C. Verdier, J. Etienne, A. Duperray, and L. Preziosi, Review: Rheological properties of biological materials, Comptes Rendus Physique, vol.10, issue.8, pp.790-811, 2009.
DOI : 10.1016/j.crhy.2009.10.003

URL : https://hal.archives-ouvertes.fr/hal-00415166

F. Huber, Emergent complexity of the cytoskeleton: from single filaments to tissue, Advances in Physics, vol.65, issue.86, pp.1-112, 2013.
DOI : 10.1088/1367-2630/15/1/015007

L. Blanchoin, R. Boujemaa-paterski, C. Sykes, and J. Plastino, Actin Dynamics, Architecture, and Mechanics in Cell Motility, Physiological Reviews, vol.258, issue.1, pp.235-263, 2014.
DOI : 10.1371/journal.pone.0000696

URL : https://hal.archives-ouvertes.fr/hal-00943523

T. Pollard and G. Borisy, Cellular Motility Driven by Assembly and Disassembly of Actin Filaments, Cell, vol.112, issue.4, pp.453-465, 2003.
DOI : 10.1016/S0092-8674(03)00120-X

H. Yamaguchi and J. Condeelis, Regulation of the actin cytoskeleton in cancer cell migration and invasion, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1773, issue.5, pp.642-652, 2007.
DOI : 10.1016/j.bbamcr.2006.07.001

C. Brunner, A. Niendorf, and J. A. Käs, Passive and active single-cell biomechanics: a new perspective in cancer diagnosis, Soft Matter, vol.98, issue.11, pp.2171-2178, 2009.
DOI : 10.1039/b807545j

M. Vicente-manzanares, X. Ma, R. S. Adelstein, and A. Horwitz, Non-muscle myosin II takes centre stage in cell adhesion and migration, Nature Reviews Molecular Cell Biology, vol.19, issue.11, pp.778-790, 2009.
DOI : 10.1038/ncb1367

R. D. Goldman, A. Milsted, J. A. Schloss, J. Starger, and M. Yerna, Cytoplasmic Fibers in Mammalian Cells: Cytoskeletal and Contractile Elements, Annual Review of Physiology, vol.41, issue.1, pp.703-722, 1979.
DOI : 10.1146/annurev.ph.41.030179.003415

A. Bershadsky, M. Kozlov, and B. Geiger, Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize, Current Opinion in Cell Biology, vol.18, issue.5, pp.472-481, 2006.
DOI : 10.1016/j.ceb.2006.08.012

S. Tojkander, G. Gateva, and P. Lappalainen, Actin stress fibers - assembly, dynamics and biological roles, Journal of Cell Science, vol.125, issue.8, pp.1855-1864, 2012.
DOI : 10.1242/jcs.098087

URL : http://jcs.biologists.org/content/joces/125/8/1855.full.pdf

S. B. Khatau, A perinuclear actin cap regulates nuclear shape, Proc. Natl. Acad. Sci. USA, pp.19017-19022, 2009.
DOI : 10.1038/nmeth.1299

URL : http://www.pnas.org/content/106/45/19017.full.pdf

M. Maninova, J. Caslavsky, and T. Vomastek, The assembly and function of perinuclear actin cap in migrating cells, Protoplasma, vol.58, issue.3, pp.1207-1218, 2017.
DOI : 10.1002/cm.20005

V. Andrés and K. Walsh, Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis, The Journal of Cell Biology, vol.132, issue.4, pp.657-666, 1996.
DOI : 10.1083/jcb.132.4.657

T. Katagiri, Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage [published erratum appears in J Cell Biol 1995 Feb;128(4):following 713], The Journal of Cell Biology, vol.127, issue.6, pp.1755-1766, 1994.
DOI : 10.1083/jcb.127.6.1755

A. Mancini, FMIP controls the adipocyte lineage commitment of C2C12 cells by downmodulation of C/EBPalpha, Oncogene, vol.101, issue.7, pp.1020-1027, 2007.
DOI : 10.1073/pnas.0307229101

D. E. Discher, P. Janmey, and Y. Wang, Tissue Cells Feel and Respond to the Stiffness of Their Substrate, Science, vol.310, issue.5751, pp.1139-1143, 2005.
DOI : 10.1126/science.1116995

