Quantitative Convergence and Stability of Seismic Inverse Problems.
Florian Faucher, Hélène Barucq, Henri Calandra, Guy Chavent

To cite this version:
Florian Faucher, Hélène Barucq, Henri Calandra, Guy Chavent. Quantitative Convergence and Stability of Seismic Inverse Problems.. Reconstruction Methods for Inverse Problems, May 2018, Rome, Italy. hal-01807980

HAL Id: hal-01807980
https://hal.archives-ouvertes.fr/hal-01807980
Submitted on 12 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Quantitative Convergence and Stability of Seismic Inverse Problems.

Florian Faucher1, Hélène Barucq1, Henri Calandra2 and Guy Chavent1.

Reconstruction Methods for Inverse Problems
Indam Workshop, Roma, Italy,
May 28th – June 1st, 2018.

1Inria Bordeaux Sud-Ouest, Project-Team Magique-3D.
2Total E& P
Seismic inverse problem

Reconstruction of subsurface Earth properties from seismic campaign: collection of wave propagation data at the surface.

- Reflection (back-scattered) partial data,
- only from the surface of the (large) domain,

nonlinear, ill-posed inverse problem.
Overview

1. Time-Harmonic Inverse Problem, FWI

2. Quantitative stability and convergence of FWI
 - Finite Curvature/Limited Deflection problem
 - Numerical convergence estimates
 - Numerical stability estimates

3. Numerical experiments

4. Conclusion
1. Time-Harmonic Inverse Problem, FWI
Time-harmonic wave equation

The forward problem wave equation depends on the medium:
Time-harmonic wave equation

The forward problem wave equation depends on the medium:

- acoustic isotropic (c)

$$(-\omega^2 c^{-2} - \Delta)p = 0,$$
The forward problem wave equation depends on the medium:

- **acoustic isotropic** \((c)\)
 \[(-\omega^2 c^{-2} - \Delta) p = 0, \]

- **elastic isotropic** \((\lambda, \mu, \rho)\)
 \[-\rho \omega^2 u - \nabla (\lambda \nabla \cdot u) - \nabla \cdot (\mu \left[\nabla u + (\nabla u)^T \right]) = 0. \]
Time-harmonic wave equation

The forward problem wave equation depends on the medium:

- **acoustic isotropic** (c)
 \[-\omega^2 c^{-2} - \Delta \right) p = 0,
\]

- **elastic isotropic** (λ, μ, ρ)
 \[-\rho \omega^2 u - \nabla (\lambda \nabla \cdot u) - \nabla \cdot (\mu \left[\nabla u + (\nabla u)^T \right]) = 0.
\]

- **anisotropy** (stiffness tensor, ρ)
 \[-\omega^2 \rho u - \nabla \cdot (C \epsilon(u)) = 0.
\]

Viscous behavior are considered with complex coefficients.
Full Waveform Inversion (FWI)

FWI provides a quantitative reconstruction of the subsurface by solving a minimization problem,

$$\min_{m \in \mathcal{M}} J(m) = \frac{1}{2} \| F(m) - d \|^2. $$

- d are the observed data,
- $F(m)$ represents the simulation using an initial model m:
 $$F : m \rightarrow \{ p(x_1), p(x_2), \ldots, p(x_{n_{rcv}}) \}.$$

P. Lailly
The seismic inverse problem as a sequence of before stack migrations
Conference on Inverse Scattering: Theory and Application, SIAM, 1983

A. Tarantola
Inversion of seismic reflection data in the acoustic approximation
Geophysics, 1984

A. Tarantola
Inversion of travel times and seismic waveforms
Seismic tomography, 1987
FWI, iterative minimization

Observations → Initial model m_0 \[k = 0 \]

Forward problem $F_\omega(m_k)$ → Misfit functional \mathcal{J}
FWI, iterative minimization

Observations → Misfit functional \mathcal{J} → Optimization procedure

1. Gradient
2. Search direction s_k
3. Line search α_k

Initial model m_0 → Forward problem $F_\omega(m_k)$ → $k = 0$

$k = k + 1$ → update model $m_{k+1} = m_k + \alpha_k s_k$ → Update ω
FWI, iterative minimization

Initial model m_0

Observations

Misfit functional \mathcal{J}

Optimization procedure

1. Gradient
2. Search direction s_k
3. Line search α_k

Forward problem $F_\omega(m_k)$

$k = 0$

$k = k + 1$

update model $m_{k+1} = m_k + \alpha_k s_k$

Update ω

Numerical methods

▶ Forward problem resolution with Discontinuous Galerkin methods,
▶ parallel computation, HPC, large-scale optimization.

▶ Multi-frequency algorithm, stability and convergence.
Plan

2. Quantitative stability and convergence of FWI
 - Finite Curvature/Limited Deflection problem
 - Numerical convergence estimates
 - Numerical stability estimates
Helmholtz inverse problem from back-scattered **partial** data, quantitative reconstruction with iterative optimization.

\[
\min_{m \in \mathcal{M}} \mathcal{J}(m) = \frac{1}{2} \| \mathcal{F}(m) - d \|^2.
\]

Convergence radius
- initial model needs to be within the radius of convergence.

Stability
- ensures reconstruction accuracy.
Helmholtz inverse problem from back-scattered partial data, quantitative reconstruction with iterative optimization.

\[
\min_{m \in \mathcal{M}} J(m) = \frac{1}{2} \| F(m) - d \|^2.
\]

Convergence radius
- initial model needs to be within the radius of convergence.

Stability
- ensures reconstruction accuracy.

Numerical estimates to guide the procedure
- frequency;
- parametrization;
- geometry;
- forward problem, ...
Convergence (Finite Curvature/Limited Deflection)

1/ Convergence radius

- initial model needs to be within the radius of convergence.

Least squares minimization problem

\[
\min_{m \in M} \mathcal{J}(m) = \frac{1}{2} \| \mathcal{F}(m) - d \|^2.
\]

M. V. de Hoop, L. Qiu, O. Scherzer
An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints
Numerische Mathematik 2015

G. Chavent
Springer 2010

G. Chavent and K. Kunisch
On weakly nonlinear inverse problems.
SIAM Journal on Applied Mathematics 1996
Convergence (Finite Curvature/Limited Deflection)

1/ Convergence radius

- initial model needs to be within the radius of convergence.

Least squares minimization problem

\[
\min_{m \in \mathcal{M}} \mathcal{J}(m) = \frac{1}{2} \| \mathcal{F}(m) - d \|^2.
\]

Finite Curvature/Limited Deflection guarantees **uniqueness** of the solution and **unimodality**: no local minimum.

- M. V. de Hoop, L. Qiu, O. Scherzer
 An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints
 Numerische Mathematik 2015

- G. Chavent
 Springer 2010

- G. Chavent and K. Kunisch
 On weakly nonlinear inverse problems.
 SIAM Journal on Applied Mathematics 1996
Condition 1/2: Finite Curvature problem

\[F(m_0) \rightarrow F(m_0 + \Delta m) \]

\[\forall m_0, \Delta m \in M, \quad P : t \in [0, 1] \rightarrow F(m_0 + (2t - 1)\Delta m). \]

G. Chavent
Springer 2010
Condition 1/2: Finite Curvature problem

\[\forall m_0, \Delta m \in \mathcal{M}, \quad P : t \in [0, 1] \rightarrow \mathcal{F}(m_0 + (2t - 1)\Delta m). \]

Finite Curvature controls the distance between data and attainable set,

\[\text{dist}(d, \mathcal{F}) < \frac{\| P'(t) \|^2}{\| P''(t) \|}. \]

