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Abstract

This paper concerns the study of vibroacoustic problems. By considering a displacement-pressure formulation, a non-symmetric
eigenvalue problem is obtained. In order to solve it, three numerical schemes are compared: the classical ARPACK solver, an
indicator method (initially proposed in B. Claude et al. Comptes Rendus Mécaniques, 2017, 345(2)) which has the property to
be null at the eigenvalues, and an original method based on the analysis of Taylor series expansions near a singularity. Numerical
results show all the evaluated numerical methods give accurate results but the indicator method requires the lowest computational
times. Nevertheless, the original method based on the behavior of the perturbation method close to eigenvalues seems to be a very
promising technique.
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1. Introduction

Vibroacoustic problems are encountered in many industrial
applications (automotive, aerospace, ...). One of the difficulty
to deal with this kind of problems is to well represent the cou-
pling between fluid and solid. Several formulations can then be
considered [1]. Among them, one can cite a pure displacement-
formulation, a three fields formulation (displacement, pressure
and potential for example) or a displacement-pressure formula-
tion. In this study, this latter is chosen. One of the difficulties
for this displacement (solid) - pressure (fluid) formulation is
that it leads to an unsymmetric eigenvalue problem. In order
to solve this problem, some numerical methods can be used :
they are listed and described in Ref. [2] for different cases of
structures and fluid.

This paper concerns the free vibrations of an elastic struc-
ture which is completely filled with a homogeneous, invis-
cid and non-weighting compressible fluid. The displacement-
pressure equations are spatially discretized with the finite el-
ement method. The discrete linear non-symmetric eigenvalue
problem is then solved with three numerical methods. One ob-
jective of this paper is to compare these numerical methods.
The first algorithm is based on the common Arnoldi method
with ARPACK solution [3]. For the two others methods, a
perturbation method is used. The second method has been
recently proposed in [4]. This method consists in introduc-
ing a right-hand side (r.h.s.) in the eigenvalue problem. This
r.h.s. is a scalar multiplied by a random vector. This modi-
fied eigenvalue problem is then solved with the help of a per-
turbation method where the angular frequency is the perturba-
tion parameter. Finding the couple of unknowns (eigenvalues
and modes) consists then in finding the value of the angular
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frequency for which the introduced scalar is null. In the last
numerical method, the forced vibration problem is considered.
A perturbation method is also used to compute the response
curve of the considered problem. This third numerical method
is based on the behavior of the series in the vicinity of a singu-
larity. Then according to the work presented in Ref. [5], close
to a singularity (in this study the eigenvalue), a geometric pro-
gression appears in the asymptotic expansion. So determining
the eigenvalues consists in finding the emergence of a geomet-
ric progression during the computation of the response curve of
the forced vibration problem.

2. Governing equations

In this study, the displacement (u in the solid) and pressure (p
in the fluid) formulation is chosen. The governing equations of
an elastic solid (Ωs) entirely filled with a homogeneous, inviscid
and non-weighting compressible fluid (Ωf) are the followings:

σi j, j(u) + ω2ρS ui = 0 in Ωs

4p + ω2

c2 p = 0 in Ωf

σi j(u)n f
j = pn f

j on ∂Ωsf
∂p
∂n f = 5p.~n f = ω2ρ f~u.~n f on ∂Ωsf

(1)

where subscripts s and f stand for solid and fluid domain re-
spectively. The symbol ∂Ωsf is the solid-fluid interface where
the couplings are. The scalarsω, ρf, ρs and c are the angular fre-
quency, the density of the fluid and of the solid and the velocity
of sound respectively. By using the finite element method, the
discrete form of the previous equations is obtained:([

Ks −C
0 Kf

]
− λ

[
Ms 0
ρfCt Mf

]) {
u
p

}
=

{
0
0

}
(2)

In the previous equations, the symbols Kf or s, Mf or s and C rep-
resent the stiffness matrix (for the fluid or the solid), the mass
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matrix (for the fluid or the solid) and the matrix due to the fluid-
solid coupling. The scalar λ represents the eigenvalue (square
of the angular frequency). For the sake of simplicity, the previ-
ous system of equations (2) is written as the following general-
ized eigenvalue problem:

[K − λM] U = 0 (3)

where K and M are unsymmetric matrices and U is a mixed un-
known vector (the displacement and the pressure). This prob-
lem is now solved with the help of three different numerical
methods.

