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A logic-based method to build 
signaling networks and propose 
experimental plans
Adrien Rougny1,4, Pauline Gloaguen2, Nathalie Langonné2,3, Eric Reiter2, Pascale Crépieux2, 
Anne Poupon   2 & Christine Froidevaux4

With the dramatic increase of the diversity and the sheer quantity of biological data generated, the 
construction of comprehensive signaling networks that include precise mechanisms cannot be carried 
out manually anymore. In this context, we propose a logic-based method that allows building large 
signaling networks automatically. Our method is based on a set of expert rules that make explicit the 
reasoning made by biologists when interpreting experimental results coming from a wide variety 
of experiment types. These rules allow formulating all the conclusions that can be inferred from a 
set of experimental results, and thus building all the possible networks that explain these results. 
Moreover, given an hypothesis, our system proposes experimental plans to carry out in order to 
validate or invalidate it. To evaluate the performance of our method, we applied our framework to the 
reconstruction of the FSHR-induced and the EGFR-induced signaling networks. The FSHR is known 
to induce the transactivation of the EGFR, but very little is known on the resulting FSH- and EGF-
dependent network. We built a single network using data underlying both networks. This leads to a new 
hypothesis on the activation of MEK by p38MAPK, which we validate experimentally. These preliminary 
results represent a first step in the demonstration of a cross-talk between these two major MAP kinases 
pathways.

Within a multicellular organism, the behavior of individual cells is partly controlled by hormones that bind to 
their cognate receptors. Binding of the ligand triggers conformational changes of the receptor’s spatial structure, 
resulting in the increase or decrease of its affinity for intracellular partners. In the case of G protein-coupled 
receptors (GPCRs), binding of the extracellular ligand and resulting conformational changes lead to the bind-
ing of G proteins and β-arrestins to the intracellular domains of the receptor. In turn, this leads to a number of 
intracellular cascades, activating or inhibiting intracellular proteins, such as the ERK cascade. These cascades 
lead, among other things, to the activation/inhibition of transcription factors that regulate gene transcription, 
and to the activation/inhibition of proteins of the translation machinery. Deciphering these networks is done 
through numerous wet-lab experiments, and in particular the observation of protein phosphorylation, which 
plays a major role. The representation of these networks is a diagram, usually referred to as the influence graph. 
As our knowledge of the complexity of signaling pathways has increased, the influence graphs representing them 
have also grown in size and complexity.

During the past decade, the development of Systems Biology has led to comprehensive reconstructions of 
large signaling pathways, by gathering results found in the literature1–4. These reconstructed pathways have two 
particularities as compared to diagrams found earlier in the literature. First, rather than simply depicting influ-
ences of molecules on each other (e.g. A activates B), these pathways are detailed representations of the molec-
ular mechanisms that come into play (e.g. A phosphorylates B, and phosphorylated B is active). Second, these 
pathways are now represented using standards, such as the Systems Biology Graphical Notation (SBGN) Process 
Description language5 (PD), which helps their understanding6.
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The construction of such comprehensive networks has become difficult due to the ever-growing amount of 
biological data and experimental results. Moreover, these networks are usually not updated with new findings, 
due to the cost of these updates. Consequently, automated methods to build such networks are highly needed.

Some methods that automatically build molecular networks have already been proposed. A first class of meth-
ods relies on literature mining7–9. These methods use Natural Language Processing techniques to extract relevant 
relationships between molecules (such as “A influences the phosphorylation of B”) from scientific papers, either 
abstracts7 or main text8,9. These extracted relationships are used to build a molecular network. These methods 
allow building comprehensive networks taking into account the vast amount of available literature; however, they 
do not permit to infer new unknown relationships.

Other methods build networks directly from experimental data10–12. A number of these methods use statistical 
inference (e.g. co-expression analysis, Bayesian analysis) to build gene networks from gene expression data13–16 
or phosphoproteomic data17–19. Such techniques are powerful to unveil new relationships hidden deep in the 
data. However, they function as black boxes, and do not allow to identify the precise data used to build a given 
relation. Finally, a third category, relying on the use of experimental data, adopts a radically different point of 
view, by using reasoning techniques to interpret qualitative data20,21. Those methods define expert rules that allow 
interpreting experimental data in order to build gene regulatory networks20 or executable models of signaling 
pathways21. These models are reaction networks, as they model different molecular processes (e.g. translocations, 
state transition processes). However, again, the precise biological knowledge underlying a given inferred relation 
remains implicit22. Hence, such an inference method21 does not aim at building molecular networks that could 
then be interpreted using different semantics (e.g. Ordinary Differential Equations (ODE)), but rather at building 
models that already carry a modeling semantics. Another current limitation of this method is the lack of rules 
to infer relationships from perturbation experiments (such as those involving inhibitors, siRNA, knock-outs or 
mutants), which are widely used in signaling biology.

Herein, we introduce a new logic-based method to build networks of biochemical reactions from raw experi-
mental results. We have built a large set of interpretative logic rules that allow mimicking the reasoning biologists 
apply when interpreting experimental results. Our expert rules are formalized within first-order logic, which 
allows to capture the deductive nature of the expert’s reasoning using logical implication. Moreover, this formal-
ism is expressive enough to formalize this reasoning as far as it allows general rules to be instantiated in several 
ways. These rules allow inferring precise biochemical mechanisms from a wide variety of experiments, including 
perturbation experiments. They also allow formulating new hypothetical relations that can then be tested exper-
imentally. Using explicit rules, traces of the reasoning used for the inference can be obtