G. Stearns, The positive corona in air: A simplified analytic approach, Journal of Applied Physics, vol.17, issue.7, pp.2899-2913, 1989.
DOI : 10.1007/BF01377958

G. Stearns, Ion mobility measurements in a positive corona discharge, Journal of Applied Physics, vol.5, issue.6, pp.2789-2799, 1990.
DOI : 10.1088/0022-3735/5/5/032

S. Sigmond, Simple approximate treatment of unipolar space???charge???dominated coronas: The Warburg law and the saturation current, Journal of Applied Physics, vol.52, issue.2, pp.891-898, 1982.
DOI : 10.1063/1.329241

E. Jones, J. Dupuy, G. O. Schreiber, and R. T. Waters, Boundary conditions for the positive direct-current corona in a coaxial system, Journal of Physics D: Applied Physics, vol.21, issue.2, pp.322-333, 1988.
DOI : 10.1088/0022-3727/21/2/012

F. Yanallah, Y. Pontiga, A. Meslem, and . Castellanos, An analytical approach to wire-to-cylinder corona discharge, Journal of Electrostatics, vol.70, issue.4, pp.374-383, 2012.
DOI : 10.1016/j.elstat.2012.05.002

J. Johnson and D. B. Go, Recent advances in electrohydrodynamic pumps operated by ionic winds: a review, Plasma Sources Science and Technology, vol.26, issue.10, p.103002, 2017.
DOI : 10.1088/1361-6595/aa88e7

URL : http://iopscience.iop.org/article/10.1088/1361-6595/aa88e7/ampdf

F. Monrolin, O. Plourabou, and . Praud, Electrohydrodynamic Thrust for In-Atmosphere Propulsion, AIAA Journal, vol.110, issue.754, pp.4296-4305, 2017.
DOI : 10.1063/1.345445

URL : https://hal.archives-ouvertes.fr/hal-01660600

F. W. Peek, Dielectric Phenomena in High Voltage Engineering, pp.38-78, 1915.

S. Z. Li and H. S. Uhm, Investigation of electrical breakdown characteristics in the electrodes of cylindrical geometry, Physics of Plasmas, vol.24, issue.6, p.3088, 2004.
DOI : 10.1063/1.1310621

G. V. Naidis, Conditions for inception of positive corona discharges in air, Journal of Physics D: Applied Physics, vol.38, issue.13, pp.2211-2214, 2005.
DOI : 10.1088/0022-3727/38/13/020

Y. Zheng, B. Zhang, and J. He, Current-voltage characteristics of dc corona discharges in air between coaxial cylinders, Physics of Plasmas, vol.22, issue.2, p.23501, 2015.
DOI : 10.1109/TPS.2003.815469

J. J. Lowke and F. , Onset corona fields and electrical breakdown criteria, Journal of Physics D: Applied Physics, vol.36, issue.21, pp.2673-2682, 2003.
DOI : 10.1088/0022-3727/36/21/013

J. J. Lowke and R. Morrow, Theory of electric corona including the role of plasma chemistry, Pure and Applied Chemistry, vol.66, issue.6, pp.1287-1294, 1994.
DOI : 10.1351/pac199466061287

P. Seimandi, G. Dufour, and F. Rogier, An asymptotic model for steady wire-to-wire corona discharges, Mathematical and Computer Modelling, vol.50, issue.3-4, pp.3-4, 2009.
DOI : 10.1016/j.mcm.2009.03.005

URL : https://doi.org/10.1016/j.mcm.2009.03.005

P. Seimandi, G. Dufour, and F. Rogier, A two scale model of air corona discharges, Procedia Computer Science, vol.1, issue.1, pp.627-635, 2010.
DOI : 10.1016/j.procs.2010.04.067

URL : https://doi.org/10.1016/j.procs.2010.04.067

H. Shibata, Y. Watanabe, and K. Suzuki, Performance prediction of electrohydrodynamic thrusters by the perturbation method, Physics of Plasmas, vol.23, issue.5, p.53512, 2016.
DOI : 10.1088/0963-0252/24/5/055014

H. Shibata and R. Takaki, A novel method to predict current voltage characteristics of positive corona discharges based on a perturbation technique. I. Local analysis, AIP Advances, vol.7, issue.11, p.115026, 2017.
DOI : 10.1088/0022-3727/36/21/013

URL : https://doi.org/10.1063/1.4995025

J. Feng, An analysis of corona currents between two concentric cylindrical electrodes, Journal of Electrostatics, vol.46, issue.1, pp.37-48, 1999.
DOI : 10.1016/S0304-3886(98)00057-6

Y. Zheng, B. Zhang, and J. He, Self-sustained criterion with photoionization for positive dc corona plasmas between coaxial cylinders, Physics of Plasmas, vol.1, issue.6, p.63514, 2015.
DOI : 10.1109/TIA.1978.4503585

G. W. Penney and G. T. Hummert, Photoionization Measurements in Air, Oxygen, and Nitrogen, Journal of Applied Physics, vol.81, issue.2, pp.572-577, 1970.
DOI : 10.1007/BF01332287

E. J. Hinch, Perturbation Methods, Cambridge Texts in Applied Mathematics, 1991.

R. T. Waters and W. B. Stark, Characteristics of the stabilized glow discharge in air, Journal of Physics D: Applied Physics, vol.8, issue.4, pp.416-426, 1975.
DOI : 10.1088/0022-3727/8/4/014

R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, On the LambertW function, Advances in Computational Mathematics, vol.1, issue.6, pp.329-359, 1996.
DOI : 10.5186/aasfm.1983.0805

R. Morrow, The theory of positive glow corona, Journal of Physics D: Applied Physics, vol.30, issue.22, pp.3099-3114, 1997.
DOI : 10.1088/0022-3727/30/22/008

G. J. Hagelaar and L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Science and Technology, vol.14, issue.4, pp.722-733, 2005.
DOI : 10.1088/0963-0252/14/4/011

M. L. Huertas, A. M. Marty, J. Fontan, and G. Duffa, Measurement of mobility and mass of atmospheric ions, Journal of Aerosol Science, vol.2, issue.2, pp.145-150, 1971.
DOI : 10.1016/0021-8502(71)90021-8

M. L. Huertas and J. Fontan, Evolution times of tropospheric positive ions, Atmospheric Environment (1967), vol.9, issue.11, pp.1018-1026, 1975.
DOI : 10.1016/0004-6981(75)90023-2

N. Fujioka, Y. Tsunoda, A. Sugimura, and K. Arai, Influence of humidity on variation of ion mobility with life time in atmospheric air, IEEE Trans. Power Appar. Syst. PAS, vol.102, issue.4, pp.911-917, 1983.

G. Horvath, J. D. Skalny, N. J. Mason, M. Klas, M. Zahoran et al., : a laboratory simulation of Titan's atmosphere, Plasma Sources Science and Technology, vol.18, issue.3, p.34016, 2009.
DOI : 10.1088/0963-0252/18/3/034016