I. Aselman and P. J. Crutzen, Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions, Journal of Atmospheric Chemistry, vol.31, issue.108, pp.307-358, 1989.
DOI : 10.1007/978-3-642-80913-2_15

C. A. Avis, A. J. Weaver, and K. J. Meissner, Reduction in areal extent of high-latitude wetlands in response to permafrost thaw, Nature Geoscience, vol.25, issue.7, pp.444-448, 2011.
DOI : 10.1007/s00382-005-0042-3

S. A. Bartalev, A. S. Belward, D. V. Erchov, and A. S. Isaev, A new SPOT4-VEGETATION derived land cover map of Northern Eurasia, International Journal of Remote Sensing, vol.2, issue.9, pp.1977-1982, 2003.
DOI : 10.1016/0034-4257(95)00137-P

N. H. Batjes, A world dataset of derived soil properties by FAO- UNESCO soil unit for global modelling, Soil Use Manage, pp.9-16, 1997.
DOI : 10.1111/j.1475-2743.1997.tb00550.x

D. J. Beerling and F. I. Woodward, Vegetation and the Terrestrial Carbon Cycle: Modelling the first 400 Million Years, 2001.
DOI : 10.1017/cbo9780511541940

D. J. Beerling, A. Fox, D. S. Stevenson, and P. J. Valdes, Enhanced chemistry-climate feedbacks in past greenhouse worlds, Proceedings of the National Academy of Sciences, vol.470, issue.7332, pp.9770-9775, 2011.
DOI : 10.1038/nature09739

URL : http://www.pnas.org/content/108/24/9770.full.pdf

F. Berendse, N. V. Breemen, H. Rydin, A. Buttler, M. Heijmans et al., Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs, Global Change Biology, vol.46, issue.5, pp.591-598, 2001.
DOI : 10.1016/0038-0717(94)00183-2

URL : http://doc.rero.ch/record/17111/files/Berendse_Frank_-_Raised_atmospheric_CO2_levels_and_increased_20100129.pdf

K. J. Beven and M. J. Kirkby, A physically based, variable contributing area model of basin hydrology / Un mod??le ?? base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrological Sciences Bulletin, vol.4, issue.1, pp.43-69, 1979.
DOI : 10.1016/0022-1694(66)90065-5

C. P. Boardman, V. Gauci, J. S. Watson, S. Blake, and D. J. Beerling, Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs and fens, New Phytologist, vol.18, issue.4, pp.898-911, 2011.
DOI : 10.1029/2004GB002239

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03849.x/pdf

T. J. Bohn and D. P. Lettenmaier, Systematic biases in large-scale estimates of wetland methane emissions arising from water table formulations, Geophysical Research Letters, vol.33, issue.6, pp.10-1029, 2010.
DOI : 10.1029/2006GL026972

URL : http://onlinelibrary.wiley.com/doi/10.1029/2010GL045450/pdf

T. J. Bohn, D. P. Lettenmaier, K. Sathulur, L. C. Bowling, E. Podest et al., Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change, Environmental Research Letters, vol.2, issue.4, pp.259-268, 2007.
DOI : 10.1088/1748-9326/2/4/045015

URL : http://iopscience.iop.org/article/10.1088/1748-9326/2/4/045015/pdf

L. C. Bowling and D. P. Lettenmaier, Modeling the Effects of Lakes and Wetlands on the Water Balance of Arctic Environments, Journal of Hydrometeorology, vol.11, issue.2, pp.276-295, 2010.
DOI : 10.1175/2009JHM1084.1

M. K. Cao, S. Marshall, and K. Gregson, Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model, Journal of Geophysical Research: Atmospheres, vol.9, issue.D9, pp.14399-14414, 1996.
DOI : 10.1007/BF00002716

G. Chen, H. Tian, C. Zhang, M. Liu, W. Ren et al., Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage, Climatic Change, vol.329, issue.2, pp.379-39710, 2012.
DOI : 10.1126/science.1192666

