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Uncertainty estimation of Intensity-Duration-Frequency relationships : a

regional analysis.

Victor Mélèsea,∗, Juliette Blancheta, Gilles Moliniéa

aUGA - IGE CS 40700 38 058 Grenoble Cedex 9, France

Abstract

We propose in this article a regional study of uncertainties in IDF curves derived from point-rainfall maxima.

We develop two generalized extreme value models based on the simple scaling assumption, first in the fre-

quentist framework and second in the Bayesian framework. Within the frequentist framework, uncertainties

are obtained i) from the Gaussian density stemming from the asymptotic normality theorem of the maximum

likelihood and ii) with a bootstrap procedure. Within the Bayesian framework, uncertainties are obtained

from the posterior densities. We confront these two frameworks on the same database covering a large region

of 100, 000 km2 in southern France with contrasted rainfall regime, in order to be able to draw conclusion

that are not specific to the data. The two frameworks are applied to 405 hourly stations with data back to

the 1980’s, accumulated in the range 3h-120h. We show that i) the Bayesian framework is more robust than

the frequentist one to the starting point of the estimation procedure, ii) the posterior and the bootstrap

densities are able to better adjust uncertainty estimation to the data than the Gaussian density, and iii) the

bootstrap density give unreasonable confidence intervals, in particular for return levels associated to large

return period. Therefore our recommendation goes towards the use of the Bayesian framework to compute

uncertainty.

1. Introduction1

Determining how often a storm of a given intensity is expected to occur requires an evaluation of its2

probability of occurrence, i.e. its return period. However extremeness of a rainfall event depends at which3

duration rainfall is considered. For this reason, Intensity-Duration-Frequency (IDF) curves are extensively4

used in water resources engineering for planning and design (Rantz, 1971; Cheng and AghaKouchak, 2014;5

Sarhadi and Soulis, 2017; Te Chow, 1988, chapter 14). They provide estimates of return levels for the conti-6

nuum of durations and return periods. However a difficulty in producing IDF curves is that return periods of7

interest for risk mitigation amount usually to several hundreds of years, whereas series at disposal are most8

of the time much shorter. Estimating the 100-year return level, for example, relies then on extrapolating9

using some statistical model. Uncertainty is inherent to this estimation because no model is perfect. This is10
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particularly true for extreme value estimation –such as the 100-year return level– because it is based on few11

data, so a subsequent variability is induced by sampling. Risk evaluation should account for this uncertainty12

to avoid over-optimistic results (Coles and Pericchi, 2003). Since current infrastructure dealing with flooding13

and precipitation (e.g. dams or dikes) are based on IDF curves, ignoring uncertainty may result in sharp14

underestimation of flood risk and failure risk of critical infrastructures.15

Few studies have explicitly examined uncertainty in IDF curves. They rely on two distinct theoretical16

frameworks making different modeling assumptions. The first one is a frequentist framework in which the IDF17

model parameters are treated as unknown real values. Estimation is usually made by moment- or likelihood-18

based methods and uncertainty is mainly obtained by a bootstrap resampling scheme to account for the19

influence of sampling on IDF estimation (Overeem et al., 2008; Hailegeorgis et al., 2013; Tung and Wong,20

2014). The second one is a Bayesian framework. It differs from the frequentist framework in that the IDF21

model parameters are treated as random variables. Its estimation allows by nature uncertainty quantification22

by providing the most likely distribution for the parameters based on the data (Huard et al., 2010; Cheng23

and AghaKouchak, 2013; Chandra et al., 2015; Van de Vyver, 2015). The influence of the chosen framework24

on IDF uncertainty estimation has, to the best of our knowledge, never been addressed in the literature.25

In this paper, we propose to confront the frequentist and Bayesian frameworks on the same database26

covering a large region with contrasted rainfall regimes, in order to be able to draw conclusion that are27

not specific to the data. The studied region covers 100, 000 km2 of the southern part of France that is28

under mediterranean climatic influence and is notably well-instrumented with 563 hourly raingages since29

the mid-80s, from which we select the 405 stations featuring at least 10 years of observations. The IDF30

relationships used in this works rely on the simple scaling assumption (Gupta and Waymire, 1990), associated31

with a Generalized Extreme Value (GEV) distribution representing the frequency of annual maximum rainfall32

intensity. This model has been validated in the frequentist case in Blanchet et al. (2016a) for the same region.33

Here we mainly extend this work by assessing uncertainty in IDF relationships, which was missing in Blanchet34

et al. (2016a). We develop in Section 2 the Bayesian and frequentist frameworks of GEV-simple scaling IDF35

relationships. We present the data in Section 3 and give evidence of simple scaling in the range 3h-120h in36

the region in Section 4. We describe the workflow of analysis in Section 5. Finally, we confront the results of37

the two frameworks, with a particular focus on uncertainty estimation in Section 6.38

2. Two frameworks of IDF relationships39

2.1. Introduction40

Return levels computation requires estimating the occurrence probability of annual maximum rainfall41

intensity, i.e. their probability density function (PDF). The founding theorem of extreme value theory (see42

