S. G. Kandlikar, S. Colin, Y. Peles, S. Garimella, R. F. Pease et al.,

. Tuckerman, Heat transfer in microchannels -2012 status and research needs, J. Heat Transf, vol.135, issue.9
URL : https://hal.archives-ouvertes.fr/hal-01881274

M. Gad and . Hak, Fluid mechanics of microdevices -The Freeman scholar lecture, J. Fluids Engin, vol.121, issue.1, pp.5-33, 1999.

G. E. Karniadakis, A. Beskok, and N. R. Aluru, Microows and Nanoows -Fundamentals and Simulation, Interdisciplinary Applied Mathematics, vol.29, 2005.

F. Sharipov, Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface, Journal of Physical and Chemical Reference Data, vol.108, issue.2, p.23101, 2011.
DOI : 10.1016/S0042-207X(97)00031-6

D. A. Lockerby, J. M. Reese, and M. A. Gallis, The usefulness of higher-order constitutive relations for describing the Knudsen layer, Physics of Fluids, vol.136, issue.10, p.17, 2005.
DOI : 10.1063/1.1597472

Y. Yang, G. L. Morini, and J. J. Brandner, Experimental analysis of the inuence of wall axial conduction on gas-to-gas micro heat exchanger eectiveness, Int. J. Heat Mass Transf, pp.69-86, 2014.

T. Dixit and I. Ghosh, Review of micro-and mini-channel heat sinks and heat exchangers for single phase uids, Renewable and Sustainable Energy Reviews, pp.41-1298, 2015.

N. K. Gupta and Y. B. Gianchandani, Porous ceramics for multistage Knudsen micropumps???modeling approach and experimental evaluation, Journal of Micromechanics and Microengineering, vol.21, issue.9, p.95029, 2011.
DOI : 10.1088/0960-1317/21/9/095029

N. K. Gupta and Y. B. Gianchandani, Thermal transpiration in mixed cellulose ester membranes: Enabling miniature, motionless gas pumps, Microporous and Mesoporous Materials, vol.142, issue.2-3, pp.535-541, 2011.
DOI : 10.1016/j.micromeso.2010.12.042

N. K. Gupta, S. An, and Y. B. Gianchandani, A Si-micromachined 48-stage Knudsen pump for on-chip vacuum, Journal of Micromechanics and Microengineering, vol.22, issue.10, p.105026, 2012.
DOI : 10.1088/0960-1317/22/10/105026

S. Nakaye, H. Sugimoto, N. K. Gupta, and Y. B. Gianchandani, Thermally enhanced membrane gas separation, European Journal of Mechanics - B/Fluids, vol.49, pp.49-85, 2015.
DOI : 10.1016/j.euromechflu.2014.07.004

Y. Qin and Y. B. Gianchandani, iGC1: An integrated uidic system for gas chromatography including Knudsen pump, preconcentrator, column, and detector microfabricated by a three-mask process, J. Microelectromech. Syst, vol.23, issue.4, pp.980-990, 2014.

Y. Qin and Y. B. Gianchandani, : an architecture for micro gas chromatographs utilizing integrated bi-directional pumps and multi-stage preconcentrators, Journal of Micromechanics and Microengineering, vol.24, issue.6, p.65011, 2014.
DOI : 10.1088/0960-1317/24/6/065011

G. Manzoni, Micro and Nanotechnology Applications for Space Micropropulsion, Micromanufacturing and Nanotechnology, pp.197-218, 2006.
DOI : 10.1007/3-540-29339-6_9

F. , L. Torre, S. Kenjeres, J. Moerel, and C. R. Kleijn, Hybrid simulations of rareed supersonic gas ows in micro-nozzles, Computers and Fluids, pp.312-322, 2011.