G. Chavent
Springer 2010
Condition 2/2: Limited Deflection problem

\[\forall m_0, \Delta m \in \mathcal{M}, \quad P : \ t \in [0, 1] \rightarrow \mathcal{F}(m_0 + (2t - 1)\Delta m). \]
Condition 2/2: Limited Deflection problem

\[F(m_0) \]
\[F(m_0 - \Delta m) \]
\[F(m_0 + \Delta m) \]
\[\text{dist}(d, F) \]

\[\forall m_0, \Delta m \in \mathcal{M}, \quad P : t \in [0, 1] \rightarrow F(m_0 + (2t - 1)\Delta m). \]

Limited Deflection property controls the attainable set and model space,

\[\Theta(P) \leq \int_0^1 \frac{\|P''(t)\|}{\|P'(t)\|} \, dt. \]

FC/LD requires

\[\Theta(P) \leq \frac{\pi}{2}. \]

G. Chavent

Springer 2010
Model space size estimation via Limited Deflection

For a given m_0, we estimate the maximal distance Δ_m that still verifies the Limited Deflection property $\Theta(P) \leq \frac{\pi}{2}$.

Larger size are required when missing a priori info.
Model space size estimation via Limited Deflection

For a given \(m_0 \), we estimate the maximal distance \(\Delta_m \) that still verifies the Limited Deflection property \(\Theta(P) \leq \frac{\pi}{2} \).

- \(\Delta_m \) is estimated in the direction \(\delta_k \),

\[
\| \Delta_{\delta_k} \| \leq \frac{\pi}{4} \frac{\| F'(m_0)(\delta_k) \|}{\| F''(m_0)(\delta_k, \delta_k) \|}.
\]

Larger size are required when missing a priori info.
Estimation of the basin of attraction

Numerical estimate of the size Δ^{δ_k}

1. with direction δ_k (the geometry of the unknown),
2. with the frequency ω,
3. with the parametrization.
Estimation of the basin of attraction

Numerical estimate of the size $\Delta^{\delta_k}_{m}$

1. with direction δ_k (the geometry of the unknown),
2. with the frequency ω,
3. with the parametrization.

context: Helmholtz equation with back-scattered data

$$(-\omega^2 m - \Delta) p = 0,$$

m_0 is a smooth velocity

- reflection data (top free surface),
- absorbing conditions on the sides,
- piecewise constant m.
Estimation of the basin of attraction

Numerical estimate of the size Δ^{δ_k} with

1. with direction δ_k (the geometry of the unknown),
2. with the frequency ω.
Estimation of the basin of attraction

Numerical estimate of the size $\Delta_{m}^{\delta_k}$ with

1. with direction δ_k (the geometry of the unknown),
2. with the frequency ω.

![Graph showing the upper bound of $\Delta_{m}^{\delta_k}$ as a function of frequency for three different directions: (a) δ_1, (b) δ_2, (c) δ_3. The graph indicates that low frequencies increase the size, and reflecting objects complicate the procedure.](image)
Estimation of the basin of attraction

Numerical estimate of the size $\Delta_{\delta_k}^m$ with

1. with direction δ_k (the geometry of the unknown),
2. with the frequency ω.

Low frequencies increase the size.

Reflecting objects complicate the procedure.
Complex frequency

\[-\omega^2 c^{-2} - \Delta \] \(p = 0 \)

- \(\omega^2 = (s + 2i\pi f)^2 \)
- \(s = 0: \) Fourier domain \(\omega^2 = (2\pi f)^2 \),
- \(f = 0: \) Laplace domain \(-\omega^2 = s^2 \).

C. Shin and Y. H. Cha
Waveform inversion in the laplace domain ; Waveform inversion in the laplace fourier domain

W. Ha, S. Pyun, J. Yoo and C. Shin
Acoustic full waveform inversion of synthetic land and marine data in the laplace domain ;
Geophysical Prospecting 2010

P. V. Petrov and G. A. Newman
Three-dimensional inverse modelling of damped elastic wave propagation in the fourier domain.
Geophysical Journal International 2014
Complex frequency

\[-\omega^2 = (s + 2i\pi f)^2\]

Selection of complex frequency.
Stability with frequency

2/ Stability

- ensures reconstruction accuracy.