Coles et al., 2001, for a full review) states that if independent and identically distributed data are blocked into43
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sequences of observations and if each block is long enough, then the PDF of block maxima is approximately44

the Generalized Extreme Value (GEV) distribution. The combination of strict sense simple scaling and GEV45

theory for annual maximum rainfall intensity leads to the family of GEV-simple scaling models (Blanchet46

et al., 2016a). In the next sections, we develop two GEV-simple scaling models, respectively in the frequentist47

and the Bayesian frameworks. The main difference between the two is that model parameters are scalars under48

the frequentist framework and random variables under the Bayesian framework. In the following, we write49

random variables with bold symbols to distinguish them from scalars.50

2.2. Frequentist framework51

2.2.1. Model52

The frequentist framework is the one considered in Blanchet et al. (2016a) in the same region and used53

in Borga et al. (2005) and Bougadis and Adamowski (2006). It relies on two assumptions. First, on the strict54

sense simple scaling assumption of Gupta and Waymire (1990) setting that55

pr(MD < x) = pr

{

(

D

Dref

)−H

MDref
< x

}

, (1)

where MD is the random variable of annual maximum rainfall intensity for a duration D, MDref
is the56

random variable of annual maximum rainfall intensity for a duration of reference Dref (Dref = 3h in the57

application of Section 6), and H is a non-negative scalar called the scaling exponent. In terms of moments,58

Eq. 1 leads to the wide sense simple scaling assumption of Gupta and Waymire (1990)59

∀q ∈ R, E(M q
D) =

(

D

Dref

)−Hq

E(M q
Dref

), (2)

which shows the advantage over (1) of being easily checked empirically on data, at least for moderate q, by60

computing the empirical moments and regressing them against the duration in log-log scale (see Section 461

for more details in our application).62

The second assumption of our model is founded by extreme value theory and asserts that annual maximum63

rainfall intensity at reference duration, MDref
, follows a Generalized Extreme Value (GEV), i.e. that64

pr(MDref
< x) = exp

[

−

(

1 + ξ
x− µDref

σDref

)−
1

ξ

]

, (3)

provided 1 + ξ
x−µDref

σDref

> 0, where µDref
, σDref

> 0, ξ are scalars, called respectively the location, scale and65

shape parameters. Case ξ = 0 corresponds to the Gumbel distribution66

pr(MDref
< x) = exp

[

− exp

(

−
x− µDref

σDref

)]

. (4)
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(3) associated with (1) implies that annual maximum rainfall intensity MD of any duration D follows a67

GEV distribution (Blanchet et al., 2016a) and that the GEV parameters at duration D and Dref are linked68

through µD =
(

D
Dref

)−H

µDref
, σD =

(

D
Dref

)−H

σDref
, while the shape parameter ξ does not depend on69

the time scale. As a consequence, the IDF relationships relating the duration D, the return period TR and70

the return level (i.e. the quantile of order 1− 1/TR of the corresponding GEV distribution) is given by71

mD,TR
=

(

D

Dref

)−H
{

µDref
−

σDref

ξ

(

1−

[

− log(1−
1

TR
)

]−ξ
)}

. (5)

2.2.2. Inference72

The set of unknown parameters to be estimated is θ = (µDref
, σDref

, ξ,H). As in Blanchet et al. (2016a), θ73

is estimated by maximizing the likelihood under the assumptions that i) annual maxima are independent from74

one year to another, and ii) annual maxima of a given year at different durations are independent. This later75

assumption is likely to be miss-specified. For instance a 4h annual maximum is likely to be correlated with76

a 3h annual maximum. However incorporating dependence among many durations complicates the modeling77

and its estimation (Davison et al., 2012; Cooley et al., 2012; Ribatet and Sedki, 2012; Davison and Huser,78

2015), with little gain, if not loss, when only the marginal distributions are of interest (Sebille et al., 2017).79

We are in this case since IDF relationships relate to quantiles of marginal distributions. Under the assumption80

of independence, the model log-likelihood is given by81

l(θ) =
∑

D∈D

n(D) log

(

D

Dref

)H

− log(σDref
)
∑

D∈D

n(D)−

ξ + 1

ξ

∑

D∈D

n
∑

i=1

log






1 + ξ

(

D
Dref

)H

mD,i − µDref

σDref






−

∑

D∈D

n
∑

i=1






1 + ξ

(

D
Dref

)H

mD,i − µDref

σDref







−
1

ξ

,

(6)

where n(D) is the number of observed years at duration D, mD,i is the annual maximum rainfall intensity82

at the duration D for year number i and D is the set of considered durations. There is no analytical form for83

the maximum of l but maximization can be obtained numerically (e.g. quasi Newton method).84

2.2.3. Uncertainty computation85

We propose two ways of computing uncertainty in the frequentist framework. The first one relies on the86

asymptotic normality of the maximum likelihood estimator, but using the correction described in Davison87

(2008) and used in Van de Vyver (2012) to account for the fact that the likelihood (6) ignores dependence88

among maxima of the same year. Let θ̃ denote the value maximizing the log likelihood function (6). It is func-89

tion of the data mD. Writing this in terms of random variables means that the maximum likelihood estimator90
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θ̂ML is function of the random variable of annual maximum rainfall intensity MD. θ̂ML is a random variable91

because it depends on the MD’s which are random, while θ̃ is a scalar ; it is a realization of θ̂ML. Being92

random, θ̂ML has a distribution. The theorem of asymptotic normality of the maximum likelihood estimator93

provides an approximation for this distribution when the number of data is large. Under the correction of94

likelihood misspecification for dependence, it states that θ̂ML can be considered as multivariate normal dis-95

tributed, with mean approximated by θ̃ and covariance matrix approximated by Σ(θ̃) = I(θ̃)−1V (θ̃)I(θ̃)−1
96

where I(θ̃) and V (θ̃) are the 4× 4 matrices97

98

I(θ) = −

n
∑

i=1

∂2li(θ)

∂θ∂θT
, V (θ) =

n
∑

i=1

∂li(θ)

∂θ

∂li(θ)

∂θT
,

evaluated in θ̃. An approximate (1− α) confidence interval for θj , any of the four model parameters, is then99

given by100

θ̃j ± zα/2
√

Σjj ,

where zα/2 is the (1−α/2) quantile of the standard normal distribution and Σjj is the jth diagonal element101

of Σ.102

Applying the delta method (Coles et al., 2001), the maximum likelihood estimator of the TR-year return103

level at duration D can be considered as normal distributed with mean approximated by g(θ̃) and variance104

approximated by τ2(θ̃), where105

τ2(θ) =
∂g(θ)

∂θT
Σ(θ̃)

∂g(θ)

∂θ
,

and g is the right-hand side function in (5). In particular, its (1− α) confidence interval is approximately106

g(θ̃)± zα/2 τ(θ̃).

