Filter hashtag context through an original data cleaning method

Abstract : Nowadays, social networks are one of the most used means of communication. For example, the social network Twitter has nearly 100 million active users who post about 500 million messages per day. Sharing information on this platform is unique because messages are limited in characters number. Faced with this limitation, users express themselves briefly and use sometimes a hashtag that summarizes the general idea of the message. Nevertheless, hashtags are noisy data because they do not respect any linguistic rule, may have several meanings, and their use is not under control. In this work, we tackle the problem of hashtag context which may have useful applications in several fields like information recommendation or information classification. In this paper, we propose an original data cleaning method to extract the most relevant neighbor hashtags of a hashtag. We test our method with a dataset containing hashtags related to several topics (such as sport, music, technology, etc.) in order to show the efficacy and the robustness of our approach.
Type de document :
Article dans une revue
Procedia Computer Science, Elsevier, 2018, The 9th International Conference on Ambient Systems, Networks and Technologies (ANT 2018) / The 8th International Conference on Sustainable Energy Information Technology (SEIT-2018), 130, pp.464-471. 〈10.1016/j.procs.2018.04.050〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01806156
Contributeur : Didier Henry <>
Soumis le : vendredi 1 juin 2018 - 16:38:49
Dernière modification le : mercredi 18 juillet 2018 - 20:11:28
Document(s) archivé(s) le : dimanche 2 septembre 2018 - 16:27:36

Fichier

ANT2018.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Didier Henry, Erick Stattner, Martine Collard. Filter hashtag context through an original data cleaning method. Procedia Computer Science, Elsevier, 2018, The 9th International Conference on Ambient Systems, Networks and Technologies (ANT 2018) / The 8th International Conference on Sustainable Energy Information Technology (SEIT-2018), 130, pp.464-471. 〈10.1016/j.procs.2018.04.050〉. 〈hal-01806156〉

Partager

Métriques

Consultations de la notice

54

Téléchargements de fichiers

43