URL : http://www.seas.upenn.edu/~discher/pdfs/Cell_on_Gel-ScienceReview.pdf

A. Engler, Myotubes differentiate optimally on substrates with tissue-like stiffness, The Journal of Cell Biology, vol.20, issue.6, pp.877-887, 2004.
DOI : 10.1152/ajpcell.00269.2001

URL : http://jcb.rupress.org/content/jcb/166/6/877.full.pdf

A. Bettadapur, Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels, Scientific Reports, vol.65, issue.1, p.28855, 2016.
DOI : 10.1016/j.vascn.2012.04.001

URL : http://www.nature.com/articles/srep28855.pdf

T. Yeung, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motility and the Cytoskeleton, vol.100, issue.1, pp.24-34, 2005.
DOI : 10.1002/cm.20041

P. C. Georges and P. A. Janmey, Cell type-specific response to growth on soft materials, Journal of Applied Physiology, vol.98, issue.4, pp.1547-1553, 2005.
DOI : 10.1016/S0736-5748(00)00064-2

URL : http://jap.physiology.org/content/jap/98/4/1547.full.pdf

A. Engler, Substrate Compliance versus Ligand Density in Cell on Gel Responses, Biophysical Journal, vol.86, issue.1, pp.617-628, 2004.
DOI : 10.1016/S0006-3495(04)74140-5

URL : https://doi.org/10.1016/s0006-3495(04)74140-5

M. L. Gardel, K. E. Kasza, C. P. Brangwynne, J. Liu, and D. A. Weitz, Chapter 19 Mechanical Response of Cytoskeletal Networks, Methods Cell Biol, vol.89, pp.487-519, 2008.
DOI : 10.1016/S0091-679X(08)00619-5

URL : http://europepmc.org/articles/pmc4456006?pdf=render

, Scientific RePoRtS |, vol.8, 2018.

P. Kollmannsberger and B. Fabry, Linear and Nonlinear Rheology of Living Cells, Annual Review of Materials Research, vol.41, issue.1, pp.75-97, 2011.
DOI : 10.1146/annurev-matsci-062910-100351

S. Chiron, Complex Interactions between Human Myoblasts and the Surrounding 3D Fibrin-Based Matrix, PLoS ONE, vol.106, issue.4, pp.2-9, 2012.
DOI : 10.1371/journal.pone.0036173.s001

M. Balland, A. Richert, and F. Gallet, The dissipative contribution of myosin II in the cytoskeleton dynamics of myoblasts, European Biophysics Journal, vol.78, issue.198101, pp.255-261, 2005.
DOI : 10.1007/s00249-004-0447-7

M. Radmacher, Studying the Mechanics of Cellular Processes by Atomic Force Microscopy, Methods Cell Biol, vol.83, pp.347-372, 2007.
DOI : 10.1016/S0091-679X(07)83015-9

R. E. Mahaffy, C. K. Shih, F. C. Mackintosh, and J. Käs, Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells, Physical Review Letters, vol.26, issue.4, pp.880-883, 2000.
DOI : 10.1088/0022-3727/26/12/005

R. E. Mahaffy, S. Park, E. Gerde, J. Käs, and C. K. Shih, Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy, Biophysical Journal, vol.86, issue.3, pp.1777-1793, 2004.
DOI : 10.1016/S0006-3495(04)74245-9

E. U. Azeloglu and K. D. Costa, Atomic Force Microscopy in Mechanobiology: Measuring Microelastic Heterogeneity of Living Cells, Methods Mol. Biol, vol.736, pp.303-329, 2011.
DOI : 10.1007/978-1-61779-105-5_19

Y. Abidine, V. Laurent, R. Michel, A. Duperray, and C. Verdier, Microrheology of complex systems and living cells using AFM, Computer Methods in Biomechanics and Biomedical Engineering, vol.16, issue.sup1, pp.15-16, 2013.
DOI : 10.1080/10273360410001678083

URL : https://hal.archives-ouvertes.fr/hal-00824908

Y. Abidine, V. M. Laurent, R. Michel, A. Duperray, and C. Verdier, Local mechanical properties of bladder cancer cells measured by AFM as a signature of metastatic potential, The European Physical Journal Plus, vol.70, issue.10, p.202, 2015.
DOI : 10.1002/cm.21100