The second method to obtain uncertainties is based on bootstrap resampling. It allows to account for the107

influence of sampling on IDF estimation. It consists of resampling the data with replacement to obtain new108

samples. Let’s assume that the annual maxima are stored in a matrix with one row per year and one column109

per duration. A bootstrap sample is constructed by drawing with replacement the lines of the matrix. The110

log likelihood function is maximized for each bootstrap sample, given a new estimate θ̃, which is considered111

as a possible realization of the true estimator θ̂. If R bootstrap samples are used, R realizations θ̃1, . . . , θ̃R112

are obtained. When R is large (e.g. R = 1000 in Section 6), usual density estimates (e.g. Kernel density) can113

be applied to θ̃1, . . . , θ̃R to obtained an approximate density for θ̂. An approximate density for the TR-year114

return level is obtained likewise by estimating the density of the g(θ̃1), . . . , g(θ̃R), where g is the right-hand115

side function in (5). Approximate (1−α) confidence intervals are obtained empirically as the interval bounded116

by the empirical quantiles of order α/2 and (1− α/2).117
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2.3. Bayesian framework118

2.3.1. Model and priors119

As in the frequentist framework, the Bayesian framework relies on the strict sense simple scaling hypothesis120

combined with the GEV distribution. However in this case, the model parameters θ = (µDref
,σDref

, ξ,H)121

are random variables. Thus the two above hypothesis, as all the equations derived in Section 2.2.1, still apply122

but conditionally on θ equals to some θ = (µDref
, σDref

, ξ,H). In particular, the strict sense simple scaling123

assumption of Gupta and Waymire (1990) turns into124

pr(MD < x|H = H) = pr

{

(

D

Dref

)−H

MDref
< x

}

, (7)

which leads, in terms of moments, to125

∀q ∈ R, E(M q
D|H = H) =

(

D

Dref

)−Hq

E(M q
Dref

). (8)

Likewise, conditional on θ = θ, the annual maximum rainfall intensity MD of any duration D, follows a126

GEV distribution, i.e.127

pr(MD < x|θ = θ) = exp

[

−

(

1 + ξ
x− µD

σD

)−
1

ξ

]

, (9)

where µD =
(

D
Dref

)−H

µDref
and σD =

(

D
Dref

)−H

σDref
.128

Finally, the random variable of the TR-year return level for duration D is given by129

MD,TR

a.s.
=

(

D

Dref

)−H
[

µDref
−

σDref

ξ

(

1−

[

− log(1−
1

TR
)

]−ξ
)]

, (10)

where
a.s.
= means equality almost surely.130

Since (9) is conditional on θ, full modeling of MD requires defining the density of θ, i.e. the prior density.131

Here we assume independence of the model parameters, i.e.132

f(θ) = f(µDref
)f(σDref

)f(ξ)f(H). (11)

We make this choice for the sake of simplicity but a separate analysis applied to the data of Section 3 revealed133

that actually choosing dependent or independent priors does does not affect the results.134

In (11) univariate prior densities for µDref
, σDref

, ξ and H have to be chosen. Choice of the prior density135

is crucial in Bayesian analysis and a whole field of research is devoted to this issue. Prior densities can be136

separated into two major classes, namely subjective (or informative) and objective (or uninformative) priors137

(Gelman et al., 2014; Beirlant et al., 2005, chapter 11). Subjective priors allow to bring prior knowledge to138
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the analysis, based on expert information of different degrees. Objective priors (Berger, 2006; Kass and Was-139

serman, 1996) should be used when subjective analysis is not possible. Most common objective priors include140

the uniform density, Maximum Data Information prior (Zellner, 1998) and Jeffreys prior (Kass and Wasser-141

man, 1996; Jeffreys, 1998). For what matters extreme rainfall and GEV distributions, there is no consensus142

on the choice of the priors. Coles and Tawn (1996) use expert information on extreme quantiles. Huard et al.143

(2010) and Chandra et al. (2015) use objective priors for the location (uniform) and scale (Jeffreys) but a144

weakly subjective prior for the shape (Beta). Coles and Pericchi (2003) uses objective priors for the three145

GEV parameters (Gaussian for the location and shape, log-Gaussian for the scale). For IDF relationships,146

Van de Vyver (2015) uses objective priors for the location, scale and scaling exponent (respectively Gaussian,147

log-Gaussian and uniform) and weakly subjective prior for the shape (Beta). Muller et al. (2008) also uses148

objective priors for the location, scale and scaling exponent (Gaussian for the first and log-Gaussian for the149

two latter) and weakly subjective prior for the shape (uniform).150

In this work, we aim to use a model as general as possible in order to make a fair comparison of uncertainty151

with the frequentist framework, which does not include expert knowledge, so the four chosen priors are very152

weakly informative. For the location parameter at reference duration (3h), we choose an objective uniform153

density as in Huard et al. (2010) and Chandra et al. (2015). The bounds are chosen to span the worldwide154

values of µDref
, from very arid to very humid regions, in order to use priors as little informative as possible155

for our data. In a study of more than 15,000 worldwide records, Papalexiou and Koutsoyiannis (2013) finds156

that the location parameter for annual maxima of daily rainfall ranges between 6 and 700mm/day. Since157

