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Abstract: This paper deals with the estimation of the exhaust manifold pressure for a truck
diesel engine equipped with a turbocharger. The knowledge of this variable is essential in order
to fulfill functions such as the exhaust brake control or on-board diagnosis (OBD) of anti-
pollution systems. However, while in most cases the pressure is directly measured, the sensor
may encounter failures in some specific operating conditions. Its estimation is then of great
interest for diagnosis and fault tolerant control objectives. Based on mean value models of the
turbocharger and the exhaust manifold, a Linear Parameter Varying (LPV) polytopic observer
is designed to provide an estimation of the pressure. The merits of this solution are illustrated
with the high-fidelity professional simulator GT-POWER.
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1. INTRODUCTION

In most automotive engines, the exhaust manifold pres-
sure is directly measured by a sensor. However, some
problems have been reported concerning the robustness
of the sensor. In fact, in addition to its high cost, it
must face strong pressure oscillations and high tempera-
ture conditions. Indeed, these conditions have accused for
example tube clogging problems to the sensor. Therefore
it is not reliable in all the operating conditions of the
engine. Although this pressure information is difficult to
get, it is essential for engine control. Among others, it
is used to control the exhaust pressure with the exhaust
flap in order to get an engine brake and to estimate the
burned fraction to ensure an on-board diagnosis (OBD)
for the anti-pollution system. Since it is mandatory to
propose an OBD solution (Mohammadpour et al., 2012),
its estimation is then of great interest for diagnosis and
fault tolerant control objectives.

To overcome such problems, model-based estimation rep-
resents an efficient alternative. Therefore, several authors
have proposed different methods to estimate the ex-
haust manifold pressure. One can categorize them in two
types: nonlinear observer-based approaches (Fredriksson
and Egardt, 2002) and inverse model approaches (Castillo
et al., 2013; Olin, 2008; Yue-Yun Wang and Haskara,

2010). The latter estimators propose to directly estimate
this variable from the information of the exhaust air mass
flow through the orifice flow equation or from the turbine’s
data-maps.

In (Fredriksson and Egardt, 2002), the authors proposed
a generalized Luenberger observer based on mean value
models of the intake and exhaust manifolds, the tur-
bocharger and engine dynamics which leads to a fourth
order nonlinear observer.

In this paper, we propose for the first time, up to the
authors’ knowledge, a Linear Parameter Varying (LPV)
observer based on mean value models of the turbocharger
and the exhaust manifold to estimate the pressure. Since
the equipment of the engine under consideration, and thus
the measurement at our disposal, are not the same as
in (Fredriksson and Egardt, 2002), it leads to a second
order LPV observer. Besides, our method encompasses a
systematic calibration procedure, contrary to the previous
one where tuning the observer parameters is not an easy
task. Moreover, the observer is proposed considering two
different models for the turbine mass flow rate: a standard
orifice equation, and a new identified black-box model.
The merits of the developed solution are then validated on
a high industrial complex simulator with realistic engine
cycles.
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Fig. 1. Scheme of the air path in the considered engine

The paper is organized as follows. In Section 2, a mean
value model is presented. In Section 3, based on this model,
a LPV polytopic observer is designed to estimate the
exhaust pressure. The observer is synthesized in order to
minimize a H∞ criterion associated with a pole placement
by Linear Matrix Inequalities (LMIs) regions. Then, in
Section 4, the performances of this observer are illustrated
in a realistic simulator designed with GT-POWER. Fi-
nally, conclusions are stated in Section 5.

2. MEAN VALUE MODEL OF THE ENGINE

The architecture of the diesel engine under consideration
is depicted in Fig. 1. This engine is a medium-duty 4-
cylinders 5L diesel one equipped with a Variable Geometry
Turbocharger (VGT) and a Exhaust Gas Recirculation
(EGR) loop. In this section and in all the paper, we will
use data provided by a high-fidelity simulator designed
with GT-POWER 1 . This software, developed by Gamma
Technology, consists in a set of simulation libraries for
analyzing the engine behavior and is largely used in the
automotive industry. Therefore all the reference data are
provided by this simulator.

