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Abstract. In this paper, we are interested in learning specific proba-
bilistic relational models, named Directed Acyclic Probabilistic Entity
Relationship (DAPER) models, from partially structured databases. Al-
gorithms for such a learning task already exist for structured data com-
ing from a relational database. They have been also extended to partially
structured data stored in a graph database where the Entity Relation-
ship (ER) schema is first identified from data, and then the DAPER
dependency structure is learnt for this specific ER schema. We propose
in this work a joint learning from partially structured graph databases
where we want to learn at the same time the ER schema and the proba-
bilistic dependencies. The Markov Logic Network (MLN) formalism is an
efficient solution for this task. We show with an illustrative example that
MLN structure learning can effectively learn both parts of the DAPER
model in one single task, with a comparative precision, but with a very
high complexity.

Keywords: Probabilistic Relational Model, Directed Acyclic Probabilistic En-
tity Relationship Model, Markov Logic Network, Graph Database, Partially
Structured Data, Structure Learning.

1 Introduction

Statistical Relational Learning (SRL) [1, 2] combines the descriptive power of
relational modeling with the flexibility of statistical learning to develop models
and learning algorithms capable of representing complex relationships among
entities in uncertain domains. Several models emerged, with Probabilistic Rela-
tional Models such as Direct Acyclic Probabilistic Entity Relationship models
(DAPER) [3] or Relational Bayesian Networks (RBN) [4, 5], but also frameworks
such as Markov Logic Networks (MLN) [6], ProbLog [7] or Bayesian Logic Pro-
grams (BLP) [8] where the relational information is described using First-Order
Logic.
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In this paper, we are interested in learning DAPER models from partially
structured databases. Algorithms for such a learning task already exist for struc-
tured data coming from a relational database [9–14]. It has been also extended
to partially structured data stored in a graph database [15] where the Entity
Relationship (ER) schema is first identified from data, and then the DAPER
dependency structure is learnt for this specific ER schema.

We propose in this work a joint learning from partially structured graph
databases, where we want to learn at the same time the ER schema and the
probabilistic dependencies. The MLN formalism is an efficient solution for this
task. The ER schema and the set of probabilistic dependencies of the models are
described in the same logical way, and dedicated structure learning algorithm
could be able to retrieve both information at the same time. The logical formulas
used by MLN formalism can also manage exceptions, i.e. data which are not
coherent with an underlying structured model, as we have to deal with when
working with partially structured data.

This paper is organized as follows. Section 2 is dedicated to define the DAPER
model and the MLN formalism. Section 3 describes how a DAPER can be ex-
pressed with Markov Logical framework. In Section 4, we describe our proposed
method. A detailed illustrative example is presented in Section 5. Some conclu-
sions and future works are drawn in Section 6.

2 Background

Direct Acyclic Probabilistic Entity Relationship models (DAPER) [3] and Markov
Logic Networks (MLN) [6] are Probabilistic Relational Models that can be learnt
from uncertain and relational information. We briefly present both models in the
section before describing how they can be related in the next section.

2.1 DAPER model

A DAPER [3] is a probabilistic extension of Bayesian network [16] based on the
representation of Entity-Relationship (ER) model defined by [17]. DAPER model
is composed by a set of entity classes E , relationship classes R and attribute
classesA(X) (withX ∈ (E ∪ R)) where all attributesA(X) are random variables
that can depend on each other. Generally, the probabilistic dependency structure
is graphically defined by a set of parents pa(X.A) for each attribute object X.A,
associated to a local distribution corresponding to this set of variables. In [18],
these local distributions are defined for each attribute X.A ∈ A (E ∪ R) by the
conditional probability distribution denoted P (X.A|pa(X.A)). Figure 1 shows an
example of a DAPER model for the university domain where a student’s grade
for one course depends both on the student’s intelligence and on the difficulty
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Fig. 1. Example of a DAPER model (inspired from [5]).

of the course. In Figure 1, the probabilistic dependencies between attributes are
represented by red solid arcs.

Parents pa(X.A) of a given attribute can be defined by using paths (also
named slot chains) in the ER model [9, 5] or more general constraints [3]. For-
mally, a slot chain is a set of slots ρ1, ρ2, ..., ρn where ρ is a (inverse) reference slot
which relates objects of a classX ∈ (E ∪ R) to objects of a class Y . takes.student
is the student associated to the corresponding registration. student.student−1 is
an inverse reference slot corresponding to all the registrations of a given student.
As an example of slot chain, student.student−1.course will correspond to all the
courses taken by a particular student.