W. F. Louisos and D. L. Hitt, Analysis of Transient Flow in Supersonic Micronozzles, Journal of Spacecraft and Rockets, vol.437, issue.29, pp.303-311, 2011.
DOI : 10.1504/IJMR.2008.016453

W. F. Louisos and D. L. Hitt, Influence of Wall Heat Transfer on Supersonic MicroNozzle Performance, Journal of Spacecraft and Rockets, vol.437, issue.29, pp.450-460, 2012.
DOI : 10.1088/0964-1726/10/6/305

W. F. Louisos and D. L. Hitt, Viscous Effects on Performance of Three-Dimensional Supersonic Micronozzles, Journal of Spacecraft and Rockets, vol.187, issue.1, pp.51-58, 2012.
DOI : 10.1017/S0022112001004128

J. A. Potkay, The promise of microuidic articial lungs, Chemistry and Biology, vol.14, issue.21, pp.4122-4138, 2014.

K. M. Kovach, M. A. Labarbera, M. C. Moyer, B. L. Cmolik, E. Van-lunteren et al., In vitro evaluation and in vivo demonstration of a biomimetic, hemocompatible, microuidic articial lung, Chemistry and Biology, vol.15, issue.5, pp.1366-1375, 2015.

J. Jang and S. T. Wereley, Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications, Journal of Micromechanics and Microengineering, vol.17, issue.2, pp.229-237, 2007.
DOI : 10.1088/0960-1317/17/2/007

URL : http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1052&context=nanodocs

A. Vittoriosi, J. J. Brandner, and R. Dittmeyer, A sensor-equipped microchannel system for the thermal characterization of rareed gas ows, Experimental Thermal and Fluid Science, pp.41-112, 2012.
DOI : 10.1016/j.expthermflusci.2012.03.026

A. Demsis, B. Verma, S. V. Prabhu, and A. , Experimental determination of heat transfer coecient in the slip regime and its anomalously low value, Phys. Review E, pp.80-016311, 2009.

A. Demsis, B. Verma, S. V. Prabhu, and A. , Heat transfer coecient of gas owing in a circular tube under rareed condition, Int. J. Thermal Sciences, p.49, 1994.
DOI : 10.1016/j.ijthermalsci.2010.05.018

G. A. Bird, Molecular gas dynamics and the direct simulation of gas ows, 1994.

F. Sharipov and V. Seleznev, Data on Internal Rarefied Gas Flows, Journal of Physical and Chemical Reference Data, vol.27, issue.3, pp.657-706, 1998.
DOI : 10.1063/1.556019

E. M. Sparrow and S. H. Lin, Laminar Heat Transfer in Tubes Under Slip-Flow Conditions, Journal of Heat Transfer, vol.84, issue.4, pp.363-369, 1962.
DOI : 10.1115/1.3684399

T. Ewart, P. Perrier, I. A. Graur, and J. G. Méolans, Mass ow rate measurements in a microchannel , from hydrodynamic to near free molecular regimes, J. Fluid Mech, pp.584-337, 2007.

M. Gad and . Hak, Comments on "critical view on new results in microuid mechanics

, J. Heat Mass Transf, vol.46, issue.20, pp.941-3945, 2003.

S. Colin, Rarefaction and compressibility eects on steady and transient gas ows in microchannels, Microuidics and Nanouidics, vol.1, issue.3, pp.268-279, 2005.
DOI : 10.1007/s10404-004-0002-y

W. Zhang, G. Meng, and X. Wei, A review on slip models for gas microows, Microuidics and Nanouidics, pp.845-882, 2012.
DOI : 10.1007/s10404-012-1012-9

D. A. Lockerby, J. M. Reese, and M. A. Gallis, Capturing the Knudsen Layer in Continuum-Fluid Models of Nonequilibrium Gas Flows, AIAA Journal, vol.43, issue.6, pp.1391-1393, 2005.
DOI : 10.1016/0021-8502(82)90019-2

D. A. Lockerby and J. M. Reese, On the modelling of isothermal gas ows at the microscale, J. Fluid Mech, vol.604, pp.235-261, 2008.

L. O. Hare, D. A. Lockerby, J. M. Reese, and D. R. Emerson, Near-wall eects in rareed gas micro-ows: some modern hydrodynamic approaches, Int. J. Heat Fluid Flow, vol.28, issue.1, pp.37-43, 2007.

L. O. Hare, T. J. Scanlon, D. R. Emerson, and J. M. Reese, Evaluating constitutive scaling models for application to compressible microows, Int. J. Heat Mass Transf, vol.51, pp.5-6, 2008.