rainfall accumulation cannot be greater in 3h than in 24h, we can anticipate that the location parameter158

for annual maxima of 3h rainfall is worldwide no lower than 6mm/3h and no bigger that 700mm/3h, i.e.159

between 2 and 233mm/h at 3h duration. In order to be even less conservative, we set the lower and upper160

bounds of the uniform prior for µDref
to 0 and 250mm/h at 3h duration, respectively. Likewise, we use for the161

scale parameter at reference duration σDref
a uniform prior with bounds 0.1 and 150mm/h at 3h duration,162

which extends over the range of values found in Papalexiou and Koutsoyiannis (2013) (2-400mm/day). For163

the shape parameter, we use the normal density, which tends to be less informative than the Beta prior used164

in Huard et al. (2010), Chandra et al. (2015) and Van de Vyver (2015), which has bounded tails. Papalexiou165

and Koutsoyiannis (2013) shows that the distribution of the shape parameter is approximately Gaussian166

with mean 0.1 and standard deviation 0.045. Here we consider a much less informative density by using a167

Gaussian prior with mean 0.1 but standard deviation 0.5. Finally, owing to the fact that the scaling parameter168

is non-negative and lower than 1, we choose for H a uniform density between 0 and 1, as in Van de Vyver169

(2015).170
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2.3.2. Inference171

For shortness we denote M the set of annual maximum rainfall intensities, i.e. the set of MD,i, D ∈ D,172

i = 1, . . . , n. In the Bayesian framework, interest is in estimating the density of the parameters knowing the173

data, i.e. f(θ|M = m), called the posterior density. The well known Bayes formula states that174

f(θ|m) =
f(m|θ)f(θ)

∫

θ
f(m|θ)f(θ)dθ

, (12)

where the prior density f(θ) is given by (11) with the aforementioned priors and f(m|θ) is the density175

associated to the data under (9), whose log expression is assumed to be given by (6). By doing this we176

assume that the maxima at different durations are independent conditional on the parameters. In a Bayesian177

framework, Van de Vyver (2015) and Muller et al. (2008) model dependence between two durations (namely178

24h and 72h) with a logistic model, while Stephenson et al. (2016) uses max-stable processes to model179

dependence across several durations. However Sebille et al. (2017) shows by comparing different spatial180

models, including that of Stephenson et al. (2016), that when interest lies in the estimation of marginal181

quantities, such as return levels, the independence assumption is one of the most creditable one.182

In our case, as often in Bayesian analysis, there is no analytical form for the posterior density (12) due to183

the presence of an integral in the normalizing constant. This problem can be overcome by using simulation184

based techniques such as Markov chain Monte Carlo (MCMC), which provides a way of simulating from185

complex distributions, such as f(θ|m), by simulating from Markov chains which have the target distributions186

as their stationary distributions. Estimates of the posterior distribution could then be obtained from the187

simulated sample at convergence of the Markov chains. There are many MCMC techniques, among which188

the most popular are the Gibbs sampler when it is possible to simulate from the full conditional distribution,189

or Metropolis-Hastings sampling otherwise. Here simulation from the full conditional distribution is not190

straightforward so we use Metropolis sampling, i.e. Metropolis-Hastings with symmetric jumping distributions191

(or proposal distribution). In our case, it proceeds as follows :192

1. Draw a starting point θ(0) for which f(θ(0)|m) is defined and strictly superior to 0.193

2. At each step t,194

— Draw a candidate θ∗ from a symmetric jumping distribution Jt(θ
∗|θ(t−1)).195

— Derive the acceptance probability :196

a = min

{

1,
f(θ∗|m)

f(θ(t−1)|m)

}

= min

{

1,
f(m|θ∗)f(θ∗)

f(m|θ(t−1))f(θ(t−1))

}

, (13)
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— Accept or reject the candidate θ∗, i.e. set197

θ(t) =















θ∗ with probability a,

θ(t−1) otherwise.

(14)

We use a Gaussian distribution for the jumping distribution Jt(.|θ
(t−1)), with mean θ(t−1) and diagonal198

covariance matrix with standard deviation set at initialization to (0.3, 0.3, 0.025, 0.025), and then tuned199

during the first half iterations of the MCMC so that the acceptance rate of θ (i.e. the proportion of times θ∗200

is set to θ(t)) is between 30% and 50%. The resulting chain converges, after an initial burn-in period, to the201

posterior distribution. At the end of the algorithm, samples of the posterior density are obtained as θ(t), for202

t exceeding the burn-in period. We will see in Section 5 how to monitor this convergence. Estimate of the203

posterior density can be obtained by usual (e.g. Kernel) density estimate based on an independent subsample204

of these θ(t).205

3. Data206

The studied region corresponds to the southern part of France that is under Mediterranean climatic207

influence (see Fig. 1). It is limited to the south by the Mediterranean coast from Perpignan to Nice, to the208

west by the Pyrenees, to the north by the Massif Central and to the east by the southern Alps. Altitude ranges209

from 0 to more than 3000 m.a.s.l. The highest peaks are located in the the Alps and the Pyrenees while the210

Massif Central is mostly below 1500m. The mountain massifs design funnel-shaped domains that are known211

to experience severe storms generating flash-floods from various foothill rivers. Examples are provided by212

quite recent severe events causing numerous human losses and considerable damages that occurred in 1999213

on the Aude River (Gaume et al., 2004), in 2002 on the Gard River (southern edge of the Massif Central -214

