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Abstract

For a fluid-solid interaction problem with Lipschitz interface, we investigate the
partial Fréchet differentiability of the solutions and the approximate far-field-
pattern with respect to solid material parameters. Differentiability is shown in
standard Sobolev framework, and the derivatives are characterized as solutions to
inhomogeneous fluid-solid transmission problems. To validate the accuracy of the
characterization, we compare analytical values with numerical ones given by Inte-
rior Penalty Discontinuous Galerkin (IPDG) in a setting with circular obstacles.
Our comparisons also show that IPDG gives results with high precision and incurs
almost no effect of discretization error accumulation.

Keywords: sensitivity with respect to Lamé parameters, partial Fréchet
derivative, fluid-solid interaction, approximate far-field-pattern.

1. Introduction

In this work, for a fluid-solid interaction problem in Rm, m = 2, 3, with Lips-
chitz fluid-solid interface, we investigate the partial Fréchet differentiability of the
solutions and the approximate far-field-pattern (a-FFP) with respect to the solid
material parameters. These include the Lamé parameters λ, µ and the solid density
ρs. The original fluid-solid interaction denoted by OP∞ is posed in infinite space,
cf. Figure 1(a). For numerical evaluation using volumed-based discretization, the
infinite domain is truncated using absorbing boundary condition (ABC), and the
problem we focus on, denoted by OP, is defined on a finite convex domain Ωfinite,
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cf. Figure 1(b). Because of domain truncation, we work with the approximated far-
field-pattern (a-FFP), cf. (36), instead of the true far-field-pattern (FFP), cf. (11).
Although defined on a finite domain, our problem is in the category of transmission
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(a) Original prob-
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Ωs

Ωf

Γ

pinc

u

p

Σ

(b) (Truncated) problem OP on the
bounded region Ωfinite = Ωs ∪ Ωf .

Figure 1: In fluid-solid interaction problems, an incident wave is diffracted by an immersed solid
body, and generates scattered fluid pressure p and transmitted solid displacement u.

scattering with penetrable obstacles1, to be distinguished with elastic problems on
bounded domains such as [8] for elastostatics, [9] in time-harmonic elastodynamics,
or [10, 11] in elastodynamics.

For problem OP, we carry out the following tasks. We first extend the well-
posedness results in [12] for a generic family of ABCs (Task 1 ). We then in-
troduce the auxiliary problems and make sense of their PDE forms in the ‘stan-
dard’ Sobolev framework (see Notations in subsection 2.1), and study their well-
posedness via variational formulation (Task 2 ). We next show the separate con-
tinuity and partial Fréchet differentiability of the solution operator and a-FFP
(associated to OP), and characterize their partial derivatives as solutions to the
auxiliary problems (Task 3 ). This justifies their numerical evaluation by discretiz-
ing the corresponding variational formulations. The accuracy of this characteri-
zation is validated by an analytical-numerical comparison, using IPDG [13], for a
setting with circular obstacle and circular artificial boundary (Task 4 ).

We limit ourselves to showing partial differentiability, which is sufficient for
iterative inversion procedures which reconstruct separately each material parame-
ter2. What concerns us more is the Lipschitz interface. Note that most references
assume at least C2 regularity, cf. [6, 2], with the exception of [5] for acoustic scat-
tering with Lipschitz obstacles, and [14, 15, 16] for acoustic-elastic transmission
(in fact OP∞) with polygonal-shaped obstacles, and the aforementioned [11, 8]

1 In the category of penetrable obstacles, our problem studies acoustic-elastic transmission,
to be distinguished with acoustic-acoustic cf. [1] and elastic-elastic cf. [2]. This is contrast with
impenetrable obstacles, e.g. [3, 4, 5] in acoustics, and [6, 7] in elastics.

2Joint continuity and Fréchet differentiability can be obtained with slight modification of the
current work.
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for elasticity on bounded Lipschitz domain. Under Lipschitz assumption, the aux-
iliary problems can contain singular boundary or interface terms that do not fit
in the canonical boundary Sobolev spaces, and to give sense to the problem is not
trivial (cf. [14] and further discussion in subsection 2.3). Furthermore, for fluid-
solid problems, existence of solutions is not always guaranteed due to the existence
of solid resonance modes called Jones frequencies (defined in (26)).

The main feature of our work is that we make sense of the auxiliary problem in
its PDE form within the standard Sobolev framework, then prove its equivalence
to the variational formulation3. These justifications seem to be overlooked in liter-
ature, when one works directly with the variational forms, e.g. the aforementioned
references [10, 11, 8], cf. Remark 5. Although [14, 15, 16] also study the auxiliary
problems in PDE form, they use implicit function theorem to show differentiabil-
ity, while we work directly with the solution operator and use standard analysis4.
Other approaches to show Fréchet differentiability can be e.g. boundary integral
operator, and factorization technique. Note that the literature investigating this
topic is mostly concerned with domain derivatives5.

The rest of the paper contains two parts, mathematical analysis is in Section
2, and the numerical experiments in Section 3. The main results of Task 1 are in
Theorem 2 and Corollary 3, those of Task 2 in Proposition 5 and Corollary 6, and
those of Task 3 in Proposition 8 and Corollary 9. The analysis for solid density ρs

is straightforward and follows from the same analysis, with only results listed in
subsection 2.5.

2. Mathematical analysis

2.1. Notations

Geometry. In Figure 1(b), we have introduced the solid obstacle Ωs with Lipschitz
boundary Γ, the finite convex domain Ωfinite with exterior boundary Σ, and the
finite fluid region Ωf . We have Ωf = (Rm \Ωs) ∩ Ωfinite. Along any closed curve,
the sign convention for the unit normal vector6 ν is outward.

3We work with the original PDE form which gives physical meaning to the solutions. Varia-
tional formulation is used for well-posedness and for numerical evaluation.

4i.e. by showing that the operators verify the definition of continuity and differentiability.
5We cite some representative references which study domain derivatives in obstacle scattering.

Using boundary integral operator in acoustics cf. [17], elastics [2], electromagnetics [18, 19, 20].
Using factorization technique by [21], in elastics cf. [6], acoustics and electromagnetics [22]. Using
implicit function theorem for acoustics cf. [23, 5], and acoustic-elastic transmission [14, 15, 16].
Using variational methods in acoustics cf. [3, 1], and elastics [7, 2]. The factorization technique
is more adapted to inversion with Linear Sampling method, cf. [6, 24] for discussion.

6By definition, a Lipschitz boundary can be represented locally as a graph of a Lipschitz
function. Such a boundary inherits a (surface) measure σ and a L∞ unit normal vector ν which
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Media. The fluid is assumed to be homogeneous compressible inviscid with con-
stant density ρf and sound velocity cf . The solid is supposed to be linearly isotropic
homogeneous elastic of constant density ρs. This means its constitutive law relat-
ing the stress tensor σ to the strain tensor ε(u),

ε(u)
4
=
∇u+ (∇u)t

2
,

is given by linear Hooke’s law

σ(u) = C : ε(u) ,

with the elastic stiffness tensor C invariant under rotations and reflections,

Cijkl = λ δij δkl + µ δil δjk , 1 ≤ i, j, k, l ≤ m.

Here λ and µ are the Lamé parameters. The material is in addition assumed to be
pure elastic, i.e. ρs, λ, µ ∈ R, cf. [27]. We use the dot · and double dot : notation
to denote single and double contraction, cf. [28]. For tensor C = (Cijkl) of order 4,
matrix a = (aij), and vector u = (ui), (C : a)ij =

∑
k,lCijkl aij; (a·u)i =

∑
j aij uj.

Function spaces.

• For a function space F, denote by F′ its dual, i.e. the set of bounded linear
functionals from F to C.

• Following from the usual convention, D(Ω) is the space of smooth functions with
compact support in domain Ω.

• For s ∈ R, Hs(Rm) is the usual Sobolev space on Rm, cf. [25, p.76].

• We follow [25, p.77] to define the Sobolev space for a bounded domain Ω ⊂ Rm,

Hs(Ω)
4
= {u ∈ D′(Ω) : u = U |Ω for some U ∈ Hs(Rm)} , s ∈ R+ . (1)

• For a Lipschitz boundary Λ, the Sobolev spacesHs(Λ) are well-defined for |s| ≤ 1
cf. [25, p.98], having the property H−s(Λ) = (Hs(Λ))′.

• We denote 〈·, ·〉s,Λ as the duality pairing between H−s(Λ) and Hs(Λ) with pivot
L2(Λ), with convention

〈f, φ〉s,Λ = (f, φ)L2(Λ) =

∫
Λ

f φ ds .

exists σ-almost everywhere, [25, p96] or [26, Thm 2.7.1].
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• Following [25, p.106], vector- or matrix-valued Sobolev spaces are written as,

Hs(Ω)m = Hs(Ω;Cm) , Hs(Ω)m×m = Hs(Ω;Cm×m) , s ∈ R+ ;

Hs(Λ)m = Hs(Λ,Cm) , |s| ≤ 1 .

