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Optimal control problems with oscillations, concentrations and
discontinuities

Didier Henrion! Martin Kruzik! Tillmann Weisser?

January 28, 2019

Abstract

Optimal control problems with oscillations (chattering controls) and concentrations (im-
pulsive controls) can have integral performance criteria such that concentration of the con-
trol signal occurs at a discontinuity of the state signal. Techniques from functional analysis
(anisotropic parametrized measures) are applied to give a precise meaning of the integral
cost and to allow for the sound application of numerical methods. We show how this can be
combined with the Lasserre hierarchy of semidefinite programming relaxations.

Keywords: optimal control, functional analysis, optimization.

1 Introduction

As a consequence of optimality, various limit behaviours can be observed in optimal control:
minimizing control law sequences may feature increasingly fast variations, called oscillations
(chattering controls [17]), or increasingly large values, called concentrations (impulsive controls
[14]). The simultaneous presence of oscillations and concentrations in optimal control needs
careful analysis and specific mathematical tools, so that the numerical methods behave correctly.
Previous work of two of the authors [5] combined tools from partial differential equation analysis
(DiPerna-Majda measures [6]) and semidefinite programming relaxations (the moment-sums-of-
squares or Lasserre hierarchy [13]) to describe a sound numerical approach to optimal control
in the simultaneous presence of oscillations and concentrations. To overcome difficulties in the
analysis, a certain number of technical assumptions were made, see [5, Assumption 1, Section
2.2], so as to avoid the simultaneous presence of concentrations (in the control signals) and
discontinuities (in the system trajectories).

In the present contribution we remove these technical assumptions and accommodate the simul-
taneous presence of concentrations and discontinuities, while allowing oscillations as well. For
this, we exploit a recent extension of the notion of DiPerna-Majda measures called anisotropic
parametrized measures [11], so that it makes sense mathematically while allowing for an efficient
numerical implementation with semidefinite programming relaxations.
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To motivate further our work, let us use an elementary example to illustrate the difficulties that
may be faced in the presence of discontinuities and concentrations. Consider the optimal control
problem

1

in /0 (¢ + y(t))u(t)dt

st.og(t) =ult), y(0)=0, y(1)=1, (1.1)
1>y(H) >0, ut)>0, te0,1]

where the infimum is with respect to measurable controls of time. The trajectory y should move
the state from zero at initial time to one at final time, yet for the non-negative integrand to be
as small as possible, the control v should be zero all the time, except maybe at time zero. We
can design a sequence of increasingly large controls u that drive y from zero to one increasingly
fast. We observe that this sequence has no limit in the space of measurable functions but it
tends (in a suitable weak sense) to the Dirac measure at time zero. We speak of control signal
concentration or impulsive control. The integrand contains the product yu of a function whose
limit becomes discontinuous at a point where the other function has no limit, hence requiring
careful analysis. Here however, this product can be written yy = %y; and hence the integral
term is well defined since fol yydt = M = % Consequently the cost in (1.1) is equal to

fol tu(t)dt + % and independent of the actual trajectory.

This reasoning is valid because §(t) = u(t) in problem (1.1), but this integration trick cannot
be carried out for more general differential equations. For example we cannot solve analytically
the following modified optimal control problem

in /0 b ()t

st g(t) = e+ u2(t), y(0) =0, y(1)=1, (1.2)

1>y(t) >0, wu(t)>0 te]0,1]

where € is a given real number. Providing a mathematically sound framework for the analysis of
this kind of phenomenon combining concentration and discontinuity, and possibly also oscillation
(not illustrated by the simple example above), is precisely the purpose of our paper.

Contribution

The contribution of our paper with respect to previous work can be summarized as follows:

e we propose a unified approach for handling the simulatenous presence of oscillations, con-
centrations and discontinuities, where previous work considered either oscillations without
concentrations (see [16, 15, 9, 10] and references therein), or concentrations without oscil-
lations (see [4] and references therein), or oscillations and concentrations without discon-
tinuities (see [5] and references therein);

e we remove the technical assumptions of [5] to allow for the simultaneous presence of con-
centration (of the control) and discontinuity (of the trajectory);

e as in [5], our approach allows for a constructive solution via the Lasserre hierarchy [13];
this now provides a unified numerical scheme to deal with oscillations, concentrations and
discontinuities;



e we make a connection between anisotropic measures and the occupation measures, which
are classical objects in dynamical systems and Markov decision processes, and which have
been used in linear reformulations of nonlinear optimal control problems [16, 13, 10]; the
notion of occupation measure was extended in [3, 4] to cope with concentration (also called
implusive controls); it was pointed out in [18] that this extension allows for optimization
over all possible graph completions, a tool introduced in [2] — see also [1] — to deal with dif-
ferential equations with discontinuous solutions. Anisotropic measures allow for a further
generalization of these approaches.

