distribution of the confidence interval amplitude for 2-, 10-, 100- and 1000-year quantiles, 9 

associated with rainfall estimated by the SHYREG method (in black), peak flow estimated by the SHYREG 10 

method for cases 1–4 (in blue), peak flow estimated by Gumbel distribution (in green) and peak flow 11 

estimated by “bounded” GEV distribution (in red). 12 

Figure 6: For case 4, distribution of amplitudes for groups of basins classified according to the recorded 13 

length of observation (a, b), basin size (c, d) and specific flow (to distinguish more or less productive basins) 14 

(e, f). 15 

Figure 7: Localisation of station with the respective amplitudes of uncertainties, for 100-year quantiles of 16 

rainfall and peak flow. 17 

 18 
 19 
 20 
Table captions 21 

Table 1: List and description of the method’s parameters. 22 
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