Another important concept in DAPER is the notion of aggregator that
comes into play when there is dependency between the objects that have one-
to-many or many-to-many relations. In Figure 1, student.ranking depends on
student.student−1.grade. As a student can take more than one course,
student.ranking will depend on grades of more than one takes object and this
number will not be the same for all students. So, in order to get a summary of
such dependencies, aggregators (such as MODE or MIN) are introduced.

The structure learning task for DAPER models aims at identifying the prob-
abilistic dependencies between attributes (and the corresponding conditional
probability distributions) given an ER model and its instantiation. DAPER mod-
els are used to be learnt from relational database for which the Entity Relation-
ship (ER) schema is already defined and the data are well structured. Thus, all
existing structure learning approaches are based on this ER schema for learning
the set of probabilistic dependencies from structured data [9], [10], [11, 12] and
[13, 14]. [15] proposed to learn both the ER schema and the set of probabilistic
dependencies from partially structured databases where the ER schema is not
a priori defined. In this paper, we aim to learn both ER schema and the graph
dependencies at the same time from partially structured data.
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2.2 Markov Logic Networks

When DAPER can be seen as relational extensions of Bayesian networks, Markov
Logic Networks (MLN) [19, 6] are probabilistic relational models that generalize
both full first-order logic and Markov networks. Formally, a Markov Logic Net-
work is defined as a set of pairs (Fi, ϕi), where Fi is a formula in first-order logic
and ϕi is a weight associated with this formula.

As an example, let us consider a university domain with four predicates
Smart(x), Easy(y), Take(x, y) andGrade(x, y, val). Equation 1 shows a possible
(and very simple) MLN composed of one formula for this domain.

F : ∀x, y Grade(x, y, val) =⇒ Smart(x) ∧ Easy(y) ∧ Take(x, y) (1)

Some algorithms have been proposed for MLN structure learning, i.e. identifying
the set of formulas, or more usually their clausal form, and the corresponding
weights, from data [19–21].

3 Expressing a DAPER in Markov Logic

Based on [22], we describe in this section how to define a DAPER in the Markov
Logic framework. We first define predicatesE , the set of predicates correspond-
ing to the set of entity classes E of the ER schema, where each entity class E
will correspond to a predicateE(object) describing if this object belongs to this
class. In the same way, we define predicatesR, the set of binary predicates cor-
responding to the set of R in the ER schema, where each relationship class R
corresponds to a predicateR(object1, object2). We finally define predicates_A
which are divided into two classes predicates_A(E) and predicates_A(R). Each
predicateA(object, value) corresponds to an attribute class A ∈ A(E) where the
first argument is the entity class to which this attribute is associated and the
second one is a value for this attribute. Each predicateA(object1, object2, value)
corresponds to an attribute class A ∈ A(R) with the first two arguments are the
entities involved in the corresponding relationship class.

In the MLN formalism, we also have to declare that a separate weight must
be learned for each formula obtained by grounding that variable to one of its
values. Finally, some prior knowledge can be added. For instance, in our case,
each object belongs to a unique class.

Let us illustrate these steps by considering the DAPER described in Figure 1.
The corresponding MLN will contain the knowledge base described in Table 1
which defines the set of predicates and the prior knowledge.

After defining all these concepts, we can now define the ER schema as a set
of clauses FER, one for each relationship, fER : predicateR ⇒ predicateE1 ∧
predicateE2 when the relationship R is defined for entities E1× E2. With per-
fectly structured data, these formulas are certain.
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Predicates ER Predicates Attributes Prior knowledge
student(s) s_intelligence(s,ival!) student(x) ⇔ !course(x)
course(c) s_ranking(s,rval!) student(x) ⇔ !professor(x)
professor(p) c_difficulty(c,dval!) course(x) ⇔! professor(x)
takes(s,c) p_teaching_ability(p,taval!)
gives(p,c) t_grade(s,c,gval!)

Table 1. Knowledge base corresponding to the DAPER described in Figure 1.