Outline

The outline of the paper is as follows. In Section 2 we describe the limit phenomena typical
of optimal control, namely oscillations, concentrations and discontinuities, as well as the lin-
ear formulation of optimal control problems using measures. In Section 3 we introduce the
anisotropic parametrized measures, illustrating their use with elementary examples. We show
how these measures can cope with concentrations and discontinuities, giving a meaning to oth-
erwise ill-defined integrals. In Section 4 we apply the anisotropic parametrized measures to
optimal control, and in Section 5 we describe their relationship with occupation measures, a
classical tool in dynamical systems and Markov decision processes. In Section 6 we describe
how the Lasserre hierarchy can be applied to our problem, and in Section 7 we provide a simple
illustrative example that can be solved numerically, and then analytically. Finally, concluding
remarks are gathered in Section 8.

2 Relaxing Optimal Control

Let L:[0,1] x R" x R™ — R and F : [0,1] x R x R™ — R™ be continuous functions. For initial
yo and final conditions y; in R™ and some integer 1 < p < oo, the formulation of the classical
optimal control problem is

1nf/ (t,y(t),u(t))dt

st. y(t) = F(t,y),u(?), y(0)=yo, y(1) =y,
y € 70,1 RY), u € £7([0,1; R™)

(2.1)

where #17(]0,1]; X) is the space of functions from [0, 1] to X whose weak derivative belongs to
ZP([0,1]; X), the space of functions from [0, 1] to X whose p-th power is Lebesgue integrable.

A pair (u,y) with a control u € £P([0, 1]; R™) and the corresponding trajectory y € #11([0, 1];R")
satisfying the differential equation of problem (2.1) is called admissible. Given a minimizing ad-
missible sequence (ug, Yi)ken, the infimum in (2.1) might not be attained because (uy)ren might
not converge in .Z? and (y)ren might not converge in w1l as £ is not reflexive. To overcome
this issue, it has been proposed to relax the regularity assumptions on u and y. We discuss some
of the approaches now in detail.



2.1 Oscillations

The limit of a minimizing sequence for (2.1) might fall out of the feasible space because of
oscillation effects of (uy)ken. Consider for example the optimal control problem

%§A%Mﬂ2—1f+yafﬁ

st g(t) = u(t), y(0) =0, y(1) =0,
ye w4 (0,1), uwe.2(0,1)).

(2.2)

As the integrand in the cost is a sum of squares, the value is at least zero. To see that actually
it is equal to zero, consider the sequence of controls (uy)reny € -£4([0,1]) defined by

. 2+1
walt) = 1,ﬁte[;,;g}o<z<k—1 23
—1, otherwise

for k > 1 and uy := 0. For the corresponding sequence of trajectories (yi)ren defined by
yi(t) := [¢ ug(s)ds it holds that g, € #14([0,1]) and yx(1) = 0 as desired. Hence, (ug)ren is
a sequence of feasible controls. A short calculation shows that using this sequence the cost in
(2.2) converges to zero. The sequence (yx)ren converges to Yoo := 0 in 7/174, but the sequence
(uk)keN does not converge to Uy, := 0 in 1.

In contrast to that, the sequence of measures defined by dvy(t,u) := &, (dult)dt converges
weakly to dv(t,u) := 1(6_1 + 01)(du)dt in the sense that for all f € €([0,1]) and g € ¢,(R):

klgrolo/ /f w)dvg(t,u) = / /f w)dv(t,u) (2.4)

where €,(R) := {g € €(R) : g(u) = o(Ju|?) for |u| — oo} is the set of continuous functions of less
than p-th growth. Integration then yields yo(1) = fol Jrudv(t,u) = fol Jpud(6_1 + 61)(du)dt =
0. A similar reasoning shows that the cost with respect to v is zero.

More generally, this observation motivates to relax the regularity assumptions on the control u in
(2.1) and also allow for limits dv(t, u) = dw(ult)dt of control sequences (ug)ren € -ZP([0, 1];R™).
In general the measure w depends on time, i.e., we have a family of probability measures
W(-[t)ep,) € P(R™), where Z(X) denotes the set of probability measures on X, i.e. non-
negative Borel regular measures with unit mass. Such parametrized measures obtained as limits
of a sequence of functions (ug)ren C -£P([0,1];R™) have been called LP-Young measures. For
an explicit characterization of these measures see e.g. [12]. For a comprehensive reference on
Young measures and their use in the control of ordinary and partial differential equations, see
[9, Part III].

The relaxed version of (2.1) that now takes into account oscillating control sequences can be

written as
1
inf / / L(t, y(t), u) w(dult)dt
w Jo Jrm
1
st [ Py, wedulnd = m - po (25)
0 R™
y € #HH0,1;R?), w(|t) € 2(R™)

where the constraint is a reformulation of the differential equation §(t) = [gm F' su)w(dult), t

[0, 1] with the boundary conditions y(0) = yo and y(1) = y;.



2.2 Concentrations

Oscillation of the control sequence due to nonconvexity of the functional is not the only reason
that prevents the infimum in (2.1) of being attained. As a second example consider the following
problem of optimal control:

in /0 - D
s.t. g(t) = u(t) >0, y(0) =0, y(1) =1,
yewbi(o,1]), wue£Y0,1)).