URL : https://hal.archives-ouvertes.fr/hal-01184996

K. Haase and A. Pelling, Investigating cell mechanics with atomic force microscopy, Journal of The Royal Society Interface, vol.317, issue.5838, p.20140970, 2015.
DOI : 10.1126/science.1139857

URL : http://rsif.royalsocietypublishing.org/content/royinterface/12/104/20140970.full.pdf

J. Chen, Nanobiomechanics of living cells: a review, Interface Focus, vol.208, issue.4440, p.20130055, 2014.
DOI : 10.1126/science.6987736

URL : http://rsfs.royalsocietypublishing.org/content/royfocus/4/2/20130055.full.pdf

F. Rico, Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips, Physical Review E, vol.59, issue.2, p.21914, 2005.
DOI : 10.1152/ajplung.00077.2004

URL : http://diposit.ub.edu/dspace/bitstream/2445/18686/1/532168.pdf

C. Rotsch, K. Jacobson, and M. Radmacher, Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy, Proc. Natl. Acad. Sci. USA 96, pp.921-926, 1999.
DOI : 10.1083/jcb.102.4.1400

URL : http://www.pnas.org/content/96/3/921.full.pdf

H. Schillers, Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples, Scientific Reports, vol.428, issue.1, p.5117, 2017.
DOI : 10.1007/BF00374853

URL : https://hal.archives-ouvertes.fr/hal-01575563

O. Klymenko, M. Lekka, and W. M. Kwiatek, Energy Dissipation in the AFM Elasticity Measurements, Acta Physica Polonica A, vol.115, issue.2, pp.548-551, 2009.
DOI : 10.12693/APhysPolA.115.548

URL : http://doi.org/10.12693/aphyspola.115.548

M. Radmacher, R. W. Tillmann, and H. Gaub, Imaging viscoelasticity by force modulation with the atomic force microscope, Biophysical Journal, vol.64, issue.3, pp.735-742, 1993.
DOI : 10.1016/S0006-3495(93)81433-4

URL : https://doi.org/10.1016/s0006-3495(93)81433-4

L. M. Rebelo, J. S. De-sousa, J. Mendes-filho, and M. Radmacher, Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy, Nanotechnology, vol.24, issue.5, p.55102, 2013.
DOI : 10.1088/0957-4484/24/5/055102

P. D. Garcia, C. R. Guerrero, and R. Garcia, Time-resolved nanomechanics of a single cell under the depolymerization of the cytoskeleton, Nanoscale, vol.99, issue.3, p.12051, 2017.
DOI : 10.1063/1.2202232

A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, issue.582-593, pp.163-198, 1921.
DOI : 10.1098/rsta.1921.0006

URL : http://rsta.royalsocietypublishing.org/content/221/582-593/163.full.pdf

D. Taylor, J. G. Hazenberg, and C. Lee, Living with cracks: Damage and repair in human bone, Nature Materials, vol.42, issue.4, pp.263-268, 2007.
DOI : 10.1152/ajpcell.00234.2002

D. Taylor, The Theory of Critical Distances, 2007.
DOI : 10.1007/1-4020-4972-2_543

C. Dooley, D. Cafferky, T. C. Lee, and D. Taylor, Fatigue failure of osteocyte cellular processes: implications for the repair of bone, European Cells and Materials, vol.27, pp.39-48, 2014.
DOI : 10.22203/eCM.v027a04

D. Strehle, Transiently crosslinked F-actin bundles, European Biophysics Journal, vol.273, issue.16, pp.93-101, 2011.
DOI : 10.1103/PhysRevLett.100.028102

R. H. Pritchard, Y. Y. Huang, and E. M. Terentjev, Mechanics of biological networks: from the cell cytoskeleton to connective tissue, Soft Matter, vol.466, issue.12, pp.1864-1884, 2014.
DOI : 10.1098/rspa.2010.0058

F. Ruckerl, Adaptive Response of Actin Bundles under Mechanical Stress, Biophysical Journal, vol.113, issue.5, pp.1072-1079, 2017.
DOI : 10.1016/j.bpj.2017.07.017

URL : https://hal.archives-ouvertes.fr/hal-01597286

H. Kubitschke, Actin and microtubule networks contribute differently to cell response for small and large strains, New Journal of Physics, vol.19, issue.9, p.93003, 2017.
DOI : 10.1088/1367-2630/aa7658