3. Numerical methods

3.1. Classical numerical method
In this study, all the numerical results obtained with the pro-

posed methods are compared to the results obtained with the
Arnoldi method by using ARPACK solution [3]. As it has been
pointed out in Ref. [4], the system (2) is poorly conditioned and
then ARPACK is unable to compute the corresponding eigen-
values. So, according to the analysis reported in [6], the system
(2) needs to be preconditioned and becomes:([

Ks −Ck

0 K̂f

]
− λ

[
Ms 0
ρfCt

m M̂f

]) {
us
p̂

}
=

{
0
0

}
(4)

with the following definitions:
K̂f = abKf and M̂f = abMf

Ck = aC and Cm = bC
p̂ = 1

a p

a =

√
‖Ks‖F
‖Mf‖F

and b =

√
‖Ms‖F
‖Kf‖F

(5)

where symbol ‖K‖F stands for the Frobenius norm of the matrix

K defined by ‖K‖F =

√
n∑

i=1

n∑
j=1
|Ki j|. With these modifications

of the initial problem, ARPACK is able to compute the eigen-
values and eigenmodes of a vibroacoustic problem [6]. These
results are considered in the following as reference results.

3.2. The indicator method
The method proposed in Ref. [4] to compute the eigenvalues

and eigenmodes of the system (3) is reminded. The key point
of this method is to modify the Eq. (3) by introducing a right
hand side µF:

[K − λM] U = µF (6)

where F is a random load vector and µ is a scalar. Hence, find-
ing the solutions (λ,U) verifying the eigenvalue problem (3)
consists in determining when the scalar µ is null. In order to
have a well-posed problem, the following additional equation
is chosen: 〈

U − U0,U0
〉

= 0 (7)

where 〈•, •〉 represents the Euclidian scalar product. The vector
U0 is the solution of the problem (6) when λ is equal to zero (i.e.

the static problem). In this case, the scalar µ is chosen equal
to one. In order to solve the problem (6) with a perturbation
method, the eigenvalue λ is defined by:

λ = λ0 + λ̂ (8)

where the value λ0 is supposed to be known, equal to zero for
the beginning of the calculation. The scalar λ̂ is the new pa-
rameter of the problem. To determine accurate values of λ̂ for
which the scalar µ is null, the unknown X = (U, µ) are searched
as an integro-power series with respect to the parameter λ̂:

X =

N∑
i=0

λ̂iXi (9)

where N stands for the truncation order of the asymptotic ex-
pansions. By introducing these latter in the equations (6) and
(7) and balancing terms with identical powers of λ̂, a set of lin-
ear problems is obtained:

Order 0 :
(K − λ0M) U0 = µ0F〈
U0,U0

〉
=

〈
U0,U0

〉
Order 1 ≤ i ≤ N :
(K − λ0M) Ui = µiF + MUi−1〈
Ui,U0

〉
= 0

(10)

Once, all these linear problems have been solved, the poly-
nomial expansion (9) is replaced by a rational equivalent one,
namely Padé approximants [7, 8]:

XPadé, N(λ̂) − X0 =

N−1∑
k=1

R(N−1−k)(λ̂)

Q(N−1)(λ̂)
λ̂kXk (11)

where Rk, Qk are polynoms of degree k. Finally, finding the
values for which the scalar µ is equal to zero consists in deter-
mining the roots, λ̂r, of the polynoms R(N−1−k)(λ̂). The accuracy
of a given root is checked by the following criteriom:(

tUrKUr − λ̂
t
rUr MUr

)
λ̂r

≤ ε (12)

where ε is a chosen user tolerance. A continuation technique [9]
is used to determine all the eigenvalues between the initial value
(λ0 = 0) and the given maximum value of λ. Let us remark
that this method is not sensitive at all to the poorly conditioned
matrices [4].