(2.6)

Note that the control enters into the problem linearly. The value is zero as the integrand is
positive and using the sequence of controls

N
up(t) = 4 T AEE 5 5 (2.7)
0, else

the cost converges to zero. Neither (uy)ren nor any subsequence converges in % 1 as this space
is not reflexive. In contrast to the previous example this time (yi)reny does not converge in
#11([0,1]) neither because # 1! is not reflexive. We hence use the extension Z7([0,1]), the
space of functions with bounded variation, as a relaxed space for the trajectory. Following
the same approach as before we consider the control as a measure dvy(t,u) = d,, @ (du)dt.
As w appears linearly in (2.6) we can directly integrate with respect to u and define a se-
quence of probability measures (73)reny € 22([0,1]) by 7 (dt) := [p udvy(t,u). A short calcu-
lation shows that this sequence has the weak limit 7 := §1, i.e. for all f € €([0,1]) it holds
2

limg_oo fol f)T(dt) fo 7(dt). Note that by integrating before passing to the limit we
transfer the unboundedness of the control into the measurement of time and only keep the di-
rection (i.e. +1 in this example) of the control. Whereas we observed a superposition of two
different controls in the previous example, here we see a concentration of the control in time.
For optimal control problems with linear growth in the control:

1nf/ (t,y(t))u(t)dt

st y(t) = F(t,y@)u(t), y(0) =y, y(1)=y1,
y e #V(0,1;R"), we £'([0,1;R™)

we can therefore build the following relaxation that can take into account concentration effects
of the control:
1
inf / L(t, y(6)7(dt)
™ Jo

1
st. /0 F(t,y()7(dt) = y1 — yo,
ye BY(0,1:R"), 7 e 2(0,1]).

(2.8)

See [4] for an application of the moment-sums-of-squares hierarchy for solving numerically non-
linear control problems in the presence of concentration.



2.3 Oscillation and Concentration

The relaxations proposed so far allow to consider controls that are either oscillating in value
or concentrating in time. However it is possible that both effects appear in the same problem.
Consider for example

inf lLt)z—l—(y(t)—tfdt
u Jo 14 u(t)?*
st §(t) = ult) = 0, y(0) = 0, y(1) = 1, (2:9)
y e #M([0,1)), ue £Y(0,1)).

The infimum value zero of (2.9) can be approached arbitrarily close by a sequence of controls
(uk)gen defined by

i r_ 1 1, 1 <
ug(t) == { ]g’ :aistee [’f Wk T 2k2} y LS I<k (2.10)

for £ > 1 and u; := 1. The idea to capture the limit behaviour of this sequence is to combine
a Young measure on the control and replacing the uniform measure on time by a more general
measure on time. Note that due to linearity it was possible in Section 2.2 to transfer the limit
behaviour of the control into the measurement of time. In the present example the control
enters non-linearly in the cost, which is why we will need to allow the control to take values at
infinity. We consider a metrizable compactification SR of the control space corresponding to
the ring U of complete and separable continuous functions (see Section 3.1 for more details).
Then the sequence of measures dv(t,u) := d,, ) (dult)dt converges to dv(t,u) := w(du)7(dt)
with w(du) 1= 3(8p + 6s0)(du) and 7(dt) := 2dt understood in the following weak sense for all
fe€(0,1]) and go € U:

im_ | 1 [ 50+l ) =

k—o00

/o1 /BuR F(®)go(w)dv(t,u) = /fgo V.

In the remainder of the paper, we will sometimes use the above right hand side compact notation
whenever the variables and domains of integration are clear from the context.

Measures v € Z([0,1] x fyR™) obtained as limits of sequences (ug)ren € -ZP([0,1];R™) in
the sense of (2.11) have been called DiPerna-Majda measures. They will be discussed in more
detail in Section 3.1. It turns out that every DiPerna-Majda measure v € Z([0,1] x fR™)
can be disintegrated into a measure 7 on time and an LP-Young measure w on [FyR™, i.e.

dv(t,u) = dw(dult)dr(t) for some 7 € £([0,1]) and w(.|t) € Z(BuR™).

(2.11)

A relaxed version of (2.1) taking into account both oscillation and concentration effects can
hence be stated as

in / Lo(t, y(t), u) du(t, u)
s.t. / Fo(t, y(t), w)du(t, u) = y1 — yo, (2.12)
v e 2([0,1] x BuR™)
where

L(t,y,u)
1+ |ulp

F(t,y,u)

Lo(t,y,u) := T up

, Folt,y,u) == (2.13)



In [5], the moment-sums-of-squares hierarchy is adapted to compute numerically DiPerna-Majda
measures and solve optimal control problem featuring oscillations and concentrations. However,
the approach is valid under a certain number of technical assumptions on the data L and F,
see [5, Assumption 1, Section 2.2]. These assumptions are enforced to prevent the simultaneous
presence of concentration and discontinuity.