K. A. Cherkauer and D. P. Lettenmaier, Hydrologic effects of frozen soils in the upper Mississippi River basin, Journal of Geophysical Research: Atmospheres, vol.33, issue.4, 1999.
DOI : 10.1017/CBO9780511564437

T. R. Christensen and P. Cox, Response of methane emission from arctic tundra to climatic change: results from a model simulation, Tellus B: Chemical and Physical Meteorology, vol.6, issue.3, pp.301-309, 1995.
DOI : 10.1017/CBO9780511564437

T. R. Christensen, I. C. Prentice, J. Kaplan, A. Haxeltine, and S. Sitch, Methane flux from northern wetlands and tundra. An ecosystem source modelling approach, Tellus B, vol.48, issue.5, pp.652-661, 1996.
DOI : 10.1034/j.1600-0889.1996.t01-4-00004.x

URL : https://www.tandfonline.com/doi/pdf/10.3402/tellusb.v48i5.15938?needAccess=true

M. T. Coe, Simulating continental surface wa- ters: an application to Holocene northern Africa, J. Clim, vol.102, pp.1680-1689, 1997.
DOI : 10.1175/1520-0442(1997)010<1680:scswaa>2.0.co;2

M. T. Coe, A linked global model of terrestrial hydrologic processes: Simulation of modern rivers, lakes, and wetlands, Journal of Geophysical Research: Atmospheres, vol.201, issue.D8, pp.8885-8899, 1998.
DOI : 10.1029/GB003i003p00241

P. Cox, Description of the TRIFFID dynamic global vegetation model, Hadley Centre, Met Office, 2001.

C. L. Curry, Modelling the soil consumption of atmospheric methane at the global scale, Global Biogeochem. Cy, vol.21, pp.4012-4022, 2007.
DOI : 10.1029/2006gb002818

URL : http://onlinelibrary.wiley.com/doi/10.1029/2006GB002818/pdf

C. L. Curry, The consumption of atmospheric methane by soil in a simulated future climate, Biogeosciences, vol.65194, issue.10, pp.2355-2367, 2009.

F. Dentener, J. Drevet, J. Lamarque, I. Bey, B. Eickhout et al., Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation, Global Biogeochemical Cycles, vol.48, issue.13, pp.400310-1029, 2006.
DOI : 10.1023/A:1005708821454

URL : https://hal.archives-ouvertes.fr/hal-00342326

F. Jrc, Harmonized World Soil Database (version 1.1), Tech. rep, 2009.

O. T. Farouki, The thermal properties of soils in cold regions, Cold Regions Science and Technology, vol.5, issue.1, pp.67-75, 1981.
DOI : 10.1016/0165-232X(81)90041-0

T. G. Farr and M. Kobrick, Shuttle radar topography mission produces a wealth of data, Eos, Transactions American Geophysical Union, vol.91, issue.48, pp.583-585, 2000.
DOI : 10.1029/JB091iB05p04993

R. D. Fries, M. Hansen, J. Townshend, and R. Sohlberg, Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers, International Journal of Remote Sensing, vol.19, issue.16, pp.3141-3168, 1998.
DOI : 10.1080/014311698214235

S. Frolking, N. T. Roulet, T. R. Moore, P. M. Lafleur, J. L. Bubier et al., Modeling seasonal to annual carbon balance of Mer Bleue Bog, pp.4-5, 2002.
DOI : 10.1029/2001gb001457

URL : http://onlinelibrary.wiley.com/doi/10.1029/2001GB001457/pdf

I. Y. Fung, J. John, J. Lerner, E. Matthews, M. Prather et al., Three-dimensional model synthesis of the global methane cycle, Journal of Geophysical Research, vol.224, issue.41, pp.13033-13065, 1991.
DOI : 10.1126/science.218.4572.563

N. Gedney, P. M. Cox, and C. Huntingford, Climate feedback from wetland methane emissions, Geophysical Research Letters, vol.11, issue.D1, pp.10-1029, 2004.
DOI : 10.1029/98JD01115