C. L. Navier, Mémoire sur les lois du mouvement des uides, Mémoires de l'Académie Royale des Sciences de l, pp.389-440

J. C. Maxwell, On Stresses in Rarified Gases Arising from Inequalities of Temperature, Philosophical Transactions of the Royal Society of London, vol.170, issue.0, pp.231-256, 1879.
DOI : 10.1098/rstl.1879.0067

S. K. Loyalka, N. Petrellis, and S. T. Stvorick, Some numerical results for the BGK model: Thermal creep and viscous slip problems with arbitrary accomodation at the surface, Physics of Fluids, vol.57, issue.9, pp.18-1094, 1975.
DOI : 10.1063/1.1678681

C. Cercignani, Mathematical methods in kinetic theory, 1990.
DOI : 10.1007/978-1-4899-7291-0

D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. W. Barber, Velocity boundary condition at solid walls in rarefied gas calculations, Physical Review E, vol.70, issue.1, p.17303, 2004.
DOI : 10.1146/annurev.fluid.32.1.779

URL : https://strathprints.strath.ac.uk/5219/6/strathprints005219.pdf

S. Colin, Gas microows in the slip ow regime: A critical review on convective heat transfer, J. Heat Transf, vol.134, issue.2, pp.2012-020908
DOI : 10.1115/1.4005063

M. Smoluchowski, Ueber W??rmeleitung in verd??nnten Gasen, Annalen der Physik, vol.12, issue.1, pp.101-130, 1898.
DOI : 10.1002/andp.18983000110

H. P. Kavehpour, M. Faghri, and Y. Asako, EFFECTS OF COMPRESSIBILITY AND RAREFACTION ON GASEOUS FLOWS IN MICROCHANNELS, Numerical Heat Transfer, Part A: Applications, vol.32, issue.7, pp.677-696, 1997.
DOI : 10.1080/10407789708913912

M. Miyamoto, W. Shi, Y. Katoh, and J. Kurima, Chocked ow and heat transfer of low density gas in a narrow parallel-plate channel with uniformly heating walls, Int. J. Heat Mass Transf, pp.46-2685, 2003.

C. Hong, Y. Asako, and J. H. Lee, Heat transfer characteristics of gaseous ows in microchannel with constant heat ux, Int. J. Thermal Sciences, issue.11, pp.46-1153, 2007.

Z. Sun and Y. Jaluria, Convective heat transfer in pressure-driven nitrogen slip ows in long microchannels: The eects of pressure work and viscous dissipation, Int. J. Heat Mass Transf, vol.55, pp.13-14, 2012.

N. G. Hadjiconstantinou, Dissipation in Small Scale Gaseous Flows, Journal of Heat Transfer, vol.240, issue.5, pp.944-947, 2003.
DOI : 10.1016/S0378-4371(97)00149-0

C. Hong and Y. Asako, Some considerations on thermal boundary condition of slip ow
DOI : 10.1016/j.ijheatmasstransfer.2010.03.020

, J. Heat Mass Transf, vol.53, pp.15-16, 2010.

Z. Sun and Y. Jaluria, Numerical Modeling of Pressure-Driven Nitrogen Slip Flow in Long Rectangular Microchannels, Numerical Heat Transfer, Part A: Applications, vol.197, issue.7, pp.541-562, 2009.
DOI : 10.1016/S0017-9310(02)00209-0

A. Quasi-zade, M. Renksizbulut, and J. Friedman, Heat transfer characteristics of developing gaseous slip-ow in rectangular microchannels with variable physical properties, Int, p.1057

, J. Heat Fluid Flow, vol.32, issue.1, pp.117-127, 2011.