• Our framework for well-posedness is the Gelfand triple H ⊂ U ⊂ H′,

H
4
= H1(Ωf) × H1(Ωs)

m ; U
4
= L2(Ωf) × L2(Ωs)

m . (2)

Trace operator. For 1
2
< s ≤ 1, the trace operator γ0 : D(Ω)→ D(∂Ω), u 7→ γ0u =

u|∂Ω has a unique extension to a bounded operator from Hs(Ω) → Hs−1/2(∂Ω),
with a continuous right inverse, see [25, Thm 3.37].

Conormal derivative. The conormal derivative operator ∂
∂ν

: D(Ω) → D(∂Ω),

q 7→ ∂q
∂ν

= γ0(∇q) · ν can be extended to a bounded map from {q ∈ H1(Ω)|∆q ∈
(H1(Ω))′} −→ H−1/2(∂Ω), cf. [26, Thm 2.7.7 p69]. In particular, if p ∈ H1(Ωf)
satisfies ∆p+κ2p = 0 in L2(Ωf), its conormal derivative is well-defined with ∂

∂ν
p ∈

H−1/2(Γ), and we have the integration-by-parts (IP) identity: for q ∈ H1(Ωf),∫
Ωf

−(∆p)q dx =

∫
Ωf

(
∇p · ∇q

)
dx+ 〈 ∂p

∂ν
, q〉1/2,Γ − 〈 ∂p∂ν , q〉1/2,Σ . (3)

Normal trace. Following [29], the normal trace operator for matrices

γn : D(Ω)m×m → D(∂Ω)m , A 7→ A · ν

can be extended to a continuous map from

H0(div,Ω)
4
= {v ∈ L2(Ω)m×m | div v ∈ L2(Ω)m} −→ H−1/2(∂Ω) (4)

by using density arguments and the Green’s identity,∫
Ω

(divu) · v dx = −
∫

Ω

u : ∇v dx +

∫
∂Ω

(u · ν) · v ds , u,v ∈ D(Ω)m×m . (5)

2.2. Fluid-solid transmission problems

In this part, we realize Task 1 and study the well-posedness for OP. We also
provide a bound for the norm of the solution operator with an explicit bound-
ing constant. This estimate will be used in a later subsection to show separate
continuity and partial differentiability.

Original problem. When the configuration is excited by an exterior incident wave
pinc(x) of frequency ω/2π, cf. Figure 1(a), the scattered fluid pressure p and the

5



transmitted solid displacement u satisfy the following transmission problem in Rm,
with the fluid wavenumber κ = ω

cf
,

(OP∞)



divσ + ω2ρs u = 0 in L2(Ωs)
m

∆ p+ κ2 p = 0 in L2(Ωf)

σ · ν + p ν = − pinc ν in H−1/2(Γ)m

ω2 ρf u · ν − ∂p
∂ν

= ∂pinc

∂ν
in H−1/2(Γ)

lim
r→+∞

r
m−1

2 (∂rp− iκ p) = 0 r = |x|.

(6)

(7)

(8)

(9)

(10)

Propagation in the fluid is governed by the Helmholtz equation (7), and in the solid
by the time-harmonic elastodynamic equation (6). The interaction between the
fluid and the solid is described by the kinematic interface condition (8), and the
dynamic one (9), both defined along the interface Γ. To guarantee uniqueness of
solutions, the outgoing Sommerfeld radiation condition (10) is imposed at infinity.

The scattered fluid pressure in OP∞ has the asymptotic behavior of an outgo-
ing spherical wave, cf. [30, Thm 2.6],

p(x) =
eiκ|x|

|x|(m−1)/2

(
p∞(x̂) + O(|x|−1)

)
, |x| → ∞ ; x̂ =

x

|x|
. (11)

In the above expression, p∞ is called the far-field pattern and satisfies the identity,

p∞(x̂) = c(m)

∫
Γ̃

∂ e−iκ x̂·y

∂ν(y)
(γ0q) ds(y) − c(m)

〈
∂q

∂ν
, eiκ x̂·y

〉
1/2,Γ̃

, (12)

for any simple (at least Lipschitz) closed curve Γ̃ enclosing Ωs, i.e. Γ̃ ⊂ Rm \ Ωs,
and with the defined constant

c(m)
4
=

{
eiπ/4

8πκ
,m = 2

1
4π

,m = 3
. (13)

Truncated problem. For numerical computations, the region exterior to the solid is
truncated to the finite domain Ωfinite, cf. Figure 1(b). The radiation condition (10)
is replaced by absorbing boundary conditions (ABC) along Σ. We work with those
of Robin type ∂p

∂ν
= −B γ0 p in H−1/2(Σ), where operator B satisfies assumptions,

B : H1/2(Σ)→ H−1/2(Σ) is bounded;

Re 〈Bγ, γ〉1/2,Σ ≥ 0 , Im 〈Bγ, γ〉1/2,Σ < 0 , for all γ 6= 0 in H1/2(Σ).
(14)
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The resulting problem is denoted by OPB (or simply OP for generic operator B),

(OP)



divσ + ω2ρs u = 0 in L2(Ωs)
m

∆ p+ κ2 p = 0 in L2(Ωf)

σ · ν + pν = − pinc ν in H−1/2(Γ)m

ω2 ρf u · ν − ∂p
∂ν

= ∂pinc

∂ν
in H−1/2(Γ)

∂p
∂ν

= −B p in H−1/2(Σ) .

(15)

(16)

(17)

(18)

(19)

Assumptions (14) are needed for well-posedness, see discussion below. For the
problem OP to be a good approximation of the original one OP∞, operator B is
chosen to be the exterior Dirichlet-to-Neumann map (D-t-N) T, see [31, Section
3.1.2 p.63] for definition, or a good approximation of this.

• When Σ is a circle, we can take B as T, as done in [12]. With this choice, the
ABC is exact, i.e. the original problem OP∞ is equivalent to OP, cf. [12, Thm
1]. The resulting problem is referred to as OPT.

• Under the general assumption that Σ is convex, we use the classical zero-th and
first order absorbing boundary condition7, in which B equals to operators

T0
4
= −iκ , T1

4
= −iκ+ κΣ

2
, (20)

respectively. The resulting problems are denoted by OPT0 and OPT1 . Here,
κΣ is the curvature of the curve Σ when m = 2, and κΣ

2
is the mean curvature

of the surface Σ when m = 3.

Lemma 1. The following choices of B satisfy properties (14): B = T when Σ is
spherical (or circular), B = T0 for general Σ, or B = T1 when Σ is convex with
bounded positive curvature.

Proof. We have T : H1/2(Σ)→ H−1/2(Γ) is bounded with a bounded inverse8, and
satisfies (14), cf. [12, Thm 1 and Lem 3] or [31, Section 3.2] for m = 3, and [34,
Thm 5.22] for m=2.

7For the derivation of these conditions, see e.g. [32, Eqn 21] for m = 3 and [33, Eqn 1.31]
for m = 2. These conditions are also listed in [31, Section 3.3.3] for circular Σ; in this case
κΣ = R−1, with R the radius of Σ.

8 The sign convention for T in [34] is different from [12, 31]. In either convention, the
properties of T are shown by using the multipole expansions of solutions to the Helmholtz
equation. For the boundedness of T on general curves or surfaces, see [30, Thm 3.13] for C2

boundaries, and [35, Thm 1.4] for nontrapping polygons and star-shaped Lipschitz domains.
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The boundedness for T0 follows immediately from the fact that it is a multiple
of the identity. That for T1 follows additionally from the boundedness of the
curvature of Σ. We next verify the second property in (14). For φ ∈ H1/2(Σ), we
have

〈Bφ, φ〉1/2,Σ =

∫
(Bφ)φ dx =

{
−i‖φ‖2

L2(Σ) , B = T0

−i‖φ‖2
L2(Σ) +

∫
Σ

κΣ

2
|φ|2 ds , B = T1

.

Under the assumption κΣ > 0, we have Re 〈Bφ, φ〉1/2,Γ ≥ 0 and Im 〈Bφ, φ〉1/2,Γ ≤
0. In addition, Im 〈Bφ, φ〉1/2,Γ = 0 implies φ = 0.