The measurements considered for this study are: Dc, Degr,
P1, T1, P2, T2, T3, P4 and ωtc. These variables are typically
measured or estimated in the automotive industry. Their
nomenclature is given in Table 1.

In the following, the exhaust manifold and turbocharger
dynamics are modeled using a mean value approach such
as in (Isermann, 2014; Moulin, 2010).

2.1 Exhaust manifold dynamics

Located just after the engine block, this manifold permits
to collect all the gases from the cylinders into one pipe
which is directly connected to the turbine.

The exhaust manifold can be represented as an open
thermodynamical system, where the quantity of gas can
increase or decrease. It is called a ”filling and emptying”
system. Inside this volume, the ideal gas law can be applied
and the pressure P3 can be expressed as:

P3 =
m3RT3
V3

(1)

1 www.gtisoft.com

Table 1. Nomenclature

Notation Description Unit

Neng Engine speed rpm
ωtc Rotor speed of the turbocharger rad.s−1

Jtc Shaft moment of inertia of the
turbocharger

kg.m2

P Power W
T Temperature of a subsystem K
P Pressure of a subsystem Pa
cp Specific heat J.kg−1.K−1

R Ideal gas constant for the air J.kg−1.K−1

γ Specific heat ratio -
D Mass flow rate kg.s−1

Subscript

1 Upstream the compressor
2 Inside the intake manifold
3 Inside the exhaust manifold
4 Downstream the turbine
c Related to the compressor
t Related to the turbine
egr Related to the EGR loop
f Related to the fuel

where m3 is the total air mass inside the volume V3.

By derivating this equation, one obtains:

Ṗ3 =
ṁ3RT3
V3

+
m3RṪ3
V3

(2)

where ṁ3 represents the mass rate of gas flowing through
the exhaust manifold and can be expressed, from a balance
equation, ṁ3 = Dasp +Df −Degr. Besides, assuming that
the temperature varies slowly in comparison to P3, we
consider Ṫ3 ' 0 and (2) becomes:

Ṗ3 =
RT3
V3

(Dasp +Df −Degr −Dt) (3)

In (3), the mass flow rates Df and Degr are known input
variables, and the air mass flow aspired by the cylinders
can be expressed as:

Dasp =
ηvVcylNeng
RT2120

P2 (4)

where ηv is the volumetric efficiency defined as the ratio
between the actual volume flow rate of air and the the-
oretical volume flow rate of air displaced by the pistons.
It is in general given by a map in function of the engine
speed and the intake manifold pressure: ηv(Neng, P2). See
(Isermann, 2014) for a more detailed model and about the
efficiency protocol measurement. The mass flow rate Dt

will be expressed in Section 2.3.

2.2 Turbocharger dynamics

Located just after the EGR loop and the exhaust manifold,
the turbocharger is a combination of a turbine and a
compressor. The main function of the turbocharger is
to increase the air density in the intake manifold by
recovering energy from the exhaust gases. Its secondary
functions are: increase the exhaust pressure P3 in order to
drive the EGR flow or allow engine brake.

There are several studies proposing a model of the tur-
bocharger. Some are control-oriented such as (Salehi et al.,
2013) or modeling-oriented (Jung et al., 2002; Isermann,



2014). From the mechanical power balance, one can obtain
the rotor speed dynamic of the turbocharger 2 :

1

2
Jtc

˙(ω2
tc) = Pt − Pc (5)

where Pc and Pt are respectively the compressor and
turbine powers.

Now, from the formula of the isentropic compression, the
consideration of heat loses through the efficiency maps
and the first law of thermodynamics, these powers can
be expressed as:

Pc =
1

ηc
T1cp1Dc

(P2

P1

) γ1−1

γ1

− 1

 (6)

Pt = ηtT3cp3Dt

1−
(
P4

P3

) γ3−1

γ3

 (7)

As mentioned in (Isermann, 2014), one can consider the
parameters γ1, γ3, cp1, cp3 and R as constant. In addition,
due to their low dispersion, we assume that γ1 = γ3 = γ.