Delrieu et al., 2005), in 1992 on the Ouvèze River (eastern flank of the Alps - Sénési et al., 1996) and in 2010215

on the Argens River (southern edge of the Alps - Ruin et al., 2014). Nevertheless a strong heterogeneity exists216

in terms of occurrence of such events in this area. The south-eastern edge of the Massif Central experiences217

most of the extreme storms and resulting flash-floods (Fig. 2 of Nuissier et al., 2008). The HyMeX field218

campaign (Ducrocq et al., 2013; Drobinski et al., 2014) illustrates a variety of meteorological situations219

blocking heavy rainfall systems over the region. The presence of the surrounding mountain massifs is critical220

in the positioning and stationarity of these systems (Nuissier et al., 2008).221

The instrumented area covers a surface of about 100, 000 km2, as displayed in Fig. 1. Hourly rainfall data222

are acquired by either Météo-France or Electricité de France since the mid 80’s for the oldest. 563 hourly223

raingages with more than 10 years observations are available. We restrict the data to the three months of224

September-October-November (SON) since flash floods usually occur in Autumn in this region. Starting225

from hourly data, we create new databases by aggregating hourly rainfalls at 3h, 4h, 8h, 12h, 24h, 48h,226
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Figure 1: Map of studied region with main mountains peaks (triangle), main cities (square) and raingage locations (circle).

72h, 96h and 120h using 1h-length moving windows. We do not consider maxima at duration 1h and 2h227

because these maxima are likely to underestimate the true maxima when a sampling period of 1h is used.228

This underestimation is likely to decrease with duration. Then, SON maxima are extracted for each of these229

durations. Following Blanchet et al. (2016a), a given maximum is considered as missing if its rank is smaller230

than pmiss×N where pmiss is the proportion of missing values for that season and duration, and N is the231

number of maxima for the considered duration. This allows us to consider maxima of very incomplete year232

(large pmiss), provided these maxima are large compared to the other maxima (i.e. their ranks are large).233

Finally a given SON season is considered as completely missing if at least four of the nine durations are234

missing and the whole station is considered as missing (i.e. excluded from the analysis) if less than 10 SON235

maxima are observed. Doing so, we end up with a set of 405 stations (see Fig. 1).236

4. Evidence of simple scaling237

We first give empirical evidence of simple scaling of rainfall in our region. It is not possible to check the238

strict sense simple scaling assumptions (1) and (7) directly on the data because they depend on H which239

is unknown. However, it is possible to check their counterpart versions (2) and (8) for the moments, which240

state in both frameworks that241

— wide sense scaling hypothesis : the logarithm of moment of order q of annual maximum rainfall intensity242

is a linear function of the logarithm of duration,243

— wide sense simple scaling hypothesis : the slope of the above linear functions is an affine function of q244

(i.e. of the form Hq).245

We check wide sense scaling hypothesis for q = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 by computing, for each246

station, the empirical moment of order q of the maxima at each duration, and regressing the logarithm of247
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Figure 2: Boxplots of the correlation coefficients, R2, of the empirical moments of order q = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 of
maximum rainfall intensity versus duration in log-log scale. The blue horizontal line show the theoretical value under the wide
sense scaling hypothesis.

these values with respect to the log duration. We show in Figure 2 the boxplots of the correlation coefficients,248

R2, of these regressions for the 406 stations. We see that all R2 are all close to one, as should be under249

the simple-scaling hypothesis. However, this gives only rough evidence of scaling because R2 are computed250

over all durations from 3h to 120h, so it is not possible to assess whether specific durations tend to depart251

from the regressing lines, which would mean that the simple scaling hypothesis applies only on part of the252

considered durations. To check this, we consider the case q = 1 and compute the slope between averages of253

successive durations, i.e. between ed and ed+1, where ed is the average of maximum rainfall intensity at the254

dth smallest duration, for a given station. Let call sd this slope, d = 1, . . . , 8. Any ratio sd/sd′ should be one255

under the wide sense scaling hypothesis. We show in Fig. 3 the boxplots of the ratio sd/sd+1, d = 1, . . . , 7,256

for the 406 stations. We see that 95% of the ratio lie between 0.6 and 1.4, which can be considered as close257

to one given that each slope is computed on two points only. More importantly maybe, we do not see any258

break point in the 95% envelopes as d increases, so the wide sense scaling hypothesis seems to apply equally259

to all durations between 3h and 120h.260

To check the wide sense simple scaling assumption, we consider the slopes of Fig. 2 for q = 0.25, 0.5, 0.75, 1,261

1.25, 1.5, 1.75, 2, divide them by q, and denote ck, k = 1, . . . , 7, these values. If the simple scaling holds, each262

ck should equal H. Fig. 4 shows the ratio ck/ck+1, for k = 1, . . . , 7. We see that 95% of ratios lie between263

1.011 and 0.988, with no value lower than 0.984 and larger than 1.021. This gives good evidence of wide sense264

simple scaling in the region.265
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5. Workflow266

5.1. Frequentist framework267

The GEV simple scaling model in the frequentist framework (Section 2.2.1) is estimated at each sta-268

tion by maximizing the likelihood (6). Optimization is based on the gradient projection method of Byrd269

et al. (1995) allowing box constraints for the variables. Constraints are set on the scale parameter, which270

is restricted to strictly positive values, the shape parameter, which is restricted in the range (−0.75, 0.75)271

and the scaling parameter H, which is constrained in the range (0, 1). Optimization is initialized by θ1 =272

(µDref,1
, σDref,1

, ξ1, H1), which can be considered as a smart initialization in that it is built from that data of273

each station : ξ1 is set to 0, corresponding to a Gumbel distribution. µDref,1
and σDref,1

are estimated using274

the method of moments under the Gumbel assumption. Following (2) with q = 1, H1 is set to the opposite275

of the regression slope of the log average maxima on the log duration (i.e. case q = 1 in Fig. 2). Starting276

from θ1, the gradient projection algorithm stops in θ̃, the maximum likelihood estimate, if it is unable to277

reduce the log likelihood (6) by a factor of 10−8 × |l(θ̃)|. Density estimates of the associated random variable278

are obtained i) from the theorem of asymptotic normality of the maximum likelihood estimator, and ii) by279

bootstrap resampling technique using 1000 bootstrap samples. Return level estimates and associated densities280

are derived from these estimations as detailed in Section 2.2.3.281

5.2. Bayesian framework282

The same starting points θ1 is used to initialize Metropolis-Hastings algorithm in the Bayesian framework283