Variational formulation. We follow [12] to introduce the following sesquilinear
forms. The volume sesquilinear forms corresponding to the (reduced) elastody-
namic equation in Ωs and the Helmholtz equation in Ωf are

as(u, v)
4
=

∫
Ωs

σ(u) : ∇v dx−
∫

Ωs

ω2ρsu v dx ; u, v ∈ H1(Ωs)
m , (21)

af(p, q)
4
=

∫
Ωf

∇p · ∇q dx−
∫

Ωf

κ2 p q dx ; p, q ∈ H1(Ωf) . (22)

The boundary sesquilinear forms corresponding to the transmission conditions on
the solid-fluid interface Σ are

b [( pu ) , ( qv )]
4
= 〈u · ν , γ0 q〉1/2,Γ ; ( pu ), ( qv ) ∈ H ;

b? [( pu ) , ( qv )]
4
= b [( pu ) , ( qv )] ; ( pu ), ( qv ) ∈ H .

(23)

Note that b? [( qv ) , ( pu )] = 〈v · ν , p〉1/2,Γ = 〈p , v · ν〉1/2,Γ = 〈p ν , v〉1/2,Γ. The
sesquilinear form associated to the absorbing boundary condition along Σ is,

t(p, q)
4
= 〈B γ0p , γ0q〉1/2,Γ . (24)

The main sesquilinear form in all of our variational problems is

a [( pu ) , ( qv )]
4
= as(u, v) + b? [( qv ) , ( pu )]

+ 1
ω2ρf

af(p, q) + b [( pu ) , ( qv )] + 1
ω2ρf

t(p, q) ; ( pu ), ( qv ) ∈ H .
(25)

Denote by A = A (λ, µ, ρs) the operator associated to a at (λ, µ, ρs).

Well-posedness discussion. The well-posedness of OP∞ and OPT in the frame-
work H ⊂ U ⊂ H′ is addressed in [12]. In this case (B = T), the sesquilinear form
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a is shown to satisfy the G̊arding’s inequality on H (i.e. H-coercive with respect
to U), cf. [12, Proposition 6],

Re a [( qv ) , ( qv )] + c‖( qv )‖2
U ≥ α‖( qv )‖2

H , ( qv ) ∈ H .

This allows applying the Fredholm principle, cf. [26, Thm 2.1.60] to study the well-
posedness of the variational problem equivalent to OPT . Even when existence (of
solutions) is given, uniqueness is not guaranteed due to Jones modes defined as

ω is called a Jones frequency and
u 6= 0, u ∈ H1(Ωs) a Jones mode

if (u, ω) solves

{
divσ + ωρsu = 0 in Ωs

σ · ν = 0; u · ν = 0 on Γ
.

(26)
We refer to [36] and the references therein for a detailed discussion of Jones modes.

We now extend the result of [12, Thm 7] to arbitrary operator B satisfying
(14), and obtain the well-posedness for OPB. The proof follows [12] with minor
modification. The completely new feature is an energy estimate with an explicit
bounding constant9. For the rest of the subsection, notations are simplified and
reflect only the dependence with respect to λ and µ. In particular, we write
A = A (λ, µ) instead of A (λ, µ, ρs).

Theorem 2. Consider the sesquilinear form a defined in (25) with operator B
satisfying (14), and the material parameters satisfying

λ > 0 , µ ≥ 0 , ω > 0 , ρf > 0 , ρs > 0 . (27)

For arbitrary functional l ∈ H′, the generic variational problem

Find ( pu ) ∈ H so that a [( pu ) , ( qv )] = l [( qv )] , ∀ ( qv ) ∈ H (28)

has the following dichotomy.

1. If ω is not a Jones frequency, there exists a unique solution for (28). In ad-
dition, the solution depends continuously on the right hand side, described by
the energy bound: for a fixed ρs, and in a small enough neighborhood of a pair
(λ, µ) with h satisfying (32),

‖(pλ+h,µ , uλ+h,µ)‖H ≤ 2 ‖A (λ, µ)−1‖L(H′,H) ‖l‖H′ ,
‖(pλ,µ+h , uλ,µ+h)‖H ≤ 2 ‖A (λ, µ)−1‖L(H′,H) ‖l‖H′

. (29)

9Estimate (60) in [12, Thm 7] needs some clarification. It should hold with a different bound-
ing constant (not 1 as stated) and under the assumption that ω is not a Jones frequency.
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2. If ω is a Jones frequency, then there exists a solution to (28) if and only if
functional l satisfies the compatibility condition

l[( 0
v )] = 0 , ∀ Jones mode v . (30)

If (30) is satisfied, a solution (p, u) ∈ H to (28) exists, with the fluid part p
being unique, and the solid displacement u being unique modulo Jones modes.

Remark 1. The assumption on the Lamé parameters is needed for the H1(Ωs)
m-

coercitivity of as, see [12, Eqn (49)–(50)], see also [25, Thm 10.3].

Proof. Well-posedness statement: The proof is identical to that for [12, Thm 7]
with the following modifications to adapt to a general B.

• In the proof to show that a satisfies the G̊arding inequality, Eqn (57) in [12] is
replaced by the property Re 〈Bγ, γ〉1/2,Σ ≥ 0.

• In the investigation of the uniqueness of the pressure fluid, we consider (p, u) ∈ H
such that a (( pu ) , ( pu )) = 0. This means that (p, u) ∈ H satisfies (15)–(19) with
pinc = 0. Eqn (63) in [12] is replaced with

Im a (( pu ) , ( pu )) = Im 〈Bγ0p , γ0p〉1/2,Σ = 0.

From here, we use the third property in (14),

Im 〈Bγ, γ〉1/2,Σ < 0 , for all γ ∈ H1/2(Σ), γ 6= 0 ,

to imply that γ0 p = 0. Combining with the boundary condition (18), we obtain
∂p
∂ν

= −Bγ0q = 0. The rest of the proof uses analytic continuation principle and
follows as in [12, Section 4.2.1] to show that p = 0.

Energy estimate when ω is not a Jones frequency: At (λ, µ), (λ + h, µ) and
(λ, µ+ h) with h > 0, the inverse of A exists and is bounded, i.e.

A (λ, µ)−1 , A (λ+ h, µ)−1 , A (λ, µ+ h)−1 ∈ L(H′,H).

We will bound the norm of the last two inverses by that of A (λ, µ)−1. Since the
proof for µ+ h is exactly the same, only that for λ+ h is written.

The map (λ, µ) 7→ A is affine separately in λ and µ, the only term that depends
on λ or µ is as. As a result, its partial derivative with respect to λ is independent
of λ, and we denote this by D1(µ) ∈ L(H,H′). We can write

A (λ+ h, µ) = A (λ, µ) + hD1(µ)

= A (λ, µ)H→H′
(

IdH→H − hA (λ, µ)−1
H′→H D1(µ)H→H′

)
⇒ A (λ+ h, µ)−1 =

(
Id − hK (λ, µ)

)−1
A (λ, µ)−1 .
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Here, we have defined the bounded operator K (λ, µ) = A (λ, µ)−1 D1(µ). When

0 < h < 1
c(λ,µ)

, the inverse
(
Id + hK (λ, µ)

)−1
can be written as an operator-

valued Neumann series, and from this, we obtain the estimate

‖
(
Id + hK (λ, µ)

)−1‖L(H) ≤
1

1− h c(λ, µ)
,

with c(λ, µ)
4
= ‖A (λ, µ)−1‖L(H′,H) ‖D1(µ)‖L(H′,H) .

This is next used to bound,

‖A (λ+ h, µ)−1‖L(H′,H) ≤
‖A (λ, µ)−1‖
1 − h c(λ, µ)

. (31)

One has the same estimate for A (λ, µ+ h)−1, with c in (31) replaced by

d(λ, µ)
4
= ‖A (λ, µ)−1‖L(H′,H) ‖D2(λ)‖L(H′,H).

To obtain the announced estimates (29), we impose further that

h c(λ, µ) < 1
2
, h d(λ, µ) < 1

2
⇒ 1

1−h c(λ,µ)
< 2 , 1

1−h d(λ,µ)
< 2 . (32)

Remark 2. The compatibility condition (30) will be satisfied automatically, if l
contains only boundary operators, which is the case for OP.

Following the same reasoning as in [12, Thm 2], the transmission problem OP
(15)–(19) is equivalent to the variational problem VOP,

Find ( pu ) ∈ H : a [( pu ) , ( qv )] = lOP

[(
q
v

)]
, ∀ ( qv ) ∈ H ,

with lOP ∈ H′ , lOP [( qv )]
4
= 1

ω2ρf
〈∂pinc

∂ν
, γ0 q〉1/2,Γ − 〈pinc , γ0 v〉1/2,Γ , ( qv ) ∈ H .

(33)
By Remark 2, functional lOP satisfies the compatibility condition (30), see also
[12, Thm 7]. As a result, existence of solutions for problem VOP is guaranteed in
all cases. We summarize this result in the corollary below.