2.4 Oscillations, Concentrations and Discontinuities

As mentioned in the introduction, the integrals in (2.1) might not be well defined, as concen-
tration effects of the control are likely to cause discontinuities in the trajectory occurring at
the same time. In view of the previous examples we propose to generalize the DiPerna-Majda
measures, which themselves are a generalization of Young measures, even further and now also
relax the trajectory to a measure valued function depending on time and control. In the sequel
we describe accordingly the set of anisotropic parametrized measures. Then we provide a linear
formulation of optimal control problem (2.1) that can cope with oscillations, concentrations and
discontinuities in a unified fashion.

3 Anisotropic Parametrized Measures

In the following we describe the generalized DiPerna-Majda measures. For this it will be in-
structive to review first the classical DiPerna-Majda measures.

3.1 DiPerna-Majda measures

Let U be a complete! and separable subring of continuous bounded functions from R™ to R.
It is known [7, Sect. 3.12.22] that there is a one-to-one correspondence between such rings and
metrizable compactifications of R™. By a compactification we mean a compact set, denoted
by GyR™, into which R™ is embedded homeomorphically and densely. For simplicity, we will
not distinguish between R™ and its image in FyR™. Similarly, we will not distinguish between
elements of &/ and their unique continuous extensions defined on [ R™.

DiPerna and Majda [6], see also [15], have shown that every bounded sequence (ux)ren in
ZP(]0,1);R™) with 1 < p < oo has a subsequence (denoted by the same indices) such that
there exists a probability measure 7 € Z([0,1]) and an LP-Young measure w(.|[t) € Z(ByR™)
satisfying for all f € ([0, 1]) and go € U:

1
lim / F()g0(ur (1)) (1 + [ug()[P)dt
0

k—o0

=[] oty (3.1)
0 JByR™

= /01 /,BMR’" f)go(u)dv(t,u) = /fgo v,

compare with (2.11). The limit measure dv(t,u) := w(du|t)7(dt) of such a sequence, or some-
times the pair (7,w), is called a DiPerna-Majda measure.

'A ring of functions is complete if it contains all constant functions, it separates points from closed subsets
and it is closed with respect to the supremum norm.



3.2 Generalization

The drawback of DiPerna-Majda measures is that ¢ in (3.1) must be a continuous function.
This does not fit to our aim to study interactions of discontinuities and concentrations. To go
further the simplistic illustration of the introduction, let us consider the following example.

Example 3.1. Consider a sequence (yy)reny C # 51([0,1]) such that limy_,o yr, = y in £9([0,1])
for every 1 < q < 4+00. We are interested in the integral

1
lim [ gl (0)hwn (1)t
k—oo Jo

for continuous functions g and h such that |g(u)| < C(1 4+ |u|) with some constant C > 0, and
where uy, := 1y, € L1([0,1]) is the weak derivative of yi. If g is the identity then the calculation
is easy, namely the limit equals liminfy_, H(yx(1)) — H(yx(0)) where H is the primitive of h.
In the case of a more general function g, the situation is more involved. For example for k > 2
let

0 ifo<t<i,
up(t) =3k if3<t<s+1,
0 ifi+z1<t<1
whose primitive is
0 ifo<t< g,
w(t) = k(t—3) if3<t<gz+y,
1 ifi+1<t<1
see Figure 1. It is easy to see that
Yk Ug,
— k

0 0 I ,
1/2‘ 1/2‘+l/k +1‘ t 1/2‘ 1/2‘+l/k +1‘ t

Figure 1: Sequences (yx, ur)ren from Example 3.1.

o g 9 ()bl () dt = I g(O)h(0)de+
limg oo 2% g(k)R(k(t — 1))di+
limgsoe [ 2 9(O)R(1)dt = g(0)((0) + h(1)+

1,1 7 _1
limg o0 fg” Wg(k)dt = 390(0)(R(0) + h(1))+
(H(1) — H(0)) limy_,o0 L.

The sequence (uy)xen concentrates at % which is exactly the point of discontinuity of the pointwise
limit of (yk)ken. Also notice that uy converges weakly to 5% in Z([0,1]) when k — oo. The



factor H(1) — H(0) in the previous equation suggests that we should refine the definition of the
pointwise limit of (yx)ren ot % by enforcing that it is the Lebesque measure supported on the
interval of the jump. We will make this rigourous in the following. The other term in the factor
also shows that the limit of g(k)/k should exist when k tends to infinity.

To cope with the simultaneous presence of oscillations, concentrations and discontinuities, a
new tool was recently introduced in [11], namely anisotropic parametrized measures generated
by pairs (yg, ur)ren Where uy is the control and yi the corresponding state trajectory. Let us
describe now what we need in our optimal control context. First, let us make the following
observation:

Lemma 3.1. Any admissible trajectory of optimal control problem (2.1) is such that y €
Z°(]0,1];Y) for some compact set Y C R"™, e.g. a ball of sufficiently large radius.