URL : http://onlinelibrary.wiley.com/doi/10.1029/2004GL020919/pdf

S. Gerber, F. Joos, P. Brugger, T. Stocker, M. Mann et al., Constraining temperature variations over the last millennium by comparing simulated and observed atmospheric CO2, Climate Dynamics, vol.20, issue.2, pp.281-29910, 2003.
DOI : 10.1007/s00382-002-0270-8

D. Gerten, S. Schaphoff, U. Haberlandt, W. Lucht, and S. Sitch, Terrestrial vegetation and water balance???hydrological evaluation of a dynamic global vegetation model, Journal of Hydrology, vol.286, issue.1-4, pp.249-270, 2004.
DOI : 10.1016/j.jhydrol.2003.09.029

M. V. Glagolev, I. E. Kleptsova, I. V. Filippov, V. S. Kazantsev, T. Machida et al., Methane emissions from subtaiga mires of Western Siberia: The ???standard model??? Bc5, Moscow University Soil Science Bulletin, vol.43, issue.2, pp.86-93, 2010.
DOI : 10.3103/S0147687410020067

Y. S. Hayakawa, T. Oguchi, L. , and Z. , Comparison of new and existing global digital elevation models: ASTER G-DEM and SRTM-3, Geophysical Research Letters, vol.30, issue.9, 2008.
DOI : 10.14358/PERS.72.3.237

URL : http://onlinelibrary.wiley.com/doi/10.1029/2008GL035036/pdf

M. M. Heijmans, W. J. Arp, and F. Berendse, Effects of elevated CO2 and vascular plants on evapotranspiration in bog vegetation, Global Change Biology, vol.11, issue.7, pp.817-827, 2001.
DOI : 10.1007/BF03161761

M. M. Heijmans, H. Klees, and F. Berendse, Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO 2 and increased N deposition, pp.415-425, 2002.
DOI : 10.1034/j.1600-0706.2002.970311.x

M. M. Heijmans, H. Klees, W. De-visser, and F. Berendse, Response of a Sphagnum bog plant community to elevated CO 2 and N supply, Plant Ecology, vol.162, issue.1, pp.123-134, 2002.
DOI : 10.1023/A:1020368130679

E. L. Hodson, B. Poulter, N. E. Zimmermann, C. Prigent, and J. O. Kaplan, The El Ni??o-Southern Oscillation and wetland methane interannual variability, Geophysical Research Letters, vol.33, issue.9, p.10, 1029.
DOI : 10.1029/2006GL026972

URL : http://onlinelibrary.wiley.com/doi/10.1029/2011GL046861/pdf

P. O. Hopcroft, P. J. Valdes, and D. J. Beerling, Simulating idealized Dansgaard-Oeschger events and their potential impacts on the global methane cycle, Quaternary Science Reviews, vol.30, issue.23-24, pp.3258-3268, 2011.
DOI : 10.1016/j.quascirev.2011.08.012

B. A. Hungate, J. S. Dukes, M. R. Shaw, Y. Q. Luo, and C. B. Field, ATMOSPHERIC SCIENCE: Nitrogen and Climate Change, Science, vol.302, issue.5650, pp.1512-1513, 2003.
DOI : 10.1126/science.1091390

P. D. Jones and I. Harris, CRU Time Series (TS) high resolution gridded datasets, University of East Anglia Climatic Research Unit (CRU), available at, p.28, 2008.

F. Joos, S. Gerber, I. C. Prentice, B. L. Otto-bliesner, and P. J. Valdes, Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum, Global Biogeochemical Cycles, vol.2, issue.11, pp.10-1029, 2004.
DOI : 10.1016/0304-4203(74)90015-2

URL : http://onlinelibrary.wiley.com/doi/10.1029/2003GB002156/pdf

J. O. Kaplan, Wetlands at the Last Glacial Maximum: Distribution and methane emissions, Geophysical Research Letters, vol.105, issue.D3, pp.10-1029, 1079.
DOI : 10.1029/1999JD901100

URL : http://onlinelibrary.wiley.com/doi/10.1029/2001GL013366/pdf

W. Knorr, Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties, Global Ecology and Biogeography, vol.260, issue.3, pp.225-252, 2000.
DOI : 10.1029/95GB02432

G. Krinner, Impact of lakes and wetlands on boreal climate, Journal of Geophysical Research, vol.103, issue.4, pp.10-1029, 2003.
DOI : 10.1029/98JD02275

URL : http://onlinelibrary.wiley.com/doi/10.1029/2002JD002597/pdf

G. Krinner, N. Viovy, N. De-noblet-ducoudre, J. Ogee, J. Polcher et al., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem, Cy, vol.19, pp.941-962, 2005.