Corollary 3. With B satisfying (14) and the material parameters satisfying (27),
there exists a solution (p, u) ∈ H to problem VOP, with p unique. Additionally,

• if ω is a Jones frequency, the solid displacement u is unique modulo Jones modes;

• if not, such (p, u) is unique in H, and in a neighborhood of (λ, µ) with h satisfying
(32), we have

‖(pλ+h,µ , uλ+h,µ)‖H ≤ c(λ, µ) ‖pinc‖H2(Ωf) ,
‖(pλ,µ+h , uλ,µ+h)‖H ≤ c(λ, µ) ‖pinc‖H2(Ωf) ,

(34)

with a constant c(λ, µ) > 0 independent of h.
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In the above estimates, we have used,

‖lOP‖H′ = Ĉ(‖∂pinc

∂ν
‖H−1/2(Γ) + ‖pinc‖H−1/2(Γ)) ≤ C̃‖pinc‖H2(Ωf) .

As a result of Corollary 3, when ω is not a Jones frequency, we can define the
solution operator

S : R+ × R+ × R+ → H , (λ, µ, ρs) 7→ S(λ, µ, ρs) = (pλ,µ,ρs , uλ,µ,ρs),

with (pλ,µ,ρs , uλ,µ,ρs) the unique solution in H to (15)–(19) .
(35)

Approximate far-field-pattern. Although OP is defined on a finite domain, by
using (12), we can generalize the notion of far-field-pattern to this problem. From
(12), we define the integral operator I: for q ∈ H1(Ωf) with ∂q

∂ν
∈ H−1/2(Γ),

(Iq)(x̂)
4
= c(m)

∫
Γ

∂ e−iκ x̂·y

∂ν(y)
(γ0q) ds(y) − c(m)

〈
∂q
∂ν
, eiκx̂·y〉

1/2,Γ
, x̂ =

x

|x|
. (36)

Recall that c(m) is defined in (13). The above definition exists in all cases, due to
the uniqueness of the pressure field. Next, using the transmission conditions (17)
and (18), we define the approximate FFP operator associated to OP as follows,

F : R+ × R+ × R+ −→ C∞(S1,C) , (λ, µ, ρs) −→ F(λ, µ, ρs)

(F(λ, µ, ρs))(x̂) = c(m)

∫
Γ

(
∂ e−iκ x̂·y

∂ν(y)
p − (ωρ2

f u · ν−
∂pinc

∂ν
)e−iκ x̂·y

)
ds(y) ,

with (pλ,µ,ρs , uλ,µ,ρs) = S(λ, µ, ρs).

(37)

Remark 3. This approach to compute approximate far-field-patterns from near
fields is also employed in [37]. It is more common to define F on a smooth curve
Γ̃ outside of Ωs and not on the boundary of the obstacle. However, using the
latter provides some computation advantages, e.g. the possibility to use (37), which
involves only the zero-th order traces, and avoids having to calculate the conormal
derivative of p on a new curve.

2.3. Auxiliary problem for partial derivatives with Lamé parameters

We now introduce the auxiliary problems for Lamé parameters λ and µ. In
general, the auxiliary problems take the same form as the original problem, how-
ever they are inhomogeneous. They contain volume and/or interface (boundary)
sources for penetrable (impenetrable) obstacles, all defined in terms of the solution
to the original problem and its (possibly higher order) traces10. Difficulty arises

10 For examples of the auxiliary problems studying domain derivatives of FPP in obstacle
scattering, see [6, Thm 3.5 and 4.4 ] for elastic scattering, see [2, Thm 3.1] for elastic-elastic
transmission, and see [3, Thm 2.1] for acoustic scattering.
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under low regularity of interfaces/boundaries, since interface (boundary) sources
might not have well-defined traces in the canonical boundary spaces Hs(Γ), |s| ≤ 1.

In our case, the auxilliary problem for the solid density contains only a volume
source, while that for the Lamé parameters has additionally a singular interface
source in the form of the normal trace of divA with A ∈ L2(Ωs)

m×m, see also
Remark 4. As such, we risk running into the same difficulty as [14] which studies
domain derivatives for OP∞. What differs in our problem is that the interface
source is also the normal trace of the volume one, leading to cancellation in the
more regular variational form, in which the ‘troublesome’ normal trace of divA
no longer appears. This cancellation of singularities does not occur in the more
difficult problem considered in [14] which only has interface sources11.

Remark 4. In our case, the above mentioned quantity A takes the form C′ : ε(u)
where u is the solid displacement from OP. When Γ is more regular, so is A, at
least in H1(Ωs), and its normal trace exists in H1/2(Γ) (using the mapping property
of the trace operator γ0 [25, Thm 3.38]). When Γ is only Lipschitz, u is in at most
H3/2(Ωs)

m, cf. [12, Remark 2], and A is in at most H1/2(Ωs)
m×m.

As mentioned in the Introduction, instead of passing directly to the (more
regular) variational formulation of the auxiliary problem, we first make sense of
its PDE form, see also Remark 5. The main idea is to group together terms which
do not apriori have well-defined normal traces when considered separately, but do
when grouped together. We will need the following lemma which generalizes the
normal trace of a matrix-valued distribution.

Lemma 4. If a matrix A ∈ L2(Ωs)
m×m and u ∈ H1(Ωs)

m satisfy

divσ(u) + ω2ρs u = − divA in (H1(Ωs)
m)′ , (38)

then (σ+A) ∈ L2(Ωs)
m×m, and its normal trace is well-defined with (σ+A) · ν ∈

H−1/2(Γ)m. In addition, one has the generalized IP identity: for v ∈ H1(Ωs)
m,

−
∫

Ωs

[div(σ + A)] · v dx =

∫
Ωs

(σ + A) · ∇v dx − 〈(σ + A) · ν , v〉1/2,Γ . (39)

Proof. We rearrange (38) and obtain div (σ+A) = −ω2ρs u in (H1(Ωs)
m)′. Since

u ∈ H1(Ωs)
m, div (σ + A) ∈ H1(Ωs)

m thus in L2(Ωs)
m. On the other hand,

u ∈ H1(Ωs)
m, hence σ(u) ∈ L2(Ωs)

m×m and thus σ(u) + A ∈ L2(Ωs)
m×m. This

means σ+A ∈ H0(div,Ωs) defined in (4). By the discussion in subsection 2.1, its
normal trace is well-defined in H−1/2(Γ)m, and the integration-by-parts formula
can be generalized from the Green’s identity (5).

11In [14], the regularity is increased to polygonal-shaped obstacles, and the Sobolev framework
had to be enlarged, in particular, the exponent − 3

2 was considered. The well-posedness of the
resulting auxilliary problem remains an open question.
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From the above discussion, for A ∈ L2(Ωs)
m×m and (p, u) ∈ H, we can define

(DP)



divσ + ω2ρs u = − divA in (H1(Ωs)
m)′

∆ p+ κ2 p = 0 in L2(Ωf)

(σ + A) · ν = − p ν in H−1/2(Γ)m

ω2 ρf u · ν − ∂p
∂ν

= 0 in H−1/2(Γ)
∂p
∂ν

= −B p in H−1/2(Σ)

(40)

(41)

(42)

(43)

(44)

Remark 5. The quantity divA and its normal trace also appear in [8, Eqn (2.3)],
and the right-hand-side of our variational formulation is the same as [8, Eqn (2.6)]
and [11, Eqn (16),(17)]. Before passing to the variational formulation, [8] states
the auxiliary problem in PDE form with the same assumed regularity of A, however
without justifying its ‘troublesome’ normal trace. The PDE form of the auxiliary
problem is not stated in [11]. Both works start their investigation directly with the
variational formulation.

We now study the well-posedness for DP by first showing that it is equivalent
to variational problem called VDP,

Find ( pu ) ∈ H : a [( pu ) , ( qv )] = lfr1
[(

q
v

)]
, ∀ ( qv ) ∈ H ;

with lfr1 ∈ H′ , lfr1 [( qv )]
4
= −

∫
Ωs

A : ∇v dx .
(45)

Note that,
‖lfr1‖H′ = ‖A‖L2(Ωs)m×m . (46)

Proposition 5 (Variational equivalence for DP). For matrix A ∈ L2(Ωs)
m×m and

(p, u) ∈ H, the following statements are equivalent.

(i) (p, u) satisfies (40)–(44).

(ii) (p, u) is a solution of (45).

Proof. (i) ⇒ (ii): Apply a test function v ∈ H1(Ωs)
m to both sides of (40), we

obtain −〈divσ + divA + ω2ρsu , v〉1,Ωs = 0. By Lemma 4, div(σ + A) ∈ L2(Ωs)
m,

and the above equality can be written as

−
∫

Ωs

[div(σ + A)] · v dx − ω2ρs

∫
Ωs

u · v dx = 0 .