Proof: The function ¢ — y(t) is the integral of a Lesbesgue integrable function, and on a
bounded time interval, it is bounded.[]

Then, the following result is a special case of [11, Theorem 2]:

Theorem 3.1. Let 1 < p < +oo. Let (ug)ren be a bounded sequence in £P([0,1];R™) and
(yr)ken @ bounded sequence in W H1([0,1];R™). Then there is a (non-relabeled) subsequence
(uk, Yk )ken, @ measure T € P([0,1]), a measure w(.|t) € P (6yR™) parametrized in t € [0,1]
and a measure v(.[t,u) € P(Y) parametrized in t € [0,1] and u € ByR™ such that for every
fe€€(0,1]), go €U, ho € €(Y), it holds

im [ F0a0( D)1 + D holus ()

k—o00

:/1/ /f(t)go(u)ho(y)v(dyﬁ,u)w(du“)T(dt)
0 JpyR™ JY

-/ 1 /6 - | £ Om@howdntt,y.w)
= /fgo ho p.

The measure du(t,u,y) = v(dylt, u)w(du|t)T(dt), or sometimes the triplet (1,w,v), is called an
anisotropic parametrized measure. Moreover, the DiPerna-Majda measure (T,w) is generated by
(uk)kGN'

Example 3.2. Let us revisit Example 3.1 and the calculations of the integrals there. Let f €
%([0,1]), let h € €(R) be bounded with primitive denoted by H, and let g :== (1 + |.|)go where
go € U corresponding to the two-point (or sphere) compactification Gy R™ = RU{+o0}, i.e. such



that limy,—, + o go(u) =: go(£oo) € R. Then it holds

limyoo fo £ (t)g(ur(£)) Ay — [ F()g(0)h(0)dt+
limy o f?”f(t) (k)h(k (t——)))dt+
hmk_mo f1 1 f ) ( fO (t)g ( )d?H‘

(0)
Jif ()()()ﬁ+dm%wmﬁ+kﬂﬂﬂMwa"»ﬁ
— JF ()9 () (0)dt + [1 £(1)g(0)h(1)dt+
hmk_mofl f(t)go(k)H ( (t—g))ﬂdt

k
= J§ F()g(0)h(O)dt + [1 F(1)g(0)h(1)dt
F(3)g0(+00)(H(1) — H(0))
= Jo Jgzm fy F(Og0(w)h(y)o(dylt, w)w(dult)r(dt)

where
T(dt) = )\[071} + 25%
and )
6 e’} ft = 99
wdult) = {01 I3
do otherwise
and

8 iftel0,3),
v(dylt,u) = (Ao it =3,
31 ift e (%, 1]
where \x denotes the Lebesgue measure on X, and Y = [0, 1].

Example 3.3. Let us revisit the slightly more complicated [11, Example 3], appropriately scaled
on [0,1]. The trajectory sequence is

. 11
yk(t)'— k(t_%—'_%) if%—%gtﬁ%,
= 11 el 1,1
—2k(t—5—55) Wf3<t<5+1,
-1 ifi+3<t<1
and its weak derivative uy := Yy 1
. 11
0 fo<t<i-1L
Uk(l) == 1 1,1
2k ifi<e<iyl
0 ifi+1<t<1

see Figure 3.3. Let f € €([0,1]), let h € €(R) be bounded with primitive denoted by H, and
let g = (14 |.|)go where gy € U corresponding to the two-point (or sphere) compactification



BuR™

where

and

and

where Ax denotes the Lebesgue measure on X, and Y =

Yk
U

1/2+1/k

0 | | ‘ i | 1/2+1/k

RN Lt o ||

1/2-1/k 1/2 1 | ‘ ‘
1/2-1/k /2

ok

Figure 2: Sequences (yi, ug)ren from Example 3.3.

=RU{xo0}, i.e. such that lim, 1 go(u) =: go(£oc) € R. Then it holds

limy, 00 fo

- hmk—)oo f

)9(uk(t))h(yk(t))dt

R f

hmk)—)oofl 1 f( )
)g

t)g

)
(£)g(0)h(0)dt+

ll
2" &

k
limy o0 fl +k f(

hmk_>OO f1 1 f

(
—2k)h(~2
(O)h(~1)dt = f7 £(H)g(O)h(0)dt+

fl —1)dt+
1m#WJllf><mH@@—%+aﬂ%ﬁ+
mmﬁmﬁ ¥ F(t)go(~2k) 1T vaur—% o)) 2 dt

= fo 0)dt +f1 g(0)h(—1)dt+
fQMd+wMHG) <»+f<>< 00)(H(1) — H(-1))

= Jo Jaymm Jy F(D)g0(w)h(y)v(dylt, u)w(dult)T(dt)

T(dt) = )\[071} + 35%
1 1 it =1
O.)(du‘t): 25+oo+25—oo th 2
do otherwise
5o iftelo,3),
A ft=1 andu=
w(dylt, u) = [)(\)71} if 2 and u = +00,
A1y Yt=3 and U = —00,
0_1 ift e (2, 1]

~1,1].