(Section 2.3.2). Convergence of the MCMC is monitored using the R̂ convergence criteria of Gelman et al.284

(2014) chapter 6, based on five runs of the Metropolis-Hastings algorithm. Convergence is considered to be285

reached if R̂ < 1.06, which is obtained after 20, 000 iterations. The burn-in period is set to the first half286

iterations and every 10th iteration of the remaining 10,000 iterations is considered for the estimation of the287

posterior density, in order to reduce dependence within the sample. So, the posterior density estimation is288

based on 1000 samples. Posterior density estimates of return levels are obtained from (10), using these 1000289

samples. To summarize any posterior density with one single value and, in particular, compare estimations290

with the frequentist framework, we decide to consider the posterior mean, i.e. the mean of the posterior291

density. Another common choice is to consider the mode of the posterior density (maximum a posteriori) but292

this is slightly less stable than the posterior mean.293

6. Results and discussion294

6.1. IDF curves295

Although this is not the main focus of this study, we present below some results on IDF relationships296

because they are valuable from a climatological point of view by documenting the main hydrological processes297
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Figure 5: Scatter plot of the Bayesian (posterior mean) and frequentist (maximum likelihood), for µDref
, σDref

, ξ, H and for
the 2- and 50-year return levels at 3h and 72h durations.

leading to extreme rainfall in the region.298

6.1.1. Estimation and goodness-of-fit299

Fig. 5 compares the Bayesian (posterior mean) and frequentist (maximum likelihood) estimates. It shows300

that the framework has very little impact on these estimation with the chosen initialization. A separate301

analysis (not shown) revealed that actually the Bayesian framework is very little sensitive to initialization,302

whereas the frequentist framework requires a quite reasonable initialization. In order to assess goodness-of-fit303

of the estimated IDF curves, we consider two goodness-of-fit criteria proposed by Blanchet et al. (2016a) :304

the relative Root Mean Square Error (rRMSE) and the relative bias (rBIAS), respectively given by305

rRMSEi(D) =







ni(D)
∑

TR

[

mi,D,TR
−mi,D,TR

∧

∑

T ′

R
mi,D,T ′

R

]2






1/2

, (15)

and,306

rBIASi(D) =
∑

TR

[

mi,D,TR
−mi,D,TR

∧

∑

T ′

R
mi,D,T ′

R

]

, (16)

where mi,D,TR
is the empirical TR-year return level for duration D and station i and m̂i,D,TR

is its estimation.307

The closer rBIAS and rRMSE to zero, the better the fit. We find that, under both frameworks, the absolute308

value of rBIAS is no bigger than 12% for 95% of the stations and rRMSE is no bigger that 26% for 95% of309

the data. This is of the same order as the values found in Blanchet et al. (2016a) on part of the region but310

using daily data on a much longer observation period (about 60 years).311
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6.1.2. Spatial variability of return level across durations312

Fig. 6 displays the posterior mean estimations of the 2- and 50-year return levels at 3h and 72h durations.313

Fig. 6 shows that the 2- and 50-year return levels behave differently as the duration increases from 3h to314

72h. Considering the 2-year return level, the largest values at 3h duration are found in the foothill around315

the town of Alès and along the overhanging Massif Central crest. Increasing the duration to 72h, the largest316

values are still found along the crest but, comparatively, the 2-year return level fade in the foothill.317

Rainfall events featuring a 2-year return period are quite common as by definition they tend to occur318

regularly in one’s life (every two years on average). Molinié et al. (2012) characterize the rainfall regimes in319

the Massif Central region. They show that the largest rainfalls at hourly duration usually occur both over the320

foothill and over the Massif Central crest. The rainfall characteristics are those of convective storms in terms321

of intermittency, diurnal cycle and spatial pattern. Increasing the duration to 72h, one may hypothesize that322

there is no stationary forcing of rainfall over the foothill, while the mountain crest or slope may continue to323

trigger rainfall if humidity remains sufficient. Molinié et al. (2012) shows that the spatial pattern of rainfall324

at daily duration over the mountain is similar to those of cellular storms.325

Focussing on the 50-years return level, the largest values at 3h duration are found only in the foothill,326

while they extend over the mountain range at 72h duration. The persistence of large rainfall over the foothill327

during several hours requires an exceptional forcing in agreement with the exceptional characteristics of the328

50-year return level event, which occur seldom in one’s life (in average every 50 years). Example of such329

forcing is the cold pool thermal forcing described in Ducrocq et al. (2008). Other configurations producing330

severe and long lasting rainfall events have been observed during the HyMeX field campaign (Ducrocq et al.,331

2013; Drobinski et al., 2014). For example Bousquet et al. (2013) describes a mesoscale convective system332

impinging the Massif Central range from the west and producing a bow of heavy rainfall cells over the foothill.333

A different kind of precipitating system yielding large rainfall during periods of tens of hours over the Massif334

central crest is stationary shallow convective system (Miniscloux et al., 2001; Anquetin et al., 2003). This335

shallow convection may be combined with deep convection during several hours. Godart et al. (2011) shows336

that 40% of the largest daily rainfalls over the Massif central crest are produced by such systems.337