Equation 2 shows us the exact formulas corresponding to the ER schema
defined in Figure 1.

takes(s, c)⇒ student(s) ∧ course(c)
gives(p, c)⇒ professor(p) ∧ course(c) (2)

We can finally describe the probabilistic dependencies of the DAPER with
a set of formulas FPD. Each formula is defined with one head which is related
to one predicate attribute (and a specific value) and whose body involves the
values of the parents of this attribute (as defined in the DAPER dependency
structure) and the logical description of the slot chain between this attribute
and its parents. For instance, in the DAPER described in Figure 1, parents
of takes.grade are takes.student.intelligence and takes.course.difficulty. The
logical description of this dependency involves 12 formulas (as the total number
of values in the conditional probability distribution) with the pattern described
in equation 3.

takes_grade(x, y, valG)⇒ student(x) ∧ s_intellligence(x, valI)
∧ course(y) ∧ c_difficulty(y, valD) (3)

4 DAPER joint learning using MLN framework

We propose in this work a joint DAPER learning from partially structured graph
databases, where we want to learn at the same time the ER schema and the prob-
abilistic dependencies by using Markov Logic Network formalism. As described
in Section 3, both parts of the model (ER schema and probabilistic dependen-
cies) can be described in the same logical way in Markov logic framework. MLN
structure learning algorithm could then be able to retrieve simultaneously both
information.
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4.1 DAPER joint learning

In order to learn a DAPER from partially structure data, we propose to learn
first an MLN from the same database, and then to extract (1) the ER schema
and (2) the set of probabilistic by extracting the associated formulas in the MLN.

Identification of the ER schema. The first format of formulas we are
looking for is the set of formulas FER that describe the ER schema, as described
in Section 3, fER : predicateR ⇒ predicateE1∧predicateE2, or in a clausal form
¬R ∨ E1 ∨ E2.

As we are dealing with partially structured data, several formulas can be
extracted for the same relationship. We propose to consider only the strongest
fER in term of weight (in normalized absolute value) as the relevant relationship.
We then apply a user-defined threshold λer ∈ [0, 1] to identify our ER schema.

Identification of the probabilistic dependencies. The second format of
clauses we are looking for is the set of formulas FPD that correspond to the prob-
abilistic dependencies. fPD: predicateY ⇒K1.predicateX1 ∧,...,∧Kn.predicateXn.
As mentioned in the Equation 3, a probabilistic dependency between one ran-
dom variable and its parents can generate several logical formulas, one for each
possible configuration of the variables. We then propose to extract such a depen-
dency only when the average of the normalized absolute values of the weights
avgϕ of the corresponding compatible fPD is greater than another user-defined
threshold λpd ∈ [0, 1].

As the formulas are described in their clausal form, it’s not always possible
to identify the direction of the dependency, as defined in DAPER framework,
nor the possible aggregation function. Only the slot chains between variables
can be retrieved from the formulas. We then summarize our dependency graph
with an undirected graph where the nodes are the attributes, the edges are the
probabilistic dependencies discovered, labelled with their associated slot chains.

4.2 Evaluation process

Several metrics have been proposed to evaluate DAPER structure learning al-
gorithms. Concerning the ER schema, as described in [15], we use a Hamming
distance (RSHD_ER) between the graphs describing the original ER schema and
the learnt one in order to evaluate the quality of this step. The task concerning
the probabilistic dependencies is more complex. We cannot use directly exist-
ing metrics described for instance in [23, 14] to compare the original probabilistic
directed model and the undirected one obtained in the Section 4.1. Thus, we pro-
pose to use a weighted Hamming distance between the undirected counterpart
of the original model and the one created from the logic formulas of the MLN
(RSHD_PD). [14] proposed a same idea for directed models, with a weight for
a given edge defined as the similarity between the slot chains associated to this
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Fig. 2. Undirected dependency structure (a) of the theoretical DAPER, (b,c,d,e) ex-
tracted from the MLN with various thresholds λpd and (f) from the concurrent solution
proposed in [15], with RSHD_PD between these models and (a). Information in solid
lines correspond to true discovered edges compared with model (a). Information in
dashed lines and double dash-dot lines correspond respectively to additional and miss-
ing edges.

edge in both models. This computation does not take into account the starting
class of the slot chain, which leads to overestimating the error when comparing
an empty slot chain to a non empty one. We propose here to simply add this
starting class in the similarity computation in order to solve this problem.

5 Illustrative example

In this section, we introduce an illustrative example detailing all the steps of our
approach.