P. J. Lawrence and T. N. Chase, Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0), Journal of Geophysical Research, vol.17, issue.1, pp.10-1029, 2007.
DOI : 10.1017/CBO9780511612336

URL : http://onlinelibrary.wiley.com/doi/10.1029/2006JG000168/pdf

B. Leff, N. Ramankutty, and J. Foley, Geographic distribution of major crops across the world, Global Biogeochemical Cycles, vol.22, issue.3, pp.10-1029, 1009.
DOI : 10.1002/joc.727

URL : http://onlinelibrary.wiley.com/doi/10.1029/2003GB002108/pdf

B. Lehner and P. Döll, Development and validation of a global database of lakes, reservoirs and wetlands, Journal of Hydrology, vol.296, issue.1-4, pp.1-22, 2004.
DOI : 10.1016/j.jhydrol.2004.03.028

M. G. Letts, N. T. Roulet, N. T. Comer, M. R. Skarupa, and D. L. Verseghy, Parametrization of peatland hydraulic properties for the Canadian land surface scheme, Atmosphere-Ocean, vol.81, issue.1, pp.141-160, 2000.
DOI : 10.1007/978-94-017-3048-8_23

X. Liang, D. P. Lettenmaier, E. F. Wood, and S. J. Burges, A simple hydrologically based model of land surface water and energy fluxes for general circulation models, Journal of Geophysical Research, vol.129, issue.D3, pp.14415-14428, 1994.
DOI : 10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2

M. Liu, H. Tian, Q. Yang, J. Yang, X. Song et al., Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during, Water Resour. Res, vol.49, issue.10, pp.1-25, 1002.

E. Matthews and I. Y. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochemical Cycles, vol.4, issue.1, pp.61-86, 1987.
DOI : 10.1126/science.199.4325.141

G. A. Meehl, T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye et al., Global climate projections, in: Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp.747-846, 2007.

K. J. Meissner, A. J. Weaver, H. D. Matthews, and P. M. Cox, The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model, Climate Dynamics, vol.21, issue.7-8, pp.515-537, 2003.
DOI : 10.1007/s00382-003-0352-2

T. D. Mitchell and P. D. Jones, An improved method of constructing a database of monthly climate observations and associated high-resolution grids, International Journal of Climatology, vol.78, issue.6, pp.693-712, 2005.
DOI : 10.1002/joc.1181

I. I. Mokhov, A. V. Eliseev, and S. N. Denisov, Model diagnostics of variations in methane emissions by wetlands in the second half of the 20th century based on reanalysis data, Doklady Earth Sciences, vol.131, issue.1, pp.1293-1297, 2007.
DOI : 10.1034/j.1600-0889.47.issue3.2.x

R. B. Myneni, S. Hoffman, Y. Knyazikhin, J. L. Privette, J. Glassy et al., Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sensing of Environment, vol.83, issue.1-2, pp.214-231, 2002.
DOI : 10.1016/S0034-4257(02)00074-3

URL : http://cybele.bu.edu/download/manuscripts/myneni.modis.pdf

G. Niu, Z. Yang, R. E. Dickinson, and L. E. Gulden, A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models, Journal of Geophysical Research, vol.38, issue.5, pp.10-1029, 2005.
DOI : 10.1103/RevModPhys.56.365