6.1.3. Temporal variability of extreme rainfall338

Eqs. (5) or (10) show that the TR-year return levels at duration D is nothing else than the TR-year339

return level at the reference duration Dref multiplied by (D/D′)−H , for any D, D′ and TR. Note that the340

multiplying factor is independent on TR, so it applies equally to any quantile. Case H = 0 corresponds to341

uniform rainfall with equal intensity whatever the duration. Case H = 1 corresponds to rainfall tending342

to concentrate in Dref hours. Cases 0 < H < 1 correspond to intermediate cases between uniform and343

concentrated rainfall. The closer H to one, the more rainfall tends to concentrate in few hours. So H informs344

on the temporal variability of extreme rainfall. Fig. 7 displays the posterior mean estimations of H in the345
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Figure 6: Posterior mean estimation of the 2- and 50-year return levels (mm/h) at 3h and 72h durations.
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Figure 7: Posterior mean estimation of the scaling parameter H (no units).

region. The largest H are found along the Mediterranean coast between Perpignan and Marseille and along346

the Rhône valley (0.7 − 0.85). The lowest values are found along the Massif Central crest and in the south347

eastern Alps (H around 0.5). Thus two different extreme rainfall regimes are identified : i) mainly short and348

intense rainfall events along the Mediterranean shore and in the wide plain of the Rhône valley, which are349

likely to be controlled by deep convection, and ii) mainly long and regular rainfall events along the Massif350

Central crest and slope, which force stationary shallow or deep convection.351

6.2. IDF uncertainty352

6.2.1. The example of Montpellier353

Before comparing the density estimates obtained with the different frameworks over the whole region, we354

start illustrating results on the station of Montpellier. This station is chosen because i) it shows among the355

largest values of 3h-rainfall intensity (84 mm/h at 3h duration, in autumn 2014), ii) Montpellier is a good356

illustration of the temporal variability of extreme rainfall : the median value of annual maximum 3h-rainfall357

intensity (15mm/h at 3h duration) is 50% bigger than the median value over the region (10mm/h at 3h358

duration), whereas at 72h duration it equals the regional median (1.25 mm/h at 72h duration), and iii) its359

population is among the biggest in the region (more than 250, 000 inhabitants in 2010), which make it a360

sensible case of risk analysis. Fig. 8 compares the density estimates of the parameters and 50-year return361

levels at 3h and 72h durations. In the frequentist framework, densities are obtained with either the theorem362

of asymptotic normality -in which case densities are Gaussian-, or the bootstrap resampling method. For363

the Bayesian framework, the posterior density is depicted. Fig. 8 illustrates that the posterior and bootstrap364

densities are able to better adjust to the data by being able to produce asymmetric densities with several365

modes. The posterior density of H departs particularly from the bell-like shape of a Gaussian with a flattened366
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Figure 8: Density estimates of the model parameters and the 50-year return levels at 3h and 72h durations, for Montpellier
station. Frequentist densities are obtained with the theorem of asymptotic normality (green) and the bootstrap resampling
method (red). Bayesian densities are the posterior densities (blue).

peak between 0.83 and 0.87, which cannot be seen by application of the asymptotic normality theorem. The367

bootstrap method, on the opposite, produces similar density of H to the posterior density. Some asymmetry368

with respect to the mode is also found for ξ in the posterior density and even more in the bootstrap density.369

This produces asymmetry in return levels with a heavier right tails for the bootstrap and posterior densities370

than for the Gaussian density, whereas the left tails of the posterior and Gaussian densities are similar.371

Therefore the bootstrap and Bayesian methods are able to tell there is a greater likelihood for the 50-year372

return level to be over than under the estimated value, which is not possible when considering symmetric373

Gaussian densities.374

The return level plot of Fig. 9 illustrates this asymmetry in the uncertainty of return levels for the375

bootstrap and posterior densities, particularly for large return periods. Whatever the return period, the376

{lower bound of the posterior and Gaussian confidence intervals are equal, whereas the upper bound differs377

significantly. We can thus postulate that, by imposing symmetry, the asymptotic normality theorem tends to378

underestimate the upper bound of the confidence interval. The bootstrap method allows asymmetry, however379

it gives much wider confidence intervals than the two other methods, even for the lower bound. Comparing380

the bootstrap and posterior densities in Fig. 8 shows that difference in the width of the confidence intervals381

is mainly due to differences in the scale σDref
and shape ξ parameters.382
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frequentist (green) and Bayesian (blue) framework. The dotted lines are the 95% confidence intervals associated to the Gaussian
(green), bootstrap (red) and posterior (blue) densities.

6.2.2. Regional study383

The example of Montpellier showed asymmetry of the bootstrap and posterior densities, which is a good384

sign that these methods allow to better adjust uncertainty estimation to the data. To document this feature385

at the region scale, we compute the skewness s of the estimated densities at each station. If s = 0, the density386

is symmetric (as in the Gaussian case). If s > 0 the density is asymmetric and the right tail is heavier than387

the left tail. If s < 0, it is the opposite. The further s from zero, the greater the asymmetry. Fig. 10 shows the388

skewness of the bootstrap and Bayesian densities. For sake of readability, we represent the Kernel densities of389

the skewness and restrict the x-axis to comprise 95% of the values. For the GEV parameters, most skewness390

of the posterior densities are positive, meaning heavier right tails. This also applies for the bootstrap densities391

but to a lesser extent for ξ. For the scaling parameter, both left and right heavy tails are found with both392

methods. For the return levels, mainly positive skewness are found, corroborating what was found for the393

station of Montpellier in Section 6.2.1. For the great majority of the stations, there is a greater likelihood394

for the 50-year return level to be over than under its estimated value. This piece of information is of great395

importance for risk management and is missing when considering symmetric Gaussian densities according396

to the asymptotic normality theorem. Bootstrap skewness of all variables often largely exceed the Bayesian397

values. We can postulate that the bootstrap method tends to give too heavy right-tailed densities and are398

not recommended for the computation of uncertainty. The main reason is that the number of observed years399
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Figure 10: Skewness of the bootstrap (red) and posterior densities (blue) of the model parameters and the 50-year return levels
at 3h and 72h durations. The black vertical line at 0 corresponds to symmetric density, as the Gaussian density.