The efficiencies ηc and ηt are given by interpolated maps
from data provided by the manufacturer of the tur-
bocharger.

2.3 Turbine flow modeling

Since mass flow rate passing through the turbine Dt is not
measured, one can use the classical orifice flow equation to
model the mass flow rate of the turbine (Moulin, 2010):

Dt = A(uvgt)
P3√
RT3

Ψ

(
P4

P3

)
(8)

Ψ

(
P4

P3

)
=

√
2γ

γ − 1

(
Π

2
γ −Π

γ+1
γ

)
(9)

where Π represents the pressure ratio in normal and
critical conditions, which is defined by:

Π = max

(
P4

P3
,

(
2γ

γ + 1

) γ
γ−1

)
(10)

In our study, the effective area A(uvgt) is identified as a
third order polynomial function of the command uvgt.

In the sequel, the following fit performance index will be
used:

FIT = 1− ‖Dt −Dt(Model)‖2
‖Dt −mean(Dt)‖2

(11)

The results of this model for Dt are depicted in Fig. 3
and compared with the reference data provided by GT-
POWER.

Even if the model seems to be good, the results could be
improved especially in the last hundreds seconds. To do so,
a Hammerstein-Wiener (HW) model has been identified. A

2 In this study the mechanical friction is neglected but can be easily
added via a constant efficiency

Input
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T3
P4

uvgt

Dt

Fig. 2. Hammerstein-Wiener model block diagram

validation data training data
FIT = 0.9275 FIT = 0.9627

FIT = 0.7698

Fig. 3. Turbine mass flow rate obtained with orifice flow
equations (8)-(10) and a Hammerstein-Wiener model
(FIT computed with (11))

HW model is a combination of three blocks as depicted in
Fig. 2: a static input nonlinearity, a linear dynamic system,
and a static output nonlinearity. For more information
about this model see for example (Zhu, 2002). In our
case, sigmoid networks have been chosen for the input and
output nonlinear functions, which can be defined as a sum
of weighted sigmoid functions (ez+1)−1. The linear system
is a polynomial model with 1 zero, 2 poles with a delay set
to 1. The identification was performed with the System
Identification Toolbox of Matlab using the same inputs
as the previous model (i.e: P3, T3, P4 and uvgt as in Fig.
2).

This black-box model improves significantly the fit of the
data (Fig. 3).

2.4 Considered system

Finally, combining equations (3), (4), (5), (6) and (7), the
following nonlinear differential equations are obtained:

ω̇2
tc =

2

Jtc
ηtT3cp3Dt

1−
(
P4

P3

) γ3−1

γ3


− 2

Jtc

1

ηc
T1cp1Dc

(P2

P1

) γ1−1

γ1

− 1


Ṗ3 =

RT3
V3

(Dasp +Df −Degr −Dt)

(12)

where Dt, for comparison purpose, will be calculated
using the two models defined in the previous Section
2.3: the orifice flow equations (8)-(10) and the identified
Hammerstein-Wiener model.

3. OBSERVER DESIGN

To take into account the nonlinearities of the system de-
scribed in Section 2.4, a quasi-LPV approach is considered
to design an observer for the exhaust manifold pressure P3.



3.1 LPV modeling

Let denote [x1 x2]T = [ω2
tc P3]T the state vector. We

choose to transform the nonlinear system described by (12)
into the following quasi-LPV form:[

ẋ1

ẋ2

]
=

[
0 ρ1

0 ρ2

][
x1

x2

]
+

[
1 0

0 1

][
u1

u2

]
= A(ρ)x+Bu

y = [1 0]x = Cx

(13)

with, in the case where Dt is given by (8)-(10),

ρ1 = ηtT3cp3

(
1−

(
P4

P3

) γ−1
γ

)
A(uvgt)

1√
RT3

Ψ

(
P4

P3

)
2

Jtc

ρ2 = −A(uvgt)
1√
RT3

Ψ

(
P4

P3

)
T3R

V3

u1 = − 2

Jtc
Pc ; u2 =

T3R

V3
(Dasp +Df −Degr)

(14)

It is worth noting that (13) is a quasi-LPV model since
ρ1 and ρ2 depend on x2 = P3. Therefore, in the LPV
observer form, ρ1 and ρ2 will be computed on-line using
the estimated pressure P̂3.