URL : http://onlinelibrary.wiley.com/doi/10.1029/2005JD006111/pdf

F. Papa, C. Prigent, F. Durand, R. , and W. B. , Wetland dynamics using a suite of satellite observations: a case study of application and evaluation for the Indian Subcontinent, Geophys. Res. Lett, pp.10-1029, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00406727

F. Papa, C. Prigent, R. , and W. B. , Monitoring Flood and Discharge Variations in the Large Siberian Rivers From a Multi-Satellite Technique, Surveys in Geophysics, vol.23, issue.2, pp.297-317, 2008.
DOI : 10.1126/science.1089802

F. Papa, C. Prigent, F. Aires, C. Jimenez, W. B. Rossow et al., Interannual variability of surface water extent at the global scale, J. Geophys. Res, pp.10-1029, 1993.
DOI : 10.1029/2009jd012674

URL : http://onlinelibrary.wiley.com/doi/10.1029/2009JD012674/pdf

W. J. Parton, J. M. Scurlock, D. S. Ojima, T. G. Gilmanov, R. J. Scholes et al., Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide, Global Biogeochemical Cycles, vol.84, issue.4, pp.785-809, 1993.
DOI : 10.1007/BF00328157

C. A. Pickett-heaps, D. J. Jacob, K. J. Wecht, E. A. Kort, S. C. Wofsy et al., Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada), Atmos. Chem. Phys, vol.115194, pp.3773-377910, 2011.
DOI : 10.5194/acp-11-3773-2011

URL : https://www.atmos-chem-phys.net/11/3773/2011/acp-11-3773-2011.pdf

I. Pison, B. Ringeval, P. Bousquet, C. Prigent, and F. Papa, Stable atmospheric methane in the 2000s: key-role of emissions from natural wetlands, Atmospheric Chemistry and Physics Discussions, vol.13, issue.4, pp.9017-904910, 2013.
DOI : 10.5194/acpd-13-9017-2013

URL : https://hal.archives-ouvertes.fr/hal-00991288

C. S. Potter, An ecosystem simulation model for methane production and emission from wetlands, Global Biogeochemical Cycles, vol.23, issue.1, pp.495-506, 1997.
DOI : 10.1139/x93-313

URL : http://onlinelibrary.wiley.com/doi/10.1029/97GB02302/pdf

I. C. Prentice, G. D. Farquhar, M. J. Fasham, M. Goulden, M. Heimann et al., The Carbon Cycle and Atmospheric Carbon Dioxide, in: Climate Change 2001: The scientific basis, Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, pp.183-237, 2001.

C. Prigent, F. Papa, F. Aires, W. B. Rossow, and E. Matthews, Global inundation dynamics inferred from multiple satellite observations, J. Geophys. Res, vol.112, pp.305-31710, 1993.
DOI : 10.1029/2006jd007847

URL : http://onlinelibrary.wiley.com/doi/10.1029/2006JD007847/pdf

C. Prigent, F. Papa, F. Aires, C. Jimenez, W. B. Rossow et al., Changes in land surface water dynamics since the 1990s and relation to population pressure, Geophysical Research Letters, vol.467, issue.8, pp.10-1029, 2012.
DOI : 10.1038/nature09440

URL : https://hal.archives-ouvertes.fr/hal-00991314

T. T. Qian, A. Dai, K. E. Trenberth, and K. W. Oleson, Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations, Journal of Hydrometeorology, vol.7, issue.5, pp.953-975, 2006.
DOI : 10.1175/JHM540.1

A. Ridgwell, S. J. Marshall, and K. Gregson, Consumption of atmospheric methane by soils: A process-based model, Global Biogeochemical Cycles, vol.26, issue.169, pp.59-70, 1999.
DOI : 10.1016/0045-6535(93)90456-F

URL : http://onlinelibrary.wiley.com/doi/10.1029/1998GB900004/pdf

W. J. Riley, Z. M. Subin, D. M. Lawrence, S. C. Swenson, M. S. Torn et al., Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM, Biogeosciences, vol.85194, pp.1925-195310, 1925.
DOI : 10.5194/bg-8-1925-2011

URL : https://www.biogeosciences.net/8/1925/2011/bg-8-1925-2011.pdf

B. Ringeval, Interactions entre climat etémissionset´etémissions de méthane par les zones humidesàhumides`humidesà l'´ echelle global, 2011.