It is finally pointed out, that this indicator method is quite
similar to the numerical algorithm proposed by Avery et al. in
Ref. [10] to identify the eigenvalues missed by a symmetric
eigensolver. Indeed, these authors proposed to define a scalar
transfer function which is a rational function whose poles are
exactly the eigenvalues of the considered problem. This trans-
fer transfer is replaced by an equivalent Padé approximant,
by computing Taylor expansions around chosen initial points.
Analysing the poles of the Padé approximant permits to detect
and identify the eigenvalues of the considered problem.
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3.3. Analysis of the series
The last proposed numerical algorithm to solve the eigen-

problem (3) considers the forced vibration problem:

[K − λM] U = F (13)

where F represents the amplitude of a time periodic load vec-
tor applied to the solid part of the considered problem : F(t) =

F cos(ωt). The previous problem is also solved by using a per-
turbation method where the unknown X, with X = (U, λ), is
defined by:

X =

N∑
i=0

aiXi (14)

where the path parameter a can be written as:

a =< U − U0,U1 > +(λ − λ0)λ1 (15)

By introducing the asymptotic expansions (14) into equations
(13) and (15) and by equating like powers of a, a set of linear
equations is obtained:

Order 0 :
(K − λ0M)U0 = F with λ0 known

Order 1 :
(K − λ0M)U? = MU0

λ1 =
√

1
1+<U?,U?>

U1 = λ1U?

Order 2 ≤ i ≤ N :

(K − λ0M)Uq(i) =
i−1∑
ir=1

λir MU(i−ir)

λi = −
<Uq(i),U1>

λ1+<U?,U1>

Ui = λiU? + Uq(i)

(16)

So by solving the (N + 1) equations previously defined, one
can compute a part of the solution. Next, the polynomial ap-
proximation (14) is replace by the Padé approximants (11). By
applying the continuation technique as previously [9], the re-
sponse curve of a vibroacoustic problem submitted to a har-
monic load vector is then computed in a range λ ∈ [0, λmax]
where λmax is chosen by the user.

The question is now how can be determined the eigenvalue
and eigenmode solutions of Eq. 3 ? The proposed algorithm
is based on the behavior of the asymptotic expansions close to
a singularity. Indeed, in a recent paper, Cochelin and Medale
[5] have shown the emergence of a geometric power series in
the asymptotic expansion near a singularity. In this latter ref-
erence, the singularity is a steady bifurcation. This technique
has been used to detect steady bifurcation in Newtonian [5, 13]
or non-Newtonian [14] fluid mechanics and Hopf bifurcation
in rotating beam framework [12]. From the work presented in
Ref. [5], the unknown X can be splitted into two parts:

X = X̂ + Xerror (17)

where X̂ is a flawless solution and Xerror represents the solution
due to the defaults or approximation errors in the computation.
In the reference [5], the authors have demonstrated that the
term Xerror in the initial series X is a geometric progression
series. So determining a singularity consists in finding a
geometric progression into the polynomial representation
(14). Hence, this is carried out numerically by verifying a
collinearity condition and a relative error test applied to the last
terms of the series as follows:
For N − 3 ≤ n ≤ N − 1 compute :

βn =
< Xn, XN >

< XN , XN >
and X⊥n = Xn − βnXN (18)

If
N−2∑

n=N−3

(
|βn|

1/(N−n)

|βN−1|
− 1

)2

≤ δ1 (19)

and
N−1∑

n=N−3

(
‖ X⊥n ‖
‖ Xh ‖

)
≤ δ2 (20)

where the two parameters δ1 and δ2 are chosen equal to re-
spectively 10−3 and 10−6 according to the numerical results pre-
sented in Ref. [5].

If both previous criteria are checked, then the common ratio
of the geometric progression (βN−1) is exactly the distance to
the singularity, denoted by a0, and leads to the computation of
all the terms X̂n of the flawless solution:

For 1 ≤ n ≤ N − 1 : X̂n = Xn − a(N−n)
0 XN (21)

These terms are then used to compute a ”cleaned” solution. Fi-
nally, once a geometric progression has been numerically de-
tected, the eigenvalue and the eigenmode can be computed by
using the following expression:

Xc = X0 +

N−1∑
i=1

ai
0X̂i (22)

Moreover, it is known from [5] that the vector XN is related
to tangents at singular solutions. So, when the continuation is
performed on the fundamental branch and in the case of a pitch-
fork bifurcation, XN is exactly the direct mode at the singluar
solution, see Ref. [13]. Using the Lyapunov-Schmidt reduction
[13], one shows that this direct mode is the orthogonal tangent
to the fundamental branch.

In the considered vibroacoustic problem, the flawless solu-
tion (i.e. X̂) is the solution of the generalized eigenvalue prob-
lem (3) and the ”error” solution (solution with default) is due to
the load applied to the structure (Eq. 13). So, close to the eigen-
value, a geometric progression should appear in the asymptotic
expansions (14).