4 Relaxed Optimal Control with Oscillations, Concentrations
and Discontinuities

To the classical optimal control problem (2.1) we associate the relaxed optimal control problem
% = inf / L
vi=inf [Lop
s.t. /Fo K= Y1 — Yo, (4.1)
we 2(0,1] x fyR™ xY)

which is linear in the unknown measure p. In contrast, classical problem (2.1) is non-linear in
the unknown trajectory y and control w.

Since optimal control problem (4.1) is a relaxation of the optimal control problem (2.1), it
may happen that the infimum in (4.1) is strictly less than the infimum in (2.1), i.e. vj < v*.
Formulating necessary and sufficient conditions on the problem data F' and L such that vy, = v*,
i.e. there is no relaxation gap is an open problem. However, if we know that the probability
measure in problem (4.1) is generated by limits of functions, then there is no relaxation gap.
Let us explain this now.

Assumption 4.1 (Regularity of the data). Let L and F be such that in (2.13) it holds
Ly € €([0,1] x fuyR™ xY) (4.2)
and
Fy € €(]0,1] x ByR™ x Y;R"™). (4.3)
Moreover, there is a constant cg, > 0 such that
L(t,u,y) > cp|ul? (4.4)
for all t, u, y and there is a constant cp > 0 such that
[F'(tu,y1) = F(tu,y2)| < cr(ful” +1)ly1 -y (4.5)
forallt, u, y1, yo.

The following result follows from classical existence and uniqueness results for differential equa-
tions, see e.g. [1, Theorem 3.1]:

Lemma 4.1. Assume that p > 1, u € ZP([0,1;R™) and yo € R™ are given. Let further
F:[0,1] x R™ x R™ — R" satisfy (4.3) and (4.5). Then

dy(t) = F(t, u(t),y(t))dt , y(0) =yo (4.6)

has a unique solution y € £>°([0,1];Y") with values in a compact subset’ Y of R™.

Assume that there is a bounded sequence (uy)reny C -£P and that {yi }ren C # 1! is a sequence
of corresponding solutions obtained in Lemma 4.1. Then {y;} is uniformly bounded in #!:!.

Indeed, due to (4.3) we see that % < ’dyj—t(t)’ = |F(t,ur(t), ye(t)| < cr(14|uk ()P +|yi(t)])-
Then the Gronwall inequality [8, Appendix B.2.j] implies that supjey ||yx|lwir < co and since



Yy is the integral of an integrable function on a bounded time interval, it holds that y; €
2°(]0,1;Y) for Y C R™ a ball of radius supyen ||yk|/ e < 00. The limit of the right-hand side
of (4.6) can then be expressed in terms of an anisotropic parametrized measure y:

Jim F(t, ux(t), yx(t))dt :/

/ FO(tvuvy)d#(tu)y) (47)
BuR™ JY

As explained in [11, Theorem 7], the integral (3.2) in the definition of the anisotropic parametrized
measure can be decomposed as follows

1
// /f(t)go(u)ho(y)du(t,yju):

0 1ﬁuRm Y

/o /Rm F(#)go(w) (1 + |ul?)ho(y ()@ (dult)di+ .

[ sOshoeit vetdaler
o Jaurm\Rm Jy

where @ is a classical Young measure on R". Using the decomposition (4.8), instead of (4.6) we
get the following differential equation
dy(t) = F(t,u,y(t))o(du|t)dt+

Fo(t,u, y)v(dylt, u)w(dult)T(dt).
BuR™\R™ JY

(4.9)

Lemma 4.2. Given an anisotropic parametrized measure p and an initial condition 1o, the
solution y to (4.9) is unique.

Proof: Assume that it is not the case, i.e., that there are two solutions y1,y2 € Z2*°([0,1];Y).
Desintegrating du(t,y,u) = v(dy|t,u)w(du|t)T(dt), we get the following relationship for the
difference y,4 := y1 —y2 because of (4.5), it holds |74 < [Jam [F (¢, u, y1(t)) —F(t, u, y2(t))|we(du) <
Jgm cp(JulP + D)wi(du)|ya(t)|. The right hand side belongs to .£1([0,1]), therefore the measure
dy4(t) is absolutely continuous with respect to the uniform measure dt. As y4(0) = 0 we have
ya(t) = 0 for all ¢ € [0, 1], by the Gronwall inequality [8, Appendix B.2.j].0]

In relaxed optimal control problem (4.1) we use an integral formulation of (4.9) incorporating
the initial and terminal conditions: fol Jomm Jy Fotsuw, y)du(t,u,y) = [ Fop = y1 — yo. For
each anisotropic parametrized measure p, we can therefore associate a sequence of trajectories
{yx} € #'5! and controls (u;) C £P satisfying the differential equation (4.6) and such that (4.7)
holds. Conversely, the limit of each such sequence of trajectories and controls can be modeled
by an anisotropic parametrized measure. The following result of absence of relaxation gap then
follows immediately from the construction of problem (4.1).

Proposition 4.1 (No relaxation gap). Let Assumption 4.1 hold and let p solve problem (4.1).
If there is an admissible sequence (uk, Yi)ken Such that (3.2) holds then vy = v*.