We next use the IP identity (39) from the same lemma, and transmission condition
(42) to replace (σ + A) · ν with pν, and obtain∫

Ωs

σ : ∇v dx+ 〈pν , v〉1/2,Γ−ω2ρs

∫
Ωs

u·v dx = −
∫

Ωs

A : ∇v dx , ∀ v ∈ H1(Ωs)
m .

14



Here σ and A can be written separately, since each is in L2(Ωs)
m×m. In the terms

of the sesquilinear forms defined in (21) and (23), the above equality is written as

as(u, v) + b? [( qv ) , ( pu )] = lfr1(v) , ∀ (q, v) ∈ H . (47)

In dealing with the fluid part, the proof is more standard. By using IP identity
(3) and transmission condition (43) and ABC (44), we obtain

af(p, q) + ω2 ρf b [( qv ) , ( pu )] + t(p, q) = 0 , ∀ (q, v) ∈ H . (48)

For more details, see also [12, Eqn (15)–(20)]. Statement (ii) is obtained by adding
(47) to (48).

(ii) ⇒ (i): Suppose (p, u) ∈ H solves (45)

a [( pu ) , ( qv )] = lfr1
(
q
v

)
, ∀ (q, v) ∈ H . (49)

Step 1 : Using test functions φ ∈ C∞0 (Ωs)
m, ϕ ∈ C∞0 (Ωf) in (49), all the bound-

ary terms go to zero. Now set ϕ = 0 (also in (49)), we obtain∫
Ωs

σ : ∇φ dx− ω2ρs

∫
Ωs

u · φ dx = −
∫

Ωs

A : ∇φ dx , ∀φ ∈ C∞0 (Ωs)
m .

This means −divσ−ω2ρsu = divA in (C∞0 (Ωs)
m)′ i.e. in the sense of distributions.

Since u ∈ H1(Ωs)
m, div(σ + A) ∈ H1(Ωs)

m. As a result, the above equality holds
in L2(Ωs),

div(σ + A) + ω2ρsu = 0 , in L2(Ωs)
m . (50)

Similarly, set φ = 0 in (49), and we obtain that ∆p + κ2p = 0 in the sense of
distributions. Since p ∈ H1(Ωf), ∆p ∈ H1(Ωf). As a result, we can write

∆p+ κ2p = 0 , in L2(Ωf) . (51)

We now use Lemma 4 to make sense of the normal trace div(σ+A)·ν and conormal
trace ∂p

∂ν
and the integration by parts (39),(3).

Step 2 : To derive the transmission and boundary conditions, we choose test

functions φ ∈ C∞(Ωs)
m, ϕ ∈ C∞(Ωf). Since the arguments to obtain (44) and

(43) are standard, cf. [12, Eqn 27–31], we will only write that for condition (42).
Setting ϕ = 0 in (49), we get∫

Ωs

(σ + A) : ∇φ dx−
∫

Ωs

ω2ρs uφ dx+ 〈pν,φ〉1/2,Γ = 0.
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This is further written, by keeping σ and A together and using IP identity (39)
(given at the end of Step 1),∫

Ωs

−div(σ + A) · φ dx+ 〈(σ + A) · ν,φ〉1/2,Γ −
∫

Ωs

ω2ρsuφ dx+ 〈pν,φ〉1/2,Γ = 0.

Due to (50), the above identity simplifies to

〈(σ + A) · ν + pν,φ〉1/2,Γ = 0 , ∀φ ∈ C∞(Ωs)
m .

By density arguments, we obtain the transmission condition (42) in H−1/2(Γ).

Given the equivalence in the above proposition, the well-posedness of problem
DP, when ω is not a Jones frequency, is obtained via that of (45). The latter
follows from Theorem 2 and (46). These results are gathered in the corollary
below.

Corollary 6 (Existence and Uniqueness for DP). With B satisfying (14) and the
material parameters satisfying (27), for a matrix A ∈ L2(Ωs)

m×m, when ω is not
a Jones frequency, the problem DP (40)– (44) has a unique solution (p, u) ∈ H.
In addition, for each (λ, µ) and with h satisfying (32), we have

‖(p̃λ+h,µ , ũλ+h,µ)‖H ≤ d(λ, µ) ‖A‖L2(Ωs)m×m ,
‖(p̃λ,µ+h , ũλ,µ+h)‖H ≤ d(λ, µ) ‖A‖L2(Ωs)m×m ,

(52)

for a constant d(λ, µ) > 0 independent of h.

2.4. Characterization of partial derivatives with respect to Lamé parameters

The goal of this section is to prove that the solution to OP (15)–(19) is sep-
arately continuous and partially Fréchet differentiable with respect to the Lamé
parameters, and that their partial derivatives can be characterized as solutions to
the corresponding auxiliary problem. We simplify the notation and only indicate
the dependence with respect to λ and µ. In addition, we will assume that

ω is not a Jones frequency . (53)

Recall that, under this assumption, we have defined in (35) the solution operator S
for problem OP, cf. Corollary 3. If we set A = C′ : ε(uλ,µ) with C′ ∈ {∂λC, ∂µC}
and uλ,µ = π2 S(λ, µ), with πi the projection map onto the i-th component, then
A ∈ L2(Ωs)

m×m. A version of Corollary 6 can be obtained for this particular A.

16



Corollary 7. Under (53) and (27), with uλ,µ = π2 S(λ, µ), the problem

(LaDP)



divσ + ω2ρs u = − div
(
C′ : ε(uλ,µ)

)
in (H1(Ωs)

m)′

∆ p+ κ2 p = 0 in L2(Ωf)(
σ + C′ : ε(uλ,µ)

)
· ν = − p ν in H−1/2(Γ)m

ω2 ρf u · ν − ∂p
∂ν

= 0 in H−1/2(Γ)
∂p
∂ν

= −B p in H−1/2(Σ)

(54)

(55)

(56)

(57)

(58)

has a unique solution (ũλ,µ, p̃λ,µ) ∈ H. In addition, it is equivalent to the varia-
tional problem VLaDP

Find ( pu ) ∈ H : a [( pu ) , ( qv )] = lfr2
[(

q
v

)]
, ∀ ( qv ) ∈ H ;

with lfr2 ∈ H′ , lfr2 [( qv )]
4
= −

∫
Ωs

(
C′ : ε(uλ,µ)

)
: ∇v dx .

(59)

As a result, we can define the solution operators

S̃λ, S̃µ : R+ × R+ → H , (λ, µ) 7−→ (p̃λ,µ, ũλ,µ) ,

with (p̃λ,µ , ũλ,µ) the unique solution in H to (54)–(58) for

C′ = ∂λC and C′ = ∂µC respectively .

(60)

Proposition 8. Under assumption (53), the mappings λ 7→ S(λ, µ) and µ 7→
S(λ, µ) are continuous and Fréchet differentiable. Their derivatives are unique
solutions to (54)–(58). In particular,

∂λ S(λ, µ) = S̃λ(λ, µ) , ∂µ S(λ, µ) = S̃µ(λ, µ) .

Proof. Since the proof for µ is identical, only that for λ is written. Since Cλ is
separately affine in λ and µ, we have

Cλ+h −Cλ = C′λh with Cλ
4
= C(λ, µ) , C′λ

4
= (∂λC)(λ, µ) .

For a fixed µ, consider the unique solutions to OP at λ + h and λ, and that to
LaDP at λ,

(pλ+h, uλ+h) = S(λ+ h, µ) ; (pλ, uλ) = S(λ, µ) ; (p̃λ, ũλ) = S̃λ(λ, µ) . (61)

These quantities have the following regularity,

(p̃λ, ũλ) , (pλ+h, uλ+h) , (pλ, uλ) ∈ H1(Ωf)×H1(Ωs)
m ;

∆pλ+h , ∆pλ , ∆p̃ , ∆p̃λ ∈ L2(Ωf) ,

div(σ(ũ) + C′λ : ε(uλ)) ∈ L2(Ωs)
m cf. Lemma 4 .

(62)
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We will show that their difference (pλ+h − pλ, uλ+h − uλ), and (p̂λ, ûλ) ∈ H with

ûλ
4
= uλ+h − uλ − h ũλ , p̂λ

4
= pλ+h − pλ − h p̃λ (63)

satisfy,

‖(pλ+h − pλ , uλ+h − uλ)‖H = O(|h|) , ‖(p̂λ , ûλ)‖H = o(|h|) , h→ 0.

Step 1a: Consider the volume identity in Ωs of each system,

div
(
Cλ+h : ε(uλ+h)

)
+ ω2 ρs uλ+h = 0 in L2(Ωs)

m

− div
(
Cλ : ε(uλ)

)
− ω2ρs uλ = 0 in L2(Ωs)

m

−h
(

div (Cλ : ε(ũλ)) + ω2 ρs ũλ + divC′λ : ε(uλ)
)

= 0 in (H1(Ωs)
m)′ .