5.1 Experimental protocol

We have used the sampling process defined by [24] to first generate a theoretical
DAPER with 2 entity classes and 1 relationship class, 8 attributes (2 or 3 per
class) and 7 probabilistic dependencies with slot chain length between 0 and 2)
and then to sample a relational database instance from this DAPER, with 3000
instances.

As performed in [15], this relational database is transformed into a graph
databases. Some "exceptions" (with respect to the relational schema) have been
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added by transforming some existing relationship signatures by another ones not
conform with the underlying ER model. The final graph database is finally con-
taining partially structured data where we control the percentage of exceptions
(30% in the following experiments). This partially structured graph database is
also converted into a knowledge database with 7681 ground predicates.

We used two different approaches to learn our DAPER model. The first one
consists in using an MLN learning algorithm from the given knowledge base
(Beam search from Alchemy software1, with the following parameters: Maxi-
mum predicates per clause = 6, Penalization of weighted pseudo-likelihood =
0.1) and then extract the ER schema and the undirected dependency structure
as described in Section 4.1. The second approach consists in using the method
proposed by [15] where the ER schema and the dependency structure are learnt
separately from the graph database, with an identification threshold λ = .5 for
ER identification and a maximum possible slot chain length kmax = 2 for the
dependency structure identification. Experiments have been carried out on a ded-
icated PC with Intel(R) Core(TM)i7-4600M CPU 2.7GHz, 64 bits architecture,
8 Gb RAM memory and under Windows 7.

5.2 Results and evaluation

Once the MLN is learnt from the previous database, we automatically extract
the following formulas.

ϕ = 4.707 : relationshipclass0⇒ entityclass2 ∧ entityclass1 (4)

ϕ = 0.334 : relationshipclass0⇒ entityclass1 ∧ entityclass2

The first formula with the higher weight corresponds to the original ER
schema, when the one with the lower weight corresponds to the exceptions
present in our partially structured database. When applying a threshold λer =

0.5 to extract the ER schema from the formulas, we are able to perfectly identify
it, so RSHD_ER=0 in this experiment. We also extract 66 clauses FPD corre-
sponding to probabilistic dependencies that are converted into an undirected
structure.

Figure 2(a) provides the undirected dependency structure of the theoretical
DAPER. Figure 2(b) to (d) respectively provide the structure derived from the
MLN formulas with a threshold λpd = 0, 0.10, 0.15 and 0.20. As we can see the
solution we propose here is able to perfectly retrieve the underlying ER schema
and to identify the dependency structure with an increasing quality when λpd
increases and an optimal RSHD_PD=2.83.

The result of the concurrent algorithm is described in Figure 2(f). It also per-
fectly retrieves the underlying ER schema and identifies the dependency struc-
ture with RSHD_PD=3.33. Also, we have compared both approaches in term
1 https://alchemy.cs.washington.edu/
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of running time. We have spent more than 10 hours by using our MLN learning
based algorithm, but only 2 minutes from the initial concurrent method.

6 Conclusion and future works

In this paper, we were interested in learning Directed Acyclic Probabilistic En-
tity Relationship (DAPER) models, from partially structured databases. We
proposed here a joint learning from partially structured graph databases, where
we simultaneously learn the ER schema and the probabilistic dependencies. The
Markov Logic Network formalism appeared as an efficient solution for this task.
We show with an illustrative example that MLN structure learning can effectively
identify both part of the DAPER model in one single task, with a comparative
precision, but with a very higher complexity. MLN semantics, and more specif-
ically formulas described in clausal form, also restrict ourself by only identify
undirected dependency structures, whereas DAPER are directed probabilistic
models. In an opposite way, the logical formulas used by MLN to describe both
the ER schema and the probabilistic dependencies can manage exceptions, i.e.
data which are not coherent with an underlying structured model, which is not
possible with the DAPER framework.

As our objective is obtaining an efficient probabilistic framework dealing
with partially structured graph databases, we are now interested by improving
this work into several directions. We are currently working on more complete
experiments to test this method with all datasets used in [15] to consolidate our
results. Since MLN structure learning algorithms seem to suffer from complexity
issues, we are also interested by other probabilistic and relational frameworks
derived from Logic such as ProbLog models [7]. If we can confirm that DAPER
structure learning is really less complex than its MLN/ProbLog counterparts, a
last perspective would be to improve MLN/ProbLog structure learning by first
learning a more restrictive by less complex DAPER model.
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