Phase field modelling of strain induced crystal growth in an elastic matrix - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Chemical Physics Année : 2015

Phase field modelling of strain induced crystal growth in an elastic matrix

Résumé

When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. © 2015 AIP Publishing LLC.

Domaines

Matériaux

Dates et versions

hal-01804755 , version 1 (01-06-2018)

Identifiants

Citer

R. Laghmach, N. Candau, Laurent Chazeau, E. Munch, Thierry Biben. Phase field modelling of strain induced crystal growth in an elastic matrix. Journal of Chemical Physics, 2015, 142 (24), ⟨10.1063/1.4923226⟩. ⟨hal-01804755⟩
25 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More