3.2 Problem formulation

For the synthesis problem, consider the following LPV
system:

ẋ = A(ρ)x+Bu+ Ew

y = Cx; z = Czx
(15)

where x ∈ Rnx is the state vector, u ∈ Rnu the known
input vector, y ∈ Rny the measure vector, z ∈ Rnz the
variable to estimate and w ∈ Rnw represents additive
uncertainties that we want to attenuate. The parameter

vector ρ consists of N varying parameters [ρ1 ... ρN ]
T

where each component ρi ∈ [ρi, ρi].

As introduced in (Apkarian et al., 1995), if the parameter
dependence of A(ρ) is affine (as in (13)) and if the
parameter vector ρ varies in a polytope Υ of 2N vertices
such that,

ρ ∈ Υ := Co{ω1, ω2, ..., ω2N }
ωi ∈

{
($1, $2, ..., $N ) | $i ∈ {ρi, ρi}

} (16)

then, the matrix A(ρ) can be transformed into a convex
interpolation such that:

A(ρ) =

2N∑
i=1

µi(ρ)Ai, µi(ρ) ≥ 0,

2N∑
i=1

µi(ρ) = 1 (17)

where the matrices Ai = A(ωi) are time-invariant and
correspond to the image of a vertex of Υ.

In our case, with 2 parameters bounded in [ρ1, ρ1] and
[ρ2, ρ2], (see (Bara et al., 2001) for the general case) the
corresponding polytope is:

Υ = Co{ω1, ω2, ω3, ω4}
= Co{(ρ1, ρ2), (ρ1, ρ2), (ρ1, ρ2), (ρ1, ρ2)} (18)

The objective is to estimate the state vector x of (15) while
minimizing a H∞ criterion with respect to disturbance
terms. The proposed polytopic LPV observer has the
following structure:

˙̂x =

4∑
i=1

(µi(ρ̂)(Aix̂+ Li(y − ŷ))) +Bu

ŷ = Cx̂; ẑ = Czx̂

(19)

where Li are unknown matrices to be determined.

Let Twez denote the closed-loop transfer function from w
to the state error estimation ez = z − ẑ. The objective is
to design an observer (19) such that:

- the poles of Twez are in a desired region to ensure
both convergence performance and stability

- the H∞ norm of Twez is minimized

3.3 Synthesis

First let us notice that, even if the parameter vector is
using estimated state variables (due to the quasi-LPV
model), we assume here that ρ̂ = ρ for the synthesis of
the observer (19). As presented in (Heemels et al., 2010),
a robustness study with respect to uncertainty on the
scheduling variables could be done in the future.

Proposition 1. Given (15)-(17) and the observer (19). If
there exists symmetric positive-definite matrix P and
matrices Yi such that:

PAi − YiC +ATi P − CTY Ti + 2αP < 0 (20)[
−rP PAi − YiC

∗ −rP

]
< 0 (21)

[
sin θ(PAi−YiC+ATi P−C

TY Ti ) cos θ(PAi−YiC−ATi P+CTY Ti )

∗ sin θ(PAi−YiC+ATi P−C
TY Ti )

]
< 0

(22)

min γ∞

s.t

 PAi−YiC+ATi P−C
TY Ti E PCTz

∗ −γ∞I 0

∗ ∗ −γ∞I

 < 0
(23)

for all i = 1, 2, . . . , 2N .

Then the poles of the transfer function Twez are in the
considered area depicted in Fig. 4 and its H∞ norm
is minimized by γ∞. Besides, the observer gains Li are
deduced as Li = P−1Yi.

