Skip to Main content Skip to Navigation
Conference papers

DAPER joint learning from partially structured Graph Databases

Abstract : In this paper, we are interested in learning specific proba-bilistic relational models, named Directed Acyclic Probabilistic Entity Relationship (DAPER) models, from partially structured databases. Algorithms for such a learning task already exist for structured data coming from a relational database. They have been also extended to partially structured data stored in a graph database where the Entity Relationship (ER) schema is first identified from data, and then the DAPER dependency structure is learnt for this specific ER schema. We propose in this work a joint learning from partially structured graph databases where we want to learn at the same time the ER schema and the proba-bilistic dependencies. The Markov Logic Network (MLN) formalism is an efficient solution for this task. We show with an illustrative example that MLN structure learning can effectively learn both parts of the DAPER model in one single task, with a comparative precision, but with a very high complexity.
Document type :
Conference papers
Complete list of metadata

Cited literature [24 references]  Display  Hide  Download
Contributor : Philippe Leray Connect in order to contact the contributor
Submitted on : Thursday, April 9, 2020 - 5:43:32 PM
Last modification on : Friday, August 5, 2022 - 2:54:51 PM


Files produced by the author(s)



Marwa El Abri, Philippe Leray, Nadia Essoussi. DAPER joint learning from partially structured Graph Databases. Third annual International Conference on Digital Economy (ICDEc 2018), 2018, Brest, France. pp.129-138, ⟨10.1007/978-3-319-97749-2_10⟩. ⟨hal-01804057⟩



Record views


Files downloads