(64)

(65)

(66)

In order to rewrite the above expressions, we use ‘as a buffer’

− div Cλ : ε(uλ+h) + div Cλ : ε(uλ+h) = 0 in (H1(Ωs)
m)′ . (67)

Adding the above four equations (64) + (65) + (66) + (67), replacing Cλ+h − Cλ

with C′λh, and after some rearrangement, we obtain

div Cλ : ε(ûλ) + ω2 ρs ûλ = − div E in (H1(Ωs)
m)′ ;

with E
4
= hC′λ : ε(uλ+h − uλ) in L2(Ωs)

m×m .
(68)

Since ûλ ∈ H1(Ωs) and E ∈ L2(Ωs)
m×m, by Lemma 4, the following normal trace

is well-defined, (
Cλ : ε(ûλ) + E

)
· ν ∈ H−1/2(Γ)m . (69)

Working in the same manner with (64)+(65)+(67), also replacing Cλ+h−Cλ,
we obtain an equation for (pλ+h − pλ, uλ+h − uλ),

div Cλ : ε(uλ+h − uλ) + ω2 ρs (uλ+h − uλ) = − div e in (H1(Ωs)
m)′ ;

with e
4
= hC′λ : ε(uλ+h) in L2(Ωs)

m×m .
(70)

Similarly, since uλ+h − uλ ∈ H1(Ωs) and e ∈ L2(Ωs)
m×m, Lemma 4 gives(

Cλ : ε(uλ+h − uλ) + e
)
· ν ∈ H−1/2(Γ)m . (71)

Step 1b: We next work with the kinematic interface condition in each problem,(
Cλ+h : ε(uλ+h)

)
· ν + pλ+hν = −pincν in H−1/2(Γ)m

−
(
Cλ : ε(uλ)

)
· ν − pλν = pincν in H−1/2(Γ)m

−h
(
Cλ : ε(ũ) + C′λ : ε(uλ)

)
· ν − h p̃ν = 0 in H−1/2(Γ)m.

(72)

(73)

(74)
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A ‘buffer’ in the form of normal trace is needed as before. However, to maintain
the current regularity (in H−1/2(Γ)m), thanks to (69), we can use

−
(
Cλ : ε(ûλ) + E

)
· ν +

(
Cλ : ε(ûλ) + E

)
· ν = 0 in H−1/2(Γ)m . (75)

When adding the above four equations together, the sum of all first terms simplifies
to zero12, we obtain the kinematic interface condition,

(Cλ : ε(ûλ) + E) · ν + p̂λ ν = 0 in H−1/2(Γ)m . (76)

To derive the interface condition for uλ+h− uλ, we use the same idea as before
to maintain regularity in H−1/2(Γ)m. Using (71), we add (72) and (73) to

−
(
Cλ : ε(uλ+h−uλ) + e

)
·ν+

(
Cλ : ε(uλ+h−uλ) + e

)
·ν = 0 ∈ H−1/2(Γ)m . (77)

After some rearrangement and simplification, we find

(Cλ : ε(uλ+h − uλ) + e) · ν + (pλ+h − pλ) ν = 0 in H−1/2(Γ)m . (78)

Step 1c: We next work with the Helmholtz equation, kinematic transmission
condition (18), and ABC in each problem. Taking(

(16), (18), (19)
)
|λ+h −

(
(16), (18), (19)

)
|λ − h

(
(55), (57), (58)

)
|λ ,

we obtain

∆p̂λ + κ2p̂λ = 0 ∈ L2(Ωf) ;

ω2ρf ûλ · ν = ∂p̂λ
∂ν
∈ H−1/2(Γ) ; ∂p̂λ

∂ν
= B p̂λ ∈ H−1/2(Σ) .

(79)

Using
(
(16), (18), (19)

)
|λ+h−

(
(16), (18), (19)

)
|λ, we obtain the exact same system

as above with ûλ replaced by uλ+h − uλ and p̂λ replaced by pλ+h − pλ.
At the end of Step 1a – 1c, we have obtained E ∈ L2(Ωs)

m×m and (p̂λ, ûλ) ∈ H
satisfying (40)–(44) with A replaced by E. Similarly, we have e ∈ L2(Ωs)

m×m and
(pλ+h − pλ , uλ+h − uλ) ∈ H satisfying (40)–(44) with A replaced by e.

12 We first group the first terms of (74) and (75), and use the definition of E,(
−Cλ : ε(h ũ)− hC′λ : ε(uλ)−Cλ : ε(ûλ) − hC′λ : ε(uλ+h − uλ)

)
· ν.

With the last three terms together grouped together, the above expression simplifies to(
−Cλ : ε(h ũ) + Cλ : ε(uλ + h ũλ) − Cλ+h : ε(uλ+h)

)
· ν =

(
Cλ : ε(uλ) − Cλ+h : ε(uλ+h)

)
· ν.

Now adding the first terms of (72) and (73), we get zero. Note that all the above expressions
are in H−1/2(Γ)m.
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Step 2: We next bound the differences. For the rest of the discussion, we assume
that h satisfies (32). From Corollary 6, under assumption (53), we have existence
and uniqueness of solutions, and the energy estimate (52) gives

‖(pλ+h − pλ , uλ+h − uλ)‖H ≤ d(λ, µ) ‖e‖L2(Ωs)m×m ,

‖(p̂λ, ûλ)‖H ≤ d(λ, µ)
∥∥E∥∥

L2(Ωs)m×m
.

(80)

Using its definition, we can bound e by

‖e‖L2(Ωs)m×m ≤ ‖Cλ+h −Cλ‖∞ ‖ε(uλ+h)‖L2(Ωs)m×m

(34)

≤ |h| ‖C′λ‖∞c(λ, µ) ‖pinc‖H2(Ωf) .
(81)

With C′λ being constant, there exists c̃(λ, µ) > 0 independent of h such that

‖(pλ+h − pλ , uλ+h − uλ)‖H ≤ |h| c̃(λ, µ) ‖pinc‖H2(Ωf) . (82)

From this follows the continuity of the mapping λ 7→ S(λ, µ).
Similarly, the bound of E follows from its definition,∥∥E∥∥
L2(Ωs)m×m

=
∥∥hC′λ : ε(uλ+h − uλ)

∥∥
L2(Ωs)m×m

≤ |h|
∥∥C′λ‖∞‖uλ+h − uλ

∥∥
H1(Ωs)m

.

Combining with (82), we obtain a constant d̃(λ, µ) > 0 independent of h such that

‖(p̂λ, ûλ)‖H ≤ |h|2 d̃(λ, µ) ‖pinc‖H2(Ωf) . (83)

As a result, ‖p̂λ, ûλ‖H = o(h). This finishes the proof that λ 7→ S is Fréchet
differentiable with derivative ∂λS = S̃λ(λ, µ).

Remark 6. A more natural buffer than that employed in (75) would have been
the ‘formal’ normal trace of −Cλ : ε(uλ+h) ∈ (H1(Ωs)

m)′, which is the buffer in
(67). However, under Lipshitz assumption, this ‘formal’ normal trace does not
make sense in Hs(Γ), |s| ≤ 1. That is why we work with the buffer terms given in
(69) and (71), which have well-defined normal trace.

Differentiability of approximate far-field-pattern (a-FFP) under assumption (53).
We recall that the a-FFP operator F(λ, µ) associated to OP is given in (37). The
a-FFP operator associated to LaDP can be defined in a similar manner,

F̃• : R+ × R+ −→ C∞(S1,C) , (λ, µ) −→ F̃•(λ, µ)

(F̃•(λ)(x̂) = c(m)

∫
Γ

(
Φ(x̂, y) p̃(y) − ω2ρf Ψ(x̂, y) ũ(y) · ν

)
ds(y) .

where (p̃, ũ) = S̃•(λ, µ) , for • = λ, µ .

(84)
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Here, we have written

Φ(x̂, y)
4
= ∂ e−iκ x̂·y

∂ν(y)
; Ψ(x̂, y)

4
= e−iκ x̂·y . (85)

We proceed to show their separate continuity and differentiability.

Proposition 9. The mappings λ 7→ F(λ, µ) and µ 7→ F(λ, µ) are continuous and
Fréchet differentiable with

∂λF(λ, µ) = F̃λ(λ, µ) , ∂µF(λ, µ) = F̃µ(λ, µ) .

Proof. We will only write out the proof with respect to λ, that for µ is completely
similar. We will show that

F(λ+ h)− F(λ) = O(|h|) , F(λ+ h)− F(λ)− hF̃(λ) = o(|h|) , h→ 0.