Z. Sun and Y. Jaluria, Conjugate Thermal Transport in Gas Flow in Long Rectangular Microchannel, Journal of Electronic Packaging, vol.197, issue.2, p.21008, 2011.
DOI : 10.1016/0022-0248(90)90257-L

S. E. Turner, L. C. Lam, M. Faghri, and O. J. Gregory, Experimental Investigation of Gas Flow in Microchannels, Journal of Heat Transfer, vol.107, issue.5, pp.753-763, 2004.
DOI : 10.1016/S0017-9310(03)00074-7

Y. Ji, K. Yuan, and J. N. Chung, Numerical simulation of wall roughness on gaseous ow and heat transfer in a microchannel, Int. J. Heat Mass Transf, pp.49-1329, 2004.

G. Croce and P. D. Agaro, Compressibility and rarefaction eect on heat transfer in rough microchannels, Int. J. Thermal Sciences, pp.48-252, 2009.

S. Hossainpour and M. H. Khadem, Investigation of uid ow and heat transfer characteristics of gases in microchannels with condsideration of dierent roughness shapes at slip ow regime, Nanoscale Microscale Thermophysical Engineering, pp.14-137, 2010.

O. Rovenskaya and . Croce, Numerical investigation of microow over rough surfaces: coupling approach, J. Heat Transf, vol.135, issue.1001005, pp.1-8, 2013.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena, second ed, 2002.

S. H. Maslen, On heat transfer in slip ow, Journal of the Aeronautical Sciences, vol.25, pp.400-401, 1958.

W. Shi, M. Miyamoto, Y. Katoh, and J. Kurima, Chocked ow of low density gas in a narrow parallel-plate channel with adiabatic walls, Int. J. Heat Mass Transf, pp.44-2555, 2001.

K. Ramadan and I. Tlili, ABSTRACT, Journal of Mechanics, vol.36, issue.06, pp.31-733, 2015.
DOI : 10.1016/S0017-9310(00)00289-1

K. Ramadan, Pressure Work and Viscous Dissipation Eects on Heat Transfer in a Parallel- Plate Microchannel Gas Flow, Journal of Mechanics, pp.1-12, 2017.

E. B. Arkilic, M. A. Schmidt, and K. S. Breuer, Gaseous slip flow in long microchannels, Journal of Microelectromechanical Systems, vol.6, issue.2, pp.167-178, 1997.
DOI : 10.1109/84.585795

C. Cai, Q. Sun, and I. D. Boyd, Gas ows in microchannels and microtubes, J. Fluid Mech, vol.589, pp.305-314, 2007.

O. Touazi, E. Chénier, and R. Eymard, Simulation of natural convection with the collocated clustered nite volume scheme, Computers and Fluids, pp.1138-1147, 2008.

E. Chénier, R. Eymard, R. Herbin, and O. Touazi, Collocated nite volume schemes for the simulation of natural convective ows on unstructured meshes, Int. J. Num. Methods Fluids, issue.11, pp.56-2045, 2008.

E. Chénier, R. Eymard, and O. Touazi, Numerical Results Using a Colocated Finite-Volume Scheme on Unstructured Grids for Incompressible Fluid Flows, Numerical Heat Transfer, Part B: Fundamentals, vol.10, issue.3, pp.259-276, 2006.
DOI : 10.1017/S0022112091003488

C. Tchekiken, X. Nicolas, L. H. Beaudey-laubier, and G. Lauriat, Simulation numérique d'écoulements anisothermes de gaz en micro canal : eets de compressibilité et de glissement, 21ème Congrès Français de Mécanique, p.2013, 2013.

C. Tchekiken, Modélisations et simulations numérique d'écoulements compressibles dans des micro-conduites, 2014.

C. Tchekiken, E. Chénier, X. Nicolas, and G. Lauriat, A propos de la modélisation numérique de la convection de gaz en micro conduites, Congrès Français de Thermique, SFT2014, number 8613, 2014.

C. Tchekiken, E. Chénier, X. Nicolas, and G. Lauriat, On the numerical modeling of compressible forced convection of gases in micro-channels, Proceedings of the 5th 1099 International Conference on Heat Transfer and Fluid Flow in Microscale, HTFFM-V, number O-128-146, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01006205

G. L. Morini, Y. Yang, H. Chalabi, and M. Lorenzini, A critical review of the measurement techniques for the analysis of gas microows through microchannels, Experimental Thermal and Fluid Science, pp.849-865, 2011.