Proof: The proof follows the steps as described in (Chilali
and Gahinet, 1996). If a single Lyapunov function can
be found for all the vertices of the polytopic system, the
derived LPV observer stabilizes the LPV system for all
possible variations of the scheduling parameters in the
bounded set. �

Applying Proposition 1 to system (13)-(14) for: α = 4;
θ = π/6; r = 80 associated with E = I2 and Cz = [0 1],
gives the roots locus depicted in Fig. 4 and γ∞ = 0.8902.
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The observer gains at the 4 vertices of the polytope are:

L1 = [70.60 1.10]T , L2 = [96.79 2.01]T

L3 = [70.60 1.93]T , L4 = [101.91 2.36]T

4. SIMULATION RESULTS

The validation will be based on two standard types of test:

- The World Harmonized Stationary Cycle (WHSC),
which is a succession of stationary points in the engine
speed and torque.

- The World Harmonized Transient Cycle (WHTC),
which is a transient test based on the pattern of heavy
duty commercial vehicles.

These two cycles are used as inputs for the GT-POWER
simulator, then the needed data are collected to feed the
observer (19) of the system (13). The scheme presented
in Fig. 5, summarizes the considered simulation tests. In
addition to both cycles, we will compare the two different
models for Dt defined in Section 2.3.

For comparison purpose, let us define a performance
estimation criterion as the normalized root mean square
NRMS:

NRMS =

√
1

Ne

∑Ne
n=1 |P̂3(n)− P3(n)|2

maxn=1,Ne P3(n)−minn=1,Ne P3(n)
(24)

where Ne is the number of data points.

The performance results for the different cases and scenar-
ios are summarized in Table 2.

4.1 Case 1: Dt defined by the orifice equations (8)-(10)

The results obtained for the two scenarios (WHSC/WHTC)
in the case where Dt is defined by the orifice flow equations

Table 2. NRMS obtained for the different
cases

Cycle
Model for Dt Orifice eq. HW

WHSC 0.0610 0.0255
WHTC 0.0499 0.0189

(8)-(10), are respectively presented in Fig. 6 and 7. The
observer manages to follow the variations of the pressure
with a reasonable error for both scenarios.

Fig. 6. WHSC cycle with Dt defined by (8)-(10)

Fig. 7. WHTC cycle with Dt defined by (8)-(10)

4.2 Case 2: Dt defined by HW model

In this case Dt is defined by the Hammerstein-Wiener
model identified in Section 2.3. The results for the WHSC
cycle are depicted in Fig. 8 and for the WHTC in Fig. 9.
One can observe that the estimation is improved and, for
some stationary points, the error is close to zero. This is
confirmed by the NRMS results shown in Table 2.

5. CONCLUSION

In this paper, we have designed a LPV observer in order to
estimate the exhaust manifold pressure of a turbocharged
diesel engine. In Section 2, a mean value model of the



Fig. 8. WHSC cycle with Dt defined by the Hammerstein-
Wiener model

Fig. 9. WHTC cycle with Dt defined by the Hammerstein-
Wiener model

turbocharger and pressure dynamics has been developed.
In this section, we also proposed two models of the turbine
mass flow rate. A standard model from the orifice flow
equations and a Hammerstein-Wiener model.

Then, in Section 3, thanks to the LPV framework, a
polytopic LPV observer has been designed to estimate the
state space vector of the system. It is worth mentioning
that this quasi-LPV observer internally depends on the
estimated state variable x̂2, and further works must be
performed to study the effects of the uncertainties in the
parameters due to the estimation of P3 as investigated in
(Heemels et al., 2010).

In Section 4, the observer has been tested in a high-fidelity
simulator in GT-POWER in different scenarios. It has
been shown that the observer has a low estimation error in
every tested scenarios. As shown in Table 2, the HW model
has the best estimation results. This observation could be
expected because it has been established in Section 2.3
that this model has the best fit. However, this model seems
to be too complex for a real-time implementation. Then, in
practical implementations, the orifice flow equations may
be preferred.

Even if the estimation results are good, it appears that the
estimation error is more important at certain points. It has
been established in Section 4.1 and 4.2 that the modeling
improvement on the variable Dt corrects most of these
errors. However, some still remain. To attenuate them, one
can investigate in further works the constant assumption
made on the thermal coefficients, improve the precision
of the efficiency maps of the turbocharger or use the
pressure measurement just after the compressor instead of
the intake manifold one to compute the compressor power
(6).
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