4. Numerical results

The three previous numerical methods are now applied to de-
termine the eigenvalues and eigenmodes of a steel cavity (linear
elastic structure) which is filled with an inviscid compressible
fluid (air or water) (see Figure 1). This problem has been solved
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in references [4] and [11]. Linear quadrilateral elements are
used both for solid and fluid domains. Solid elements have eight
degrees of freedom (two displacements per node) and fluid el-
ements only four (one pressure per node). The fluid-solid in-
terface elements have twelve d.o.f. The first ten eigenvalues for

Steel:
E=1.44 1011 Pa
ν= 0.35
ρs = 7.7 103

kg.m−3

Air’s properties:
cf = 340 m.s−1

ρ f = 1 kg.m−3

Water’s properties
cf = 1430 m.s−1

ρ f = 1000 kg.m−3

 

 

 

 

 

 

F 

Figure 1: Geometry and mechanical properties for the steel cavity [11].

air and water obtained with ARPACK and the indicator method
are given in Table 1 and compared to those from Ref. [11]. The

Air Water
PMs Reference[11] PMs Reference[11]

676.926 664.121 654.159 641.837
1068.562 1068.129 2159.301 2116.398
1068.607 1068.152 3445.498 3201.475
1511.191 1510.589 3907.321 3804.124
2139.448 2136.102 4221.192 4211.62
2139.707 2136.240 4710.677 4687.927
2304.012 2258.686 5168.735 5155.246
2391.688 2388.418 5454.176 5385.805
2391.734 2388.539 6280.978 6239.332
3026.00 - 7597.443 -

Table 1: Comparison of the first ten angular frequencies obtained with the pro-
posed methods (PMs) and those given in Ref. [11] for the elastic cavity pre-
sented in Fig. 1.

solutions obtained with the indicator method (Section 3.2) and
those obtained with ARPACK are exactly the same. Some of
the eigenmodes (Mode 1, 2 and 4) are represented in Fig. 2
for a cavity filled with air. One considers now the forced vibra-
tion problem of an elastic cavity filled with water. The response
curve is given in Fig. 3. This curve is obtained by choosing a
truncation order N of the asymptotic expansion (14) equal to
20. More than one hundred steps of the continuation technique

(a) Mode 1, displace-
ment

(b) Mode 1, pressure

(c) Mode 2, displace-
ment

(d) Mode 2, pressure

(e) Mode 4, displace-
ment

(f) Mode 4, pressure

Figure 2: Eigenmodes for the elastic cavity filled with air (from reference [4]).

is required to compute the solution up to an angular frequency
equal to 3000 rad/s. The interesting feature is the step accumu-
lation near the eigenfrequencies, ω1 =654 rad/s and ω2 = 2159
rad/s in Fig. 3. Each step of the continuation technique is rep-
resented by a cross symbol in Fig. 3. This behavior of the per-
turbation method close to singular values is classical and has
been used in some applications as a visual indicator to detect
instabilities. The algorithm presented in Section 3.3 and based
on the detection of a geometric progression is now applied to
detect eigenvalues by analysing the series. Then, when the lat-
ter method is used, only 55 steps of the continuation technique
are needed to computed the solution for an angular frequency
in the range [0, 8000]. This permits to compute the first ten
eigenvalues (for the water case) given in Table 1. These eigen-
values are exactly the same as those computed with ARPACK
or with the indicator method. With the analysis technique of
series, the eigenmodes are easily carried out by introducing the
distance to the closest singularity (a0) into the expression (22).
These modes are plotted in Fig. 4 for the air-filled cavity. In
this figure, one can clearly see that these modes are not the
same that those obtained with ARPACK or with the indicator
method (see Fig 2). For a more precise idea of the accuracy
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Figure 3: Response curve of the forced vibration problem for the elastic cavity
filled with water. The displacement corresponds to the point where the load is
applied (see Fig. 1).