URL : https://doi.org/10.1088/1367-2630/aa7658

C. Rotsch and M. Radmacher, Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study, Biophysical Journal, vol.78, issue.1, pp.520-535, 2000.
DOI : 10.1016/S0006-3495(00)76614-8

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. Zhdanov, Atomic force microscopy probing of cell elasticity, Micron, vol.38, issue.8, pp.824-833, 2007.
DOI : 10.1016/j.micron.2007.06.011

B. Cappella and G. Dietler, Force-distance curves by atomic force microscopy, Surface Science Reports, vol.34, issue.1-3, pp.1-104, 1999.
DOI : 10.1016/S0167-5729(99)00003-5

P. Attard, Measurement and interpretation of elastic and viscoelastic properties with the atomic force microscope, Journal of Physics: Condensed Matter, vol.19, issue.47, p.473201, 2007.
DOI : 10.1088/0953-8984/19/47/473201

S. Digiuni, Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves, Biophysical Journal, vol.108, issue.9, pp.2235-2248, 2015.
DOI : 10.1016/j.bpj.2015.02.024

URL : https://hal.archives-ouvertes.fr/hal-01601462

B. Laperrousaz, Revealing stiffening and brittlening of chronic myelogenous leukemia hematopoietic primary cells through their temporal response to shear stress, Phys. Biol, vol.13, pp.3-4, 2016.
DOI : 10.1088/1478-3975/13/3/03lt01

URL : http://iopscience.iop.org/article/10.1088/1478-3975/13/3/03LT01/pdf

I. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, International Journal of Engineering Science, vol.3, issue.1, pp.47-57, 1965.
DOI : 10.1016/0020-7225(65)90019-4

X. Shao, Q. Li, A. Mogilner, A. D. Bershadsky, and G. Shivashankar, Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim, Proc. Natl. Acad. Sci, pp.2595-2601, 2015.
DOI : 10.1091/mbc.E11-01-0007

URL : http://www.pnas.org/content/112/20/E2595.full.pdf

M. A. Chesarone, A. G. Dupage, and B. L. Goode, Unleashing formins to remodel the actin and microtubule cytoskeletons, Nature Reviews Molecular Cell Biology, vol.20, issue.1, pp.62-74, 2010.
DOI : 10.1091/mbc.8.4.729

B. D. Hoffman, G. Massiera, K. M. Van-citters, and J. C. Crocker, The consensus mechanics of cultured mammalian cells, Proc. Natl. Acad. Sci. USA 103, pp.10259-10264, 2006.
DOI : 10.1007/s003970000094

URL : http://www.pnas.org/content/103/27/10259.full.pdf

G. Massiera, K. M. Van-citters, P. L. Biancaniello, and J. C. Crocker, Mechanics of Single Cells: Rheology, Time Dependence, and Fluctuations, Biophysical Journal, vol.93, issue.10, pp.3703-3713, 2007.
DOI : 10.1529/biophysj.107.111641

URL : https://doi.org/10.1529/biophysj.107.111641

M. Guo, Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy, Cell, vol.158, issue.4, pp.822-832, 2014.
DOI : 10.1016/j.cell.2014.06.051

T. Betz, M. Lenz, J. Joanny, and C. Sykes, ATP-dependent mechanics of red blood cells, Proc. Natl. Acad. Sci. USA, pp.15320-15325, 2009.
DOI : 10.1063/1.2356852

URL : http://www.pnas.org/content/106/36/15320.full.pdf

E. Soares, M. Silva, B. Stuhrmann, T. Betz, and G. H. Koenderink, Time-resolved microrheology of actively remodeling actomyosin networks, New Journal of Physics, vol.16, issue.7, p.75010, 2014.
DOI : 10.1088/1367-2630/16/7/075010

H. Turlier, Equilibrium physics breakdown reveals the active nature of red blood cell flickering, Nature Physics, vol.87, issue.5, pp.513-519, 2016.
DOI : 10.1529/biophysj.104.043695