In terms of the quantities defined in (61)–(63), the differences of the a-FFPs are

F(λ+ h)− F(λ)− hF̃(λ) = c(m)

∫
Γ

(
Φ(x̂, y) p̂λ(y) − ω2ρf Ψ(x̂, y) ûλ(y) · ν

)
ds(y);

F(λ+ h)− F(λ) = c(m)

∫
Γ

(
Φ(x̂, y) (pλ+h − pλ)(y)−

ω2ρf Ψ(x̂, y)(uλ+h − uλ)(y) · ν
)

ds(y) .

Using |Φ(x̂, y)| = 1 and |Ψ(x̂, y)| = |iκ x̂ · n̂| = κ, we obtain a constant c =
c(n,Γ, ω, ρf , κ) > 0 independent of h so that

|F(λ+ h)− F(λ)− hF̃(λ)| ≤ c
(
‖p̂λ‖L2(Γ) + ‖ûλ‖L2(Γ)

)
≤ c ‖(p̂λ, ûλ)‖H .

Similarly, there exists a constant c̃ = c̃(n,Γ, ω, ρf , κ) > 0 independent of h so that

|F(λ+ h)− F(λ)| ≤ c̃ ‖(pλ+h − pλ , uλ+h − uλ)‖H .

Separate continuity is obtained by using the bound (82) for ‖pλ+h−pλ, uλ+h−uλ‖H,
and partial Fréchet differentiability by (83) for ‖(p̂λ, ûλ)‖H.

2.5. Characterization of the partial derivatives with respect to solid density

The analysis with respect to the solid density ρs is simpler. The correspond-
ing auxiliary problem has better regularity; it has no interface source terms and,
instead, only a very regular volume one (in H1(Ωs)

m). As a result, its PDE form
is readily well-defined in standard Sobolev spaces. For the current discussion, the
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notation is simplified to indicate only the dependence with respect to ρs. With
uρs = S(ρs) = S(λ, µ, ρs) cf. (35), the auxiliary problem with respect to ρs is

(SoDP)



divσ + ω2ρs u = −ω2 uρs in L2(Ωs)
m

∆ p+ κ2 p = 0 in L2(Ωf)

σ · ν = − p ν in H−1/2(Γ)m

ω2 ρf u · ν − ∂p
∂ν

= 0 in H−1/2(Γ)
∂p
∂ν

= −B p in H−1/2(Σ).

(86)

(87)

(88)

(89)

(90)

The arguments to obtain the variational formulation equivalent to SoDP and
the well-posedness for both problems are standard. The latter follows from Theo-
rem 2.

Proposition 10. Problem SoDP is equivalent to variational problem

Find ( pu ) ∈ H : a [( pu ) , ( qv )] = lfr3
[(

q
v

)]
, ∀ ( qv ) ∈ H ;

with lfr3 ∈ H′ , lfr3 [( qv )]
4
= −

∫
Ωs

ω2uρs : v dx .
(91)

Given (53), there exist unique solutions to both problems in H.

As a result of this, we can define the solution operator:

S̃ : R+ → H , ρs 7−→ S̃(ρs) ,

with S̃(ρs) the unique solution in H to (86)–(90) .
(92)

The a-FFP associated to SoDP, denoted by F̃(ρs), is defined using (84) with
(p̃, ũ) = S̃(ρs).

The proofs for continuity and partial differentiability in this case are simpler
than those for the Lamé parameters. In particular, we do not encounter the prob-
lem discussed in Remark 6. These results are gathered in the following proposition.

Proposition 11. Given (53), at fixed (λ, µ), the mapping ρs 7→ S(ρs) is continu-
ous and Fréchet differentiable with derivative given as the unique solution to (86)–
(90). In particular, ∂ρsS(ρs) = S̃(ρs). Regarding a-FFP, the mapping ρs 7→ F(ρs)
(defined in (37)) is continuous and Fréchet differentiable with ∂ρsF(ρs) = F̃(ρs).

3. Numerical validation

In this section, to evaluate the accuracy of this characterization, we consider a
2D setting with circular geometries, in which there are analytical expressions for
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Ωs

Γ

a

Ωf

b

Σ

(a) Computational do-
main a = 1cm, b = 7.5cm.

(b) Meshed domain at
f = 71.61 kHz (κa = 3).

Figure 2: Circular computational domain Ωfinite with circular obstacle Ωs. The mesh is used with
IPDG method and satisfies 7 points per wavelength, cf. Remark 7. Boundary Σ and interface Λ
are discretized using curved-edge elements cf. [13, Sec. 3.1].

the displacement fields, a-FFP and their derivatives. This allows for a comparison
between analytical values and numerical ones. The latter are obtained by using
IPDG method equipped with curved-boundary edge elements, cf. [13], to discretize
the variational problems (VOP and VLaDP).

Parameters for experiments. We follow [38, 13] and consider a setup in which a
time-harmonic planewave propagating along x-axis is diffracted by an infinitely
long steel cylinder immersed in water. Here, the coordinates of R3 are written as
(x, y, z) and of R2 as (x, y). The cylinder has radius a = 1 cm and principal axis
parallel to z-direction. The properties of the involved materials are summarized in
Table 1. This 3D phenomenon can be approximated by a 2D problem, in which the
solid region Ωs represents the circular cross-section of the cylinder in (x, y)-plane.
The computation domain Ωfinite is chosen to be a disc of radius b = 7.5cm, see
Figure 2(a), and the first-order ABC with B = T1 defined in (20) is used.

Density Propagation speed Lamé parameters
Medium (kg m−3) (m s−1) (GPa)

ρ cP cS λ µ
Water 1000 1500 n/a 2.25 n/a
Steel 7900 5837 3100 115.40 76.9

Table 1: Properties of fluid and solid medium in the expriments.

In (x, y)- and polar coordinates, the spatial part of a time-harmonic planewave
of frequency f = ω

2π
, is

ppw(x, y) = e
i
ω
cf

(x,y)·(1,0)
= ppw(r, θ) = e

i
ω
cf
r cos θ

. (93)

23



Experiments are carried out for frequency f and normalized wavenumber κa range

23 kHz ≤ f ≤ 477 kHz ⇔ 1 ≤ κ a ≤ 20 .

We compare between the IPDG and analytical values of the quantities listed
in Table 2. To quantify the difference between an analytical value g and the
corresponding value gh computed with IPDG, we use L2-relative error,

e(g) =
‖g − gh‖2

‖g‖2

× 100 . (94)

Fluid pressure Solid displacement a-FFP Fréchet derivatives
IPDG ph uh = ((uh)x , (uh)y) (ph)a,∞ ∂ ph ∂uh ∂(ph)a,∞
Exact p u = (ux, uy) pa,∞ ∂p ∂u ∂pa,∞

Table 2: Compared quantities. For the Fréchet derivatives, we write ∂ to mean either ∂λ or ∂µ.
Subscript x or y indicates corresponding components of the solid displacement.

Method of calculation. To calculate (ph, uh), variational problem VOP (33) is
discretized by IPDG of order P5 with curved-boundary edges also of order P5,
implemented in the software Hou10ni13. The displacement uh is then used in
VLaDP (59), also discretized by IPDG to give (∂ph, ∂uh). We use the same
interior penalty terms as in [13, Eqn 4–5]. Note that our sesquilinear form differs
from [13] in the ABC. Since our goal is not to study convergence order, parameters
are chosen to obtain the best precision associated with P5. In particular, the mesh
is changed at each different frequency according to the criteria described in Remark
7.

Remark 7 (Mesh criteria). In all of our experiments, at each frequency f , the
mesh, cf. Figure 2(b), is created by the software triangle14 taking three variables:
the number of discretization points on interface Γ and boundary Σ, denoted by NΓ

and NΣ respectively, and elemental area ah. These are defined by

NΓ
4
=
[

2πa
h

]
, NΣ

4
=
[

2πb
h

]
, ah

4
= h2

2
,

in terms of ‘mesh size’ h. The quantity ‘mesh size’ h defined as

h
4
= λf

Nppwl
= 2π cf

ωNppwl
,

13Degree P5 corresponds to 21 degree of freedoms per mesh element (triangle). Triangles with
curved-boundary edges are used at the fluid-solid interface, cf. [13, Figure 1]. For Hou10ni, see
team.inria.fr/magique3d/software/hou10ni/.

14 https://www.cs.cmu.edu/~quake/triangle.html
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is controlled by the frequency f , and the number of points per (shortest) wave-
length15, denoted by Nppwl. Unless indicated otherwise, Nppwl = 7.