B. Ringeval, N. De-noblet-ducoudre, P. Ciais, P. Bousquet, C. Prigent et al., An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales, Global Biogeochemical Cycles, vol.277, issue.D24, pp.611-617, 2010.
DOI : 10.1126/science.277.5327.800

URL : https://hal.archives-ouvertes.fr/hal-00991319

B. Ringeval, P. Friedlingstein, C. Koven, P. Ciais, N. De-noblet-ducoudré et al., Climate-CH 4 feedback from wetlands and its interaction with the climate- CO 2 feedback, Biogeosciences, vol.85194, pp.2137-215710, 2011.
DOI : 10.5194/bg-8-2137-2011

URL : https://hal.archives-ouvertes.fr/hal-01806765

B. Ringeval, B. Decharme, S. L. Piao, P. Ciais, F. Papa et al., Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data, Geosci. Model Dev, vol.55194, pp.941-96210, 2012.
DOI : 10.5194/gmdd-5-683-2012

URL : https://hal.archives-ouvertes.fr/insu-00844071

B. Ringeval, P. O. Hopcroft, P. J. Valdes, P. Ciais, G. Ramstein et al., Response of methane emissions from wetlands to the Last Glacial Maximum and an idealized Dansgaard-Oeschger climate event: insights from two models of different complexity, Clim. Past, vol.95194, pp.149-17110, 2013.

N. T. Roulet, T. R. Moore, J. Bubier, and P. Lafleur, Northern fens: methane flux and climate change, pp.100-106, 1992.
DOI : 10.3402/tellusb.v44i2.15429

URL : http://digitool.Library.McGill.CA:80/webclient/DeliveryManager?pid=132464&custom_att_2=direct

R. Schroeder, M. A. Rawlins, K. C. Mcdonald, E. Podest, R. Zimmermann et al., Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data, Environmental Research Letters, vol.5, issue.1, pp.14415-14428, 2010.
DOI : 10.1088/1748-9326/5/1/015003

URL : http://iopscience.iop.org/article/10.1088/1748-9326/5/1/015003/pdf

R. Segers and P. A. Leffelaar, Modeling methane fluxes in wetlands with gas-transporting plants: 3. Plot scale, Journal of Geophysical Research: Atmospheres, vol.58, issue.D4, pp.3541-3558, 2001.
DOI : 10.1016/S0304-3770(97)00016-8

URL : http://onlinelibrary.wiley.com/doi/10.1029/2000JD900482/pdf

P. J. Sellers, B. W. Meeson, J. Closs, F. Corprew, D. Dazlich et al., International Satellite Land Surface Climatology Project ? Initiative I data collection (ISLSCP I), available at, p.1, 1996.

Y. W. Sheng, L. C. Smith, G. M. Macdonald, K. V. Kremenetski, K. E. Frey et al., A high-resolution GIS-based inventory of the west Siberian peat carbon pool, Global Biogeochemical Cycles, vol.40, issue.2, pp.14415-14428, 2004.
DOI : 10.1023/A:1005345429236

D. T. Shindell, B. P. Walter, and G. Faluvegi, Impacts of climate change on methane emissions from wetlands, Geophysical Research Letters, vol.78, issue.6, pp.10-1029, 2004.
DOI : 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

URL : http://onlinelibrary.wiley.com/doi/10.1029/2004GL021009/pdf

J. S. Singarayer, P. J. Valdes, P. Friedlingstein, S. Nelson, and D. J. Beerling, Late Holocene methane rise caused by orbitally controlled increase in tropical sources, Nature, vol.104, issue.7332, pp.82-91, 2011.
DOI : 10.1029/1999JD900143

S. Sitch, . Smith, I. C. Prentice, A. Arneth, A. Bondeau et al., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, vol.87802, issue.5, pp.161-185, 2003.
DOI : 10.2307/1940088