URL : https://hal.archives-ouvertes.fr/hal-01432776

N. Akiyama, Y. Ohnuki, Y. Kunioka, Y. Saeki, and T. Yamada, Transverse Stiffness of Myofibrils of Skeletal and Cardiac Muscles Studied by Atomic Force Microscopy, The Journal of Physiological Sciences, vol.56, issue.2, pp.145-151, 2006.
DOI : 10.2170/physiolsci.RP003205

I. V. Ogneva, D. V. Lebedev, and B. S. Shenkman, Transversal Stiffness and Young's Modulus of Single Fibers from Rat Soleus Muscle Probed by Atomic Force Microscopy, Biophysical Journal, vol.98, issue.3, pp.418-424, 2010.
DOI : 10.1016/j.bpj.2009.10.028

URL : https://doi.org/10.1016/j.bpj.2009.10.028

D. Smith, Molecular Motor-Induced Instabilities and Cross Linkers Determine Biopolymer Organization, Biophysical Journal, vol.93, issue.12, pp.4445-4452, 2007.
DOI : 10.1529/biophysj.106.095919

URL : https://doi.org/10.1529/biophysj.106.095919

A. Bershadsky, V. Gelfand, T. Svitkina, and I. Tint, Destruction of microfilament bundles in mouse embryo fibroblasts treated with inhibitors of energy metabolism, Experimental Cell Research, vol.127, issue.2, pp.421-429, 1980.
DOI : 10.1016/0014-4827(80)90446-2

P. A. Glascott, K. M. Mcsorley, B. Mittal, J. M. Sanger, and J. W. Sanger, Stress fiber reformation after ATP depletion, Cell Motility and the Cytoskeleton, vol.90, issue.2, pp.118-129, 1987.
DOI : 10.1042/bj1860059

, Scientific RePoRtS |, vol.8, 2018.

R. Bacallao, A. Garfinkel, S. Monke, G. Zampighi, and L. Mandel, ATP depletion: a novel method to study junctional properties in epithelial tissues. I. Rearrangement of the actin cytoskeleton, J. Cell Sci, vol.107, pp.3301-3313, 1994.

K. M. Van-citters, B. D. Hoffman, G. Massiera, and J. C. Crocker, The Role of F-Actin and Myosin in Epithelial Cell Rheology, Biophysical Journal, vol.91, issue.10, pp.3946-3956, 2006.
DOI : 10.1529/biophysj.106.091264

A. Embry, Biochemical and Cellular Determinants of Renal Glomerular Elasticity, PLOS ONE, vol.139, issue.12, p.167924, 2016.
DOI : 10.1371/journal.pone.0167924.g009

M. Shutova, C. Yang, J. M. Vasiliev, and T. Svitkina, Functions of Nonmuscle Myosin II in Assembly of the Cellular Contractile System, PLoS ONE, vol.586, issue.7, p.40814, 2012.
DOI : 10.1371/journal.pone.0040814.s008

N. T. Swailes, M. Colegrave, P. J. Knight, and M. Peckham, Non-muscle myosins 2A and 2B drive changes in cell morphology that occur as myoblasts align and fuse, Journal of Cell Science, vol.119, issue.17, pp.3561-3570, 2006.
DOI : 10.1242/jcs.03096

M. Laurin, The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo, Proc. Natl. Acad. Sci. USA 105, pp.15446-15451, 2008.
DOI : 10.1083/jcb.144.4.631

S. Atkinson, M. Hosford, and B. Molitoris, Mechanism of Actin Polymerization in Cellular ATP Depletion, Journal of Biological Chemistry, vol.112, issue.7, pp.5194-5199, 2004.
DOI : 10.1016/S0006-2952(99)00030-1

C. P. Brangwynne, F. C. Mackintosh, and D. A. Weitz, Force fluctuations and polymerization dynamics of intracellular microtubules, Proc. Natl. Acad. Sci. USA, pp.16128-16133, 2007.
DOI : 10.1006/jcis.1996.0217

J. D. Szustakowski, Identification of novel pathway regulation during myogenic differentiation, Genomics, vol.87, issue.1, pp.129-138, 2006.
DOI : 10.1016/j.ygeno.2005.08.009

L. J. Mandel, Chapter 8 Energy Metabolism of Cellular Activation, Growth, and Transformation, Curr. Top. Membr. Transp, vol.27, pp.261-291, 1986.
DOI : 10.1016/S0070-2161(08)60359-7

K. Nakayama, F. Okamoto, and Y. Harada, Antimycin A: isolation from a new Streptomyces and activity against rice plant blast fungi, J. Antibiot, vol.9, pp.63-66, 1956.