5 Relaxed Optimal Control with Occupation Measures

In the previous section, we proposed a linear reformulation of non-linear optimal control, thanks
to the introduction of anisotropic parametrized measures. In the current section, we describe
another linear reformulation proposed in [13] and relying on the notion of occupation measure.



The relation between this linear reformulation and the classical Majda-DiPerna measures was
investigated in [5], with the help of a graph completion argument. In the sequel we show that
the generalized Majda-DiPerna measures also fit naturally this framework.

Let v € €1([0,1] xY). For any admissible trajectory y and control u solving the differential equa-

tion (4.6), it holds [ du(ty(1)) = v(Ly(1) — v(0,5(0)) = fi (L(¢t.w(0) + 22(t.y(1)) - (1)) dt.

Optimal control problem (2.1) can then be rewritten as
1
— inf / L(t, ult), y(t))dt
u Jo

L /70w v
st | @t + g F) (ult), y(e)de (5.1)
= o(1,y1) — v(0,90), Yv € €1([0,1] x R™)
ye #1101 RY), we ZP([0,1];R™).

Definition 5.1 (Occupation measure). Given a control u and a trajectory y solving the dif-
ferential equation (4.6), we define the occupation measure fu,, € y € 2([0,1] x R™ x R™)
by

Apta,y (t, w,y) = 0y (1) (dy) Sy ey (du)dt.

Geometrically (A x B x C) is the time spent by the trajectory (¢,u(t),y(t)) in any Borel
subset A x B x C of [0,1] x R™ x Y. Analytically, integration with respect to fiy,y is the
same as integration along (u(t),y(t)) with respect to time. In particular fo (t,u(t),y(t))dt =

fol Jm Jgn Lt u, y) i,y (t,u,y) = [ L piy,y and for all test functions v € €1([0,1] x Y), it holds

) =
1
that (%+g—; F) (t,u(t), y(t))dt
= fol Jrm fy (% + g—y . F) (tu, y)dpyy(t,u,y) = [ (8t + ay F) Py Using the same argu-
ments as in [5, Proposition 4], we can reformulate optimal control problem (5.1) as a linear
problem on measures, leading to the following relaxed formulation:

ov (%
s.t. / (8t (1 + [uP)™ 8y 'F0> M (5.2)
= v(L,41) —v(0,50) Vv e €' ([0,1] xY),

we 20,1 x yR™ x Y).

Note that g in the above problem is not necessarily an occupation measure in the sense of
Definition 5.1, but a general probability measure in Z([0, 1] x 5yR™ x Y'). For this reason, the
infimum in relaxed problem (5.2) can be strictly less than the infimum in classical problem (2.1),
ie. vy < v

Proposition 5.1 (No relaxation gap). It holds v < vi; < v* and hence if there is no relazation
gap in relaxzed problem (4.1) then there is no relazation gap in relazed problem (5.2).

Proof: Just observe that problem (4.1) corresponds to the particular choice of test functions
v(t,y) == yg, k = 1,...,n in problem (5.2). Hence the infimum in (4.1) is smaller than the
infimum in (5.2), which is in turn smaller than the infimum in (2.1), i.e. vy < v}, Now if
vy = v* then obviously v}y, = v*. 0



6 The Lasserre hierarchy

Once we get to the measure linear problem (5.2), we follow the same strategy as in [5, Section
4]:

1. compactify the control space by using a change of variables and homogenization;

2. since all the data are polynomial, construct an equivalent moment linear problem where the
unknown are moments of the occupation measure supported on a compact semialgebraic
set;

3. use the moment-sums-of-squares hierarchy as in [13] to obtain a sequence of approximate
moments at the price of solving numerically semidefinite programming problems;

4. from the approximate moments, construct an approximate solution to the optimal control
problem.

7 Illustrative example

Let us illustrate this strategy on our introductory example (1.2). The trajectory y should move
the state from zero at initial time to one at final time, yet for the non-negative integrand to be
as small as possible, the control v should be zero all the time, except maybe at time zero. If
e = 1 this problem has a trivial optimal solution u(t) = 0. For e = 0 as explained already we
can solve the problem by integration by parts because ¢(t) = u(t). The integration trick cannot
be carried out in the case of € € (0,1).

We use the relaxation proposed in Section 5 to formulate problem (1.2) as a measure LP:
t
inf / oy
14w
. / ov 1 N Ov Ve? + u?
s.t. — —
otl+u 0Oy 14w

= v(1,1) —v(0,0), for all v € €([0,1]%)
pe 2(10,1] x fRy x [0,1]).

(7.1)

Note that we can omit the absolute value in the denominator, as u is constrained to be non-
negative.

Since in problem (1.2) the growth of the Lagrangian and the dynamics is at most linear, we

expect the control to concentrate. Therefore let u(t) := T(:()t) with r(¢) € [0,1]. Then the
r 2 AT 7”
dynamic of y reads y(t) = (1(—:()”) +e2 = ®)? ;r ai((tl . Introduce the auxiliary variable
w(t) such that w(t)? = r(t)? + 2(1 — r(t))?. By knowledge of bounds for ¢ and r(t) we can
conclude that 0 < w(t) < 1. The linear problem on moments then reads
igf / (t+y)ry

ov ov
s.t. /(at(l—r) ayw)v (7.2)
=v(1,1) — v(0,0), for all v € R[t,y],
v e 2([0,17).