URL : https://hal.archives-ouvertes.fr/hal-01757605

R. Spahni, R. Wania, L. Neef, M. Van-weele, I. Pison et al., Constraining global methane emissions and uptake by ecosystems, Biogeosciences, vol.85194, pp.1643-166510, 1643.
DOI : 10.5194/bg-8-1643-2011

URL : https://www.biogeosciences.net/8/1643/2011/bg-8-1643-2011.pdf

L. M. Stillwell-soller, L. F. Klinger, D. Pollard, and S. L. Thompson, The Global Distribution of Freshwater Wetlands, p.11, 1995.

B. D. Stocker, K. Strassmann, J. , and F. , Sensitivity of Holocene atmospheric CO<sub>2</sub> and the modern carbon budget to early human land use: analyses with a process-based model, Biogeosciences, vol.8, issue.1, pp.69-88, 2011.
DOI : 10.5194/bg-8-69-2011

K. M. Strassmann, F. Joos, and G. Fischer, increases and future commitments due to losses of terrestrial sink capacity, Tellus B: Chemical and Physical Meteorology, vol.39, issue.1, pp.583-603, 2008.
DOI : 10.1016/j.tech-fore.2006.05.027

URL : https://doi.org/10.3402/tellusb.v60i4.16946

C. Tarnocai, D. Swanson, J. Kimble, and J. Broll, Northern Circumpolar Soil Carbon Database, Tech. Rep. Version 1, Research Branch, Agriculture and Agri-Food Canada, p.1, 2007.

C. Tarnocai, J. G. Canadell, E. A. Schuur, P. Kuhry, G. Mazhitova et al., Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochemical Cycles, vol.312, issue.43, pp.10-1029, 2009.
DOI : 10.1126/science.1128908

URL : http://onlinelibrary.wiley.com/doi/10.1029/2008GB003327/pdf

H. Tian, X. Xu, M. Liu, W. Ren, C. Zhang et al., Spatial and temporal patterns of CH 4 and N 2 O fluxes in terrestrial ecosystems of North America during 1979?2008: application of a global biogeochemistry model, Biogeosciences, vol.75194, pp.2673-269410, 2010.

H. Q. Tian, J. Melillo, C. Q. Lu, D. Kicklighter, M. L. Liu et al., China's terrestrial carbon balance: Contributions from multiple global change factors, Global Biogeochemical Cycles, vol.33, issue.7, pp.222-240, 2011.
DOI : 10.1029/2006GL026972

URL : http://onlinelibrary.wiley.com/doi/10.1029/2010GB003838/pdf

H. Q. Tian, X. F. Xu, C. Q. Lu, M. L. Liu, W. Ren et al., Net exchanges of CO 2 , CH 4 , and N 2 O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming, J. Geophys. Res, vol.116, p.201110, 1029.

H. Q. Tian, G. Lu, G. S. Chen, S. Tao, S. F. Pan et al., Contemporary and projected biogenic fluxes of methane and nitrous oxide in North American terrestrial ecosystems, Frontiers in Ecology and the Environment, vol.10, issue.10, pp.528-53610, 1890.
DOI : 10.1890/1051-0761(2007)017[0203:NEOCAC]2.0.CO;2

P. J. Valdes, D. J. Beerling, J. , C. E. Van-bodegom, P. Goudriaan et al., The ice age methane budget A mechanistic model on methane oxidation in a rice rhizosphere A processbased model for methane emission predictions from flooded rice paddies, Geophys. Res. Lett. Biogeochem. Global Biogeochem. Cy, vol.32, issue.15, pp.941-962, 2001.