per station is too small (20 years on average), while bootstrapping requires long series. To illustrate this, we400

compare in Fig. 11 the normalized range of 95% confidence interval of 50-year return level at 3h duration in401

the Bayesian and bootstrap cases. The normalized range is obtained by dividing the 95% confidence interval402

by either the maximum likelihood estimate (in the bootstrap case) or the posterior mean (in the Bayesian403

case). Fig. 11 illustrates that bootstrap uncertainty estimation is much more sensitive to the number of data404

than the Bayesian estimation, confirming that bootstrapping requires long series to work well, while the405

Bayesian estimation is much more robust. On the opposite there is no way of knowing whether the Bayesian406

confidence bands are too narrow but checking the return level plots of a large number of stations revealed407

that very few empirical estimates lie outside the 95% Bayesian confidence bands, which seems to confirm408

that Bayesian uncertainty estimation is reasonable.409

We conclude this analysis by comparing uncertainty in 50-year return levels obtained from the Gaussian410

and posterior densities. We discard the bootstrap densities, which are often not reasonable. Fig. 12 compares411

the lower and upper bounds of the 95% confidence interval of the Gaussian and posterior densities at 3h412

duration. It shows that the lower bounds are usually similar in both cases whereas the upper bounds of the413

posterior density are always greater. This corroborates the results found for the station of Montpellier in414

Section 6.2.1 : the Bayesian framework allows to obtain asymmetric confidence bands extending further to415

large values. We conclude from Fig. 12 that the Gaussian density tends to underestimate uncertainty across416

the whole region.417
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7. Conclusion418

We conducted in this paper a regional study on the impact of using either a frequentist or Bayesian419

framework in the estimation of Intensity-Duration-Frequency relationships and subsequent uncertainty. Our420

analysis was applied to a large database covering a large Mediterranean region with contrasted rainfall421

regimes. It was shown that estimation is not very sensitive to the choice of framework if the starting point is422

chosen with care. Uncertainty estimation, however, depends on both framework and estimation method. It was423

shown that the posterior density (in the Bayesian framework) and the bootstrap density (in the frequentist424

framework) are able to better adjust uncertainty estimation to the data than the Gaussian density stemming425

for the asymptotic normality theorem (in the frequentist framework). They are in particular able to produce426

multi-modal asymmetric densities. However the bootstrap density tends to give unreasonable confidence427

intervals, in particular for return levels associated to large return period. The main reason is that the number428

of observed years per station is too small (20 years on average), while bootstrapping requires long series to429

work well. On the opposite there is no way of knowing whether the Bayesian confidence bands are too narrow430

but checking the return level plots of a large number of stations revealed that very few empirical estimates lie431

outside the 95% Bayesian confidence bands, which seems to confirm that Bayesian uncertainty estimation is432

pretty reasonable. By imposing symmetric confidence intervals, the Gaussian density tends to underestimate433

to upper bounds of the confidence intervals, which is an issue for risk management. The lack of objectivity of434

the Bayesian framework is the principal argument of those who rejects this framework (Efron, 2005), but this435

criticism does not apply to this work, which was conducted using very weakly subjective priors. Therefore our436

recommendation goes towards the use of the Bayesian framework to compute uncertainty because i) it better437

adjusts uncertainty computation to the data, and ii) it gives reasonable estimates of uncertainty. Our analysis438

further highlighted that uncertainty estimation is particularly important in IDF estimation in order to avoid439

over-optimistic results. For instance, in our case study, there is on average 95% chance for the 50-year return440

level to be between -20% and +30% of its estimation. Since current infrastructure dealing with flooding and441

precipitation (e.g. dams or dikes) are based on IDF curves, ignoring this uncertainty would result in large442

underestimation of flood risk and failure risk of critical infrastructures.443

Although the Bayesian framework revealed to give reasonable estimates of IDF relationships and related444

uncertainties, estimation could be improved in two ways. First, relaxing the hypothesis of independence bet-445

ween durations assumed in this study. Although this hypothesis does not impact the estimation of IDF curves,446

it may have some impact on their uncertainty. However taking into account dependence between durations447

is not straightforward. Extreme value theory insures that dependence modelling between the continuum of448

durations should rely on max-stable processes, which are difficult to estimate in the frequentist framework449

(Davison et al., 2012), and even more in a Bayesian framework (Ribatet et al., 2012). To the best of our450

knowledge, max-stable processes have never been used in IDF estimation. This may be the subject of future451

work. Second improvement regards the consideration of nonstationarity of IDF curves in a context of global452
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warming, for example by considering time-varying IDF relationships as in Cheng and AghaKouchak (2014)453

or Sarhadi and Soulis (2017), or, even better maybe, by considering covariations in temperature or other454

climate-related variable. A stationary assumption in a framework of nonstationarities may lead to underesti-455

mation of extreme precipitation, and therefore underestimation of flood risk or failure risk in infrastructure456

systems (Cheng and AghaKouchak, 2014; Sarhadi and Soulis, 2017). However nonstationarity in extreme457

precipitation seems not to be obvious for the studied region at daily time step (Blanchet et al., 2016b).458

Furthermore accounting for nonstationarity at subdaily scales would require much longer time series than459

those available so far for the region, which are most of the time less than 20-years long.460
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