The stability indicates how minimizing the data recovers the model

$$\|m_1 - m_2\| \le C \|F(m_1) - F(m_2)\|.$$

The stability constant C depends on the frequency and the number of unknowns.

G. Alessandrini
Stable determination of conductivity by boundary measurement
Applicable Analysis 1988

E. Beretta, M. V. de Hoop, F. and O. Scherzer
Inverse boundary value problem for the Helmholtz equation: quantitative conditional Lipschitz stability estimates.

G. Alessandrini, M.V. de Hoop, R. Gaburro and E. Sincich
Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data
arXiv:1702.04222, 2017
Stability with frequency

2/ Stability

- ensures reconstruction accuracy.

The stability indicates how minimizing the data recovers the model

$$\|m_1 - m_2\| \leq C\|\mathcal{F}(m_1) - \mathcal{F}(m_2)\|.$$
From our estimates, we see different conditions for stability and convergence.

Quantitative estimates provide an initial, comprehensive, relation to guide the iterative procedure.
Plan

3 Numerical experiments
Multi-level algorithm: stability and convergence

0./ No initial information on the subsurface

largest radius of convergence,

1./ Start with low frequency

high stability constant.
Multi-level algorithm: stability and convergence

0./ No initial information on the subsurface

largest radius of convergence,

1./ Start with low frequency

high stability constant.

improve stability, i.e. resolution,

2./ Increase frequency

reduced radius of convergence.
Elastic Marmousi model

Multi-parameters inversion $17 \times 3.5\text{km}$, true models.

$$-\rho \omega^2 \mathbf{u} - \nabla (\lambda \nabla \cdot \mathbf{u}) - \nabla \cdot (\mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right]) = 0.$$

(a) P-wave speed $\sqrt{\frac{\lambda + 2\mu}{\rho}}$
(b) S-wave speed $\sqrt{\frac{\mu}{\rho}}$

(c) Density
Elastic Marmousi model

Multi-parameters inversion $17 \times 3.5\text{km}$, starting models.

(a) P-wave speed
(b) S-wave speed
(c) Density
Elastic Marmousi reconstruction $17 \times 3.5\text{km}$

Frequency from 1 to 10Hz, unknown density, multi-level algorithm.

(a) True P-wave speed

(b) True S-wave speed

(c) Initial P-wave speed

(d) Initial S-wave speed
Elastic Marmousi reconstruction 17×3.5km

Frequency from 1 to 10Hz, unknown density, multi-level algorithm.

(a) True P-wave speed
(b) True S-wave speed
(c) 10Hz P-wave speed
(d) 10Hz S-wave speed
Elastic Pluto models

Multi-parameters inversion 31×7km, true models.

(a) P-wave speed
(b) S-wave speed
(c) Density
Elastic Pluto models

Multi-parameters inversion 31×7km, starting models.

(a) P-wave speed

(b) S-wave speed

(c) Density
Elastic Pluto reconstruction $31 \times 7\text{km}$

Frequency from 1 to 10Hz, unknown density, multi-level algorithm.

(a) True P-wave speed

(b) True S-wave speed

(c) Initial P-wave speed

(d) Initial S-wave speed
Elastic Pluto reconstruction 31×7km

Frequency from 1 to 10Hz, unknown density, multi-level algorithm.

(a) True P-wave speed
(b) True S-wave speed

(c) 10Hz P-wave speed
(d) 10Hz S-wave speed
Elastic Pluto reconstruction 31×7km

Reminder from the convergence analysis.

![Graph](image)

- Salt domes reduce the size of the radius of convergence.

Solution

- Start with low or complex frequency.
Elastic Pluto reconstruction 31×7 km

Using complex frequencies, unknown density, multi-level algorithm.

(a) True P-wave speed
(b) True S-wave speed
(c) Initial P-wave speed
(d) Initial S-wave speed
Elastic Pluto reconstruction 31×7km

Using complex frequencies, unknown density, multi-level algorithm.