(a) Mode 1, displace-
ment

(b) Mode 1, pressure

(c) Mode 2, displace-
ment

(d) Mode 2, pressure

(e) Mode 4, displace-
ment

(f) Mode 4, pressure

Figure 4: Eigenmodes for the air-filled cavity by using expression (22).

of the modes computed by using expression (22), the logarithm
of the residual of the mode 2 has been calculated by using Eq.
(12) and is equal to 7.83. This confirms that the modes obtained
with expression (22) are not solution of the initial eigenvalues
problem (3). This is quite surprising compared to the previous
applications of this technique for computing steady bifurcations
for example. Nevertheless, there exists another way to compute

(a) N=1, U1 , displace-
ment

(b) N=1, U1, pressure

(c) N=2, U2, displace-
ment

(d) N=2, U2, pressure

(e) N=3, U3, displace-
ment

(f) N=3, U3, pressure

Figure 5: Terms of the asymptotic expansions close to the second eigenvalue
for an air-filled cavity according to the truncation order.

these eigenmodes. One considers for example a computation
(the forced vibration case) carried out near the second eigen-
value of the air-filled cavity (close to ω0 = 1000 rad/s with λ0
=ω2

0 in Eq. (16)). For this value of the angular frequency, a ge-
ometric progression has been detected and the next eigenvalue
is then found. So, for this computation, some of the terms of the
asymptotic expansion (the component Ui of the mixed vector Xi

of Eq. 14) are plotted in Figures 5 and 6 for several truncation
orders. These figures show that the component Ui (displace-
ment and pressure) becomes similar to the mode 2 (see Figures
2(c) and 2(d)) when the truncation order increases. To underline
this behavior, the evolution of the residual (12) of the vector Ui

is plotted versus the evolution of the truncation order in Fig. 7.
This figure shows that the vector Ui is exactly the eigenmode

when the truncation order increases. The accuracy of the vec-
tor Ui seems to linearly depend on the truncation order. With
this property, accurate eigenmodes can be then computed in-
stead of using expression (22). In a way, Dirac delta functions
in the response curve (Fig. 3) act as second famillies of solution
crossing the fundamental branch at the singular solutions. As
those functions are orthogonal to the curves, it is consistent to
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(a) N=4, U4, displace-
ment

(b) N=4, U4, pressure

(c) N=5, U5, displace-
ment

(d) N=5, U5, pressure

(e) N=6, U6, displace-
ment

(f) N=6, U6, pressure

Figure 6: Terms of the asymptotic expansions close to the second eigenvalue
for an air-filled cavity according to the truncation order.
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Figure 7: Evolution of the logarithm of the residual vector (Eq. 12) versus the
truncation order for the vector Ui close to the second eigenvalue for an air-filled
cavity.

see the eigenmode in the high order terms of the series.
The last point concerns the computational times required for

each presented technique. So the computation times needed to
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Figure 8: Comparison of CPU times obtained with ARPACK and the proposed
methods to get the ten first eigenvalues (Table 1) for the elastic cavity filled with
air [4, 11].
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Figure 9: Comparison of CPU times obtained with ARPACK and the proposed
methods to get the ten first eigenvalues (Table 1) for the elastic cavity filled with
water [4, 11].

compute the first ten eigenvalues are plotted versus the number
of unknowns considered in Figures 8 and 9 for air and water re-
spectively. These figures show that the algorithm based on the
analysis of the series is less time consuming than the ARPACK
method. The indicator technique is the method requiring the
lowest computational times. The numerical tests (not presented
in this work) have shown that, on the contrary of the indica-
tor technique, the analysis of series method is sensitive to the
fact that matrices are ill-conditioned. So for this latter, as with
ARPACK in section (3.1), all the matrices have been modified
according to the expressions (5).

5. Conclusion

In this paper, three numerical techniques to compute the
eigenvalues of a vibroacoustic interior coupled problem have
been compared. A classical technique using the Arnoldi method
with ARPACK solution is compared to two techniques using a
perturbation method. A first method which has been initially
proposed in [4] consists in determining the null values of an
indicator. A second technique, proposed in a forced vibration
framework, is based on the analysis of the behavior of the se-
ries close to singularities. Thanks to the detection of a geomet-
ric progression in the series, accurate eigenvalues can be deter-
mined. When a geometric progression is found, the vibration
modes are the terms of the Taylor expansions at a high order
(around 15 according to the presented results). The computa-
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tional times are lowest with the indicator technique. Neverthe-
less, the method using the analysis of the series close to the
eigenvalues seems to be a promising technique. Some works
are in progress to improve this technique, for example by ex-
tracting singularities in the vicinity of the eigenvalues [15] or
by using Euler transform [16]. All these techniques are based
on Domb-Sykes plot [17, 18] which easily leads to the closest
singularity of the initial point of the perturbation method.
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