With the following GloptiPoly script we could solve the problem numerically for different values
of the parameter €. From these numerical solutions we could guess the analytic optimal solution.

Yk
1_

|
|
3 1 t

1
4

T

Figure 3: Sequence (yi)k=124¢ from Example 1.2.

The measure du(t,y,u) = 7(dt)w(dult)v(dy|t,u) with

7(dt) = No,1) + (1 — €)do (7.3)
0o, t=0
w(dult) = { S0, >0 (7.4)

Ao, t=0

01—etet, t>0 (7.5)

v(dylt,u) = {

solves the relaxation (4.1) and hence yields a lower bound (1_25)2 on the optimum. Moreover,

this optimum is attained by the sequences

) V(EQ—e)+e)2 -2, telo,
uk(t) = 0, t>

]

=

)

=

and

_ 1
yk(t) :{ (kgﬁ)j;)t’ ii[g d

see Figure 3, which proves that we got the optimal solution according to Proposition 4.1.

The numerical methods obtained with the GloptiPoly script of Figure 4 and the SeDuMi semidef-
inite solver for the 6th relaxation (i.e. moments of degree up to 12) are reported in Table 1.
They match to 4 significant digits with the analytic moments reported in Table 2.



Q.
|

= 6; % relaxation order (moments of degree <= 2%d)
0.2; % epsilon

o
]

mpol t y rw
gamma = meas([t y r w]); % measure

v = mmon([t y],2*%d); % test functions

assign([t y r w],[0 0 O 01);
v0 = double(v); % initial condition

assign([t y r w],[1 1 0 01);
vT = double(v); % terminal condition

% moment problem
obj = min((t+y)*r);
spt [t-t~2>=0, y-y~2>=0, r-r"2>=0, w-w 2>=0,
W 2==r"2+e"2x(1-r)"2];
dyn = [vT-v0 == mom(diff (v,t)*(1-r) + diff(v,y)*w)];
P = msdp(obj, spt, dyn);

% solve semidefinite relaxation
[stat,bnd] = msol(P);

% display moments of solution
if stat>=0

double (mom(mmon(t,2*d))) % time

double (mom(mmon(y,2%d))) % trajectory

double (mom(mmon(r,2*d))) % normalized control
end

Figure 4: GloptiPoly script.



k| JtRdp [yFdp [ridp [whdp
0| 1.8000 1.8000 1.8000 1.8000
105000 1.2200 0.8000  1.0000
21 0.3333  0.9840 0.8000 0.8400
3002500 0.8404 0.8000 0.8080
4102000 0.7379 0.8000 0.8016
5101667 0.6586 0.8000 0.8003
601429 05944 0.8000 0.8001
7101250 05411 0.8000  0.8000
801111 04959 0.8000  0.8000
9 [0.1000 04571 0.8000 0.8000
10 | 0.0909 0.4233 0.8000  0.8000
11| 0.0833 0.3938 0.8000  0.8000
12 | 0.0769 0.3677 0.8000  0.8000

Table 1: Approximate moments for € = 0.2, computed with Gloptipoly and SeDuMi.

[thdp | A5 + (1 — )0k
Jyrdp | S
[rkdp | 0% +

[wkdp | €F +

Table 2: Analytic expressions of the moments.

8 Conclusion

In this paper we have described a unified methodology to cope with limit phenomena typical
of optimal control, namely oscillations, concentrations and discontinuities. Our approach relies
numerically on the Lasserre hierarchy of semidefinite programming relaxations, which allows for
the application of off-the-shelf computer software and hence opens the possibility for engineering
applications. The key mathematical tool are anisotropic parametrized measures, an extension of
DiPerna-Majda measures, themselves an extension of Young measures, objects familiar to PDE
analysts.

From the numerical solution and the nature of the measure computed, we can deduce whether
an integrable optimal control function exists or not:

e if the control measure is concentrated on the graph of a function, then there exists an
integrable optimal control law, and hence there is no oscillation of the control;

e if the time measure is absolutely continuous w.r.t. the Lebesgue measure, then there is no
concentration of the control, and hence no discontinuity of the trajectory.

Our approach is global, and hence closer in spirit to the Hamilton-Jacobi-Bellmann approach
rather than the Pontryagin Maximum Principle. We are not aware of first-order optimality
conditions for optimal control problems at the level of generality considered in our paper.

Beyond providing a numerical solution to optimal control problems that are potentially trou-
blesome for alternative numerical methods, we believe that our work can pave the way for the



application of the Lasserre hierarchy to other problems of calculus of variations and optimal
control, especially subject to PDE constraints. Indeed, we would like to emphasize that the
theory of anisotropic parametrized measures can also deal with vector-valued multi-dimensional
problems.
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