(a) True P-wave speed
(b) True S-wave speed
(c) (0Hz,10) P-wave speed
(d) (0Hz,10) S-wave speed
Elastic Pluto reconstruction 31×7km

Using complex frequencies, unknown density, multi-level algorithm.

(a) True P-wave speed
(b) True S-wave speed
(c) 10Hz P-wave speed
(d) 10Hz S-wave speed
Plan

4 Conclusion
Conclusion

Comprehensive FWI

- Quantitative stability and convergence analysis:
 - depending on the frequency and geometry,
 - depending on the methods.
- We can also quantify the noise robustness.

Perspectives

- Analytical relation to develop between the two components,
- obtain conditional progression in frequency from stability and convergence estimates.
Quantitative reconstruction method for inverse problem

- Discontinuous Galerkin discretization in HPC framework,
- acoustic, elastic, anisotropy, viscosity; 2D, 3D, dual-sensors data.

Applications and ongoing investigations:
Quantitative reconstruction method for inverse problem

- Discontinuous Galerkin discretization in HPC framework,
- acoustic, elastic, anisotropy, viscosity; 2D, 3D, dual-sensors data.

Applications and ongoing investigations:
- Inverse scattering using obstacles positions,
- visco-elastic reconstruction: five unknowns,
 - $\lambda, \mu, \rho, Q_\lambda, Q_\mu$,
 - unknown Q does not prevent λ recovery,
 - procedure to recover attenuation parameter?
- helioseismology; anisotropy; model parametrization.

(a) λ (b) Q_λ
Quantitative reconstruction method for inverse problem

- Discontinuous Galerkin discretization in HPC framework,
- acoustic, elastic, anisotropy, viscosity; 2D, 3D, dual-sensors data.

Applications and ongoing investigations:
- **Inverse scattering** using obstacles positions,
- **visco-elastic** reconstruction: five unknowns,
 - $(\lambda, \mu, \rho, Q_\lambda, Q_\mu)$,
 - unknown Q does not prevent λ recovery,
 - procedure to recover attenuation parameter?

- **helioseismology; anisotropy; model parametrization.**

THANK YOU
Quantitative convergence for MBTT

Numerical estimate of the size $\Delta^{\delta_k}_m$ the problem components

1. the frequency ω,
2. with direction δ_k (the geometry of the unknown),
3. with the parametrization.

The estimates allow a comparison of methods, in particular we want to compare the dependency of the optimization on the low frequencies.
Quantitative convergence for MBTT

Numerical estimate of the size $\Delta_{\delta_k}^m$ the problem components

1. the frequency ω,
2. with direction δ_k (the geometry of the unknown),
3. with the parametrization.

the MBTT method decomposes the model with a smooth part (propagator) and the reflectors:

$$c^{-2} = p + r = p + D\mathcal{F}^*(p)s.$$
Quantitative convergence for MBTT

Numerical estimate of the size $\Delta_{m}^{\delta_{k}}$ the problem components
1 the frequency ω,
2 with direction δ_{k} (the geometry of the unknown),
3 with the parametrization.

Comparison of convergence with parametrization,

$$c^{-2} = p + D\mathcal{F}^{*}(p)s.$$
Quantitative convergence estimates with frequency

Frequency progression for iterative algorithm, \(-\omega^2 = (s + 2i\pi f)^2\).

Other application
- Single frequency gives high radius than range of frequencies,
- can be apply for other minimization problem,
- ...

Finite curvature indicates robustness to noise
- Low and complex frequencies more affected.

Stability
- Indicates the accuracy of the reconstruction.
Starting available frequency is 4Hz.
Starting available frequency is 4Hz.

Using Fourier frequencies only: from 4 to 10Hz
Acoustic Marmousi reconstruction $9.2 \times 3\text{km}$

Starting available frequency is 4Hz.

(a) Using Fourier frequencies only

(b) Using Complex frequencies from $(4\text{Hz}, 7)$