The impact of churn on client value in health insurance, evaluation using a random forest under random censoring

Abstract : In the insurance broker market, commissions received by brokers are closely related to so-called " customer value " : the longer a policyholder keeps their contract, the more profit there is for the company and therefore the broker. Hence, predicting the time at which a potential policyholder will surrender their contract is essential in order to optimize a commercial process and define a prospect scoring. In this paper, we propose a weighted random forest model to address this problem. Our model is designed to compensate for the impact of random censoring. We investigate different types of assumptions on the censor-ing, studying both the cases where it is independent or not from the covariates. We compare our approach with other standard methods which apply in our setting, using simulated and real data analysis. We show that our approach is very competitive in terms of quadratic error in addressing the given problem.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01807623
Contributeur : Olivier Lopez <>
Soumis le : mardi 5 juin 2018 - 00:44:21
Dernière modification le : mardi 19 mars 2019 - 01:23:27
Document(s) archivé(s) le : jeudi 6 septembre 2018 - 13:13:47

Fichier

Article___The_impact_of_churn_...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01807623, version 1

Citation

Guillaume Gerber, Yohann Le Faou, Olivier Lopez, Michael Trupin. The impact of churn on client value in health insurance, evaluation using a random forest under random censoring. 2018. 〈hal-01807623〉

Partager

Métriques

Consultations de la notice

253

Téléchargements de fichiers

186