Due to circular geometries, the analytical values can be written in the form
of multipole expansions, see [13, Eqn (A.1)] for the scattered field p and [13, Eqn
(A.4)] for the solid displacement u. These expressions are defined in terms of
the coefficients Xn = (an, bn, cn, dn)t at each level n ∈ N, which satisfy the linear
system EnXn = En, see [13, Eqn (17)]. Since our problem OP differs from [12] in
the ABC (19), our entries E41

n and E42
n are different, with

E4i
n = κH(i)′

n (κb) +
(

1
2b
− iκ

)
H(i)
n (κb) , i = 1, 2 . (95)

Here, H
(•)
n are the cylindrical Hankel functions. The components of right-hand side

En ∈ C4 are given in [12, Eqn (19)–(21)]. The derivatives ∂p, ∂u are calculated in
the same manner, however with coefficients ∂Xn = (∂an, ∂bn, ∂cn, ∂dn), given by

∂Xn = −E−1
n (∂En)Xn = −E−1

n (∂En)E−1
n En . (96)

While the true analytical values are infinite sums16, those for numerical purposes
are truncated versions with N = 2dκ be+ 1 modes (a standard choice cf. [13]). For
illustrative purposes, we show the real part of ∂λp at κa = 7 in Figure 3(a).

(a) Analytical value. (b) Difference with IPDG.

Figure 3: Analytical value of Re (∂µ p) at κa = 7 is shown in (a). Absolute difference with IPDG
|Re(∂µ p− ∂µ ph)| = 1.95× 10−7 is shown in (b), corresponding to 2.38× 10−5% relative error.

With the analytical values p, u, ∂p, ∂u and the IPDG values ph, uh, ∂ph, ∂uh
calculated, we now obtain the analytical pa,∞ and numerical (ph)a,∞ a-FFP and
their corresponding derivatives. We recall that a-FPPs associated to problem OP
are given by (37),[

(ph)a,∞(x̂)
pa,∞(x̂)

]
= c(2)

∫
Γ

{
Φ(x̂,y)

[
ph(y)
p(y)

]
−
(
ωρ2

f

[
uh(y)
u(y)

]
·ν − g(y)

)
Ψ(x̂,y)

}
ds(y)

(97)

15 Wavelength is given by propagation speed
source frequency f . Water has the shortest wavelength, due to its speed

cf inferior to both the primary speed cP and the shear speed cS in steel as indicated in Table 1.
16 They are uniformly convergent on compact subsets.
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with g := ∂ppw

∂ν
and c(2) defined in (13), and their derivatives by (84),[

∂(ph)a,∞(x̂)
∂pa,∞(x̂)

]
= c(2)

∫
Γ

{
Φ(x̂,y)

[
∂ph(y)
∂p(y)

]
− ωρ2

f

[
∂uh(y)
∂u(y)

]
· ν Ψ(x̂,y)

}
ds(y).

(98)
These quantities will be evaluated at 360 angles x̂= x

|x| , equally distributed on the
unit circle. Here, square and curly braces group terms together, and do not have
additional significance.

Remark 8 (a-FFP vs FFP). Recall that FFP can only be defined for the fluid
pressure associated to problem OP∞. If we consider a disc-shaped obstacle in this
problem, the true FFP denoted by p∞ has the following expansion,

p∞(x̂) =
∑
n

√
2
κπ

eiπ/4

in+1 an cos(nθ) , x̂ = x
|x| , (99)

where the coefficients an are obtained by solving Ên X̂n = Ên with X̂n = (an, cn, dn)t.
These are obtained in the same way as En but without the ABC17.

Experiments and observations. There are two main sets of comparison, both car-
ried out for the normalized wavenumber range 4 ≤ κa ≤ 12. In the set 1, Figure
4 and 5 show the comparison for p, u, and a-FPP, while in the second set, Figure
6 and 7 show that for their partial derivatives.
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Figure 4: Comparison between the analytical and IPDG values for fluid pressure e(p) , solid
displacement e(ux), e(uy), and a-FFP e(pa,∞).

Below are the observations for Figure 4.

17In particular, Ên is obtained from En removing the last row and second column, i.e.

Ên =

(
E11
n E13

n E14
n

E21
n E23

n E24
n

E31
n E33

n E34
n

)
, Ên = (E1

n, E
2
n, E

3
n)t.

26



4 5 6 7 8 9 10 11 12

10−8

10−3

102

κa

L
2
-r

el
a
ti

v
e

er
ro

r(
%

)

Figure 5: Error a-FFP e(pa,∞) =
|(ph)a,∞−pa,∞|

|pa,∞| ×100 vs. error FFP e =
|p∞−pa,∞|
|p∞| ×100.

The error e(pa,∞) is an indication of the quality of IPDG and the chosen integration quadrature,
while e reflects only the quality of the absorbing boundary condition in approximating the original
problem OP∞ on R2.

• Figure 4 shows that IPDG gives a very high accuracy level, with errors e(p), e(u),
e(pa,∞) around 10−5% for the current normalized wavenumber range. Although
numerical a-FFP is calculated from one procedure of discretization (to calculate
uh and ph) and integration (97), we do not see the effect of accumulation of
numerical error. Instead, the error e(ap,∞) is lower than both e(p) and e(u).

• We see here the effectiveness of the mesh criteria defined in Remark 7, in main-
taining the same error level, with the error curve either flat for e(p) or varying
in a fixed range for e(u), instead of increasing with the frequency.

• With curved-boundary edge elements, the error curve e(p) is flat and smooth,
compared to those for solid displacement e(ux) and e(uy), which have spikes,
especially around a Jones frequency18. This effect is also reported in [13].

• Since a-FFP is calculated in terms of both the traces of p and u, its error curve
e(pa,∞) loses the flatness of e(p), and takes on the fluctuation of e(u).

The quality of the numerical solution also depends on the choice of the ABC.
Figure 5 shows the satisfactory quality19 of T1, by comparing the true FFP p∞,
cf. (99), with the analytical a-FFP pa,∞, cf. (97), with 0.3% relative error.

We next comment on the second set of experiments given in Figures 6 – 7,
which show the errors for the partial derivatives, e(∂p), e(∂u), and e(∂pa,∞).

18For an illustration of Jones frequencies, see [13, Fig.8], [38, Fig. 7].
19 Although (satisfactorily) small, e is much larger than the relative error e(pa,∞). To decrease

further the effect of the ABC (currently first order), higher orders can be used, and the radius b
of Ωfinite can be chosen larger.
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• Relative errors for both e(∂p) and e(∂u) are below than 10−4, cf. Figure 6(a)–
6(b). Although two discretization procedures are used (first to obtain uh and
then the partial derivatives), e(∂p) and e(∂u) are around the same magnitude of
e(p) and e(u) (shown cf. Figure 4). This means no effect of discretization error
accumulation.

• The error e(∂pa,∞) in Figure 7 is slightly higher, fluctuating around 10−4%.
This slight increase is expected, since IPDG values of derivatives of a-FFP are
computed from two discretization procedures (to obtain ∂uh and ∂ph) and an
integration procedure in (98). However, accumulation of discretization error is
still very negligible.

• Compared with the flat and smooth curve of e(p), a small peak just before κa = 6
is now observed in that of e(∂p). Outside of this neighborhood, the error curve
stays smooth and flat. For the solid displacement, this peak, already observed
for the curve of e(u), is now more pronounced for e(∂u).

• The error with respect to λ behaves in the same way as with respect to µ, apart
from the following minute distinctions. Figure 7 shows that e(∂µpa,∞) is always
below e(∂λpa,∞), and in Figure 6(a)–6(b), the peak just before κa = 6 is more
pronounced in e(∂µp) than in e(∂λp).

4. Conclusion

For the stated fluid-solid interaction problem with a Lipschitz interface, we
have shown the separate continuity and partial Fréchet differentiability of the
solution operator and a-FFP with respect to the solid materials. The main dif-
ficulty in treating Lipschitz interfaces is the presence, in the PDE form of the
auxiliary problem (which is used to characterize the partial derivatives), of in-
homogeneous interface terms whose normal traces cannot be defined in canonical
boundary Sobolev spaces. This is overcome in our work, with well-posedness shown
in the standard framework for both the PDE and variational form (of the auxil-
iary problems). Joint continuity and full Fréchet differentiability results can be
obtained with slight modification of the current work. Our analytical-numerical
comparisons show that using IPDG equipped with curved boundary edge elements
and high enough discretization order, in this characterization, gives high precision
and incurs almost no effect of discretization error accumulation.
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(a) Comparison for partial derivative with respect to λ.
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(b) Comparison for partial derivative with respect to µ.

Figure 6: Comparison between the analytical and IPDG values of the Fréchet derivative of fluid
pressure e(∂p) and solid displacement e(∂ux), e(∂uy).
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Figure 7: Comparison between the analytical and IPDG values of the Fréchet derivative of a-FFP.
e(∂λpa,∞), e(∂µpa,∞) .
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[7] A. Charalambopoulos, On the Fréchet differentiability of boundary integral
operators in the inverse elastic scattering problem, Inverse Problems 11 (6)
(1995) 1137.

[8] S. Hubmer, E. Sherina, A. Neubauer, O. Scherzer, Lamé parameter estimation
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