R. T. Bright, C. G. Salvaterra, L. J. Rubin, and X. Yuan, Inhibition of glycolysis by 2-DG increases [Ca2+]i in pulmonary arterial smooth muscle cells, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.269, issue.2, pp.203-208, 1995.
DOI : 10.1152/ajplung.1995.269.2.L203

S. Theander, D. P. Lew, and O. Nüße, Granule-specific ATP requirements for Ca 2+ -induced exocytosis in human neutrophils. Evidence for substantial ATP-independent release, J. Cell Sci, vol.115, pp.2975-2983, 2002.

J. S. Allingham, R. Smith, and I. Rayment, The structural basis of blebbistatin inhibition and specificity for myosin II, Nature Structural & Molecular Biology, vol.42, issue.4, pp.378-379, 2005.
DOI : 10.1021/bi026964f

M. A. Griffin, S. Sen, H. L. Sweeney, and D. E. Discher, Adhesion-contractile balance in myocyte differentiation, Journal of Cell Science, vol.117, issue.24, pp.5855-5863, 2004.
DOI : 10.1242/jcs.01496

J. E. Sader, I. Larson, P. Mulvaney, and L. White, Method for the calibration of atomic force microscope cantilevers, Review of Scientific Instruments, vol.9, issue.7, pp.3789-3798, 1995.
DOI : 10.1063/1.325596

Y. Meyer, . Wavelets, and . Applications, , 1992.

J. Muzy, E. Bacry, and A. Arneodo, THE MULTIFRACTAL FORMALISM REVISITED WITH WAVELETS, International Journal of Bifurcation and Chaos, vol.04, issue.02, pp.245-302, 1994.
DOI : 10.1142/S0218127494000204

URL : https://hal.archives-ouvertes.fr/hal-01557136

A. Arneodo, E. Bacry, and J. Muzy, The thermodynamics of fractals revisited with wavelets. Phys, pp.232-275, 1995.
DOI : 10.1017/cbo9780511613265.012

URL : https://hal.archives-ouvertes.fr/hal-01557133

A. Arneodo, B. Audit, N. Decoster, J. Muzy, and C. Vaillant, Wavelet Based Multifractal Formalism: Applications to DNA Sequences, Satellite Images of the Cloud Structure, and Stock Market Data, The Science of Disasters, pp.26-102, 2002.
DOI : 10.1007/978-3-642-56257-0_2

A. Arneodo, Multi-scale coding of genomic information: From DNA sequence to genome structure and function, Physics Reports, vol.498, issue.2-3, pp.45-188, 2011.
DOI : 10.1016/j.physrep.2010.10.001

URL : https://hal.archives-ouvertes.fr/ensl-00572973

G. A. Graham, The contact problem in the linear theory of viscoelasticity, International Journal of Engineering Science, vol.3, issue.1, pp.27-46, 1965.
DOI : 10.1016/0020-7225(65)90018-2

Y. Cheng and C. Cheng, Scaling, dimensional analysis, and indentation measurements, Materials Science and Engineering: R: Reports, vol.44, issue.4-5, pp.91-149, 2004.
DOI : 10.1016/j.mser.2004.05.001

URL : http://dspace.imech.ac.cn/bitstream/311007/17262/1/Scaling%2c%20dimensional%20analysis%2c%20and%20indentation%20measurements.pdf

B. Laperrousaz, From elasticity to inelasticity in cancer cell mechanics: A loss of scale-invariance, AIP Conf. Proc. 1760, p.20040, 2016.
DOI : 10.3324/haematol.2008.001214

URL : https://hal.archives-ouvertes.fr/hal-01556050

M. Radmacher, M. Fritz, C. Kacher, J. Cleveland, and P. Hansma, Measuring the viscoelastic properties of human platelets with the atomic force microscope, Biophysical Journal, vol.70, issue.1, pp.556-567, 1996.
DOI : 10.1016/S0006-3495(96)79602-9

L. Streppa, Characterizing mechanical properties of living C2C12 myoblasts with single cell indentation experiments. Application to Duchenne muscular dystrophy, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01515389