N. Viovy and P. Ciais, CRUNCEP data set for, Tech. Rep. Version, vol.4, issue.1, 1901.

B. P. Walter and M. Heimann, A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochemical Cycles, vol.47, issue.D7, pp.745-765, 2000.
DOI : 10.1034/j.1600-0889.47.issue5.1.x

URL : http://onlinelibrary.wiley.com/doi/10.1029/1999GB001204/pdf

B. P. Walter, M. Heimann, R. D. Shannon, and J. R. White, A process-based model to derive methane emissions from natural wetlands, Geophysical Research Letters, vol.6, issue.25, pp.3731-3734, 1996.
DOI : 10.1029/92GB00710

B. P. Walter, M. Heimann, and E. Matthews, Modeling modern methane emissions from natural wetlands: 1. Model description and results, Journal of Geophysical Research: Atmospheres, vol.5, issue.D24, pp.34189-34206, 2001.
DOI : 10.1002/joc.3370050202

B. P. Walter, M. Heimann, and E. Matthews, Modeling modern methane emissions from natural wetlands: 2. Interannual variations 1982-1993, Journal of Geophysical Research: Atmospheres, vol.26, issue.25, pp.34207-34219, 2001.
DOI : 10.1016/0045-6535(93)90428-8

R. Wania, I. Ross, P. , and I. C. , Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes, Global Biogeochemical Cycles, vol.18, issue.D24, pp.10-1029, 2009.
DOI : 10.1029/2004GB002239

URL : http://onlinelibrary.wiley.com/doi/10.1029/2008GB003412/pdf

R. Wania, I. Ross, P. , and I. C. , Integrating peatlands and permafrost into a dynamic global vegetation model, II: evaluation and sensitivity of vegetation and carbon cycle processes, Global Biogeochem. Cy, pp.10-1029, 2009.
DOI : 10.1029/2008gb003413

URL : http://onlinelibrary.wiley.com/doi/10.1029/2008GB003413/pdf

R. Wania, I. Ross, P. , and I. C. , Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geoscientific Model Development, vol.3, issue.2, pp.565-58410, 2010.
DOI : 10.5194/gmd-3-565-2010-supplement

URL : https://doi.org/10.5194/gmdd-3-1-2010

A. J. Weaver, M. Eby, E. C. Wiebe, C. M. Bitz, P. B. Duffy et al., The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates, Atmosphere-Ocean, vol.25, issue.4, pp.361-428, 2001.
DOI : 10.1007/s003820000134

URL : http://www.tandfonline.com/doi/pdf/10.1080/07055900.2001.9649686?needAccess=true

S. L. Weber, A. J. Drury, W. H. Toonen, and M. Van-weele, Wetland methane emissions during the Last Glacial Maximum estimated from PMIP2 simulations: Climate, vegetation, and geographic controls, Journal of Geophysical Research, vol.29, issue.6, pp.611110-1029, 2010.
DOI : 10.1029/2009JD012110

URL : http://onlinelibrary.wiley.com/doi/10.1029/2009JD012110/pdf

F. I. Woodward, T. M. Smith, E. , and W. R. , A global land primary productivity and phytogeography model, Global Biogeochemical Cycles, vol.44, issue.special issue 1, pp.471-490, 1995.
DOI : 10.1093/jxb/44.5.907

X. F. Xu, H. Q. Tian, C. Zhang, M. L. Liu, W. Ren et al., Attribution of spatial and temporal variations in terrestrial methane flux over North America, Biogeosciences, vol.75194, pp.3637-365510, 2010.
DOI : 10.5194/bg-7-3637-2010

URL : https://www.biogeosciences.net/7/3637/2010/bg-7-3637-2010.pdf

Q. Zhuang, J. M. Melillo, D. W. Kicklighter, R. G. Prinn, A. D. Mcguire et al., Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model, Global Biogeochemical Cycles, vol.55, issue.D1, p.301010, 1029.
DOI : 10.1034/j.1600-0889.2003.00060.x

URL : http://onlinelibrary.wiley.com/doi/10.1029/2004GB002239/pdf

L. Zobler, A world soil file for global climate modelling, 1986.

S. Zürcher, R. Spahni, F. Joos, M. Steinacher, and H. Fischer, Impact of an abrupt cooling event on interglacial methane emissions in northern peatlands, Biogeosciences, vol.10, issue.3, p.10, 1963.
DOI : 10.5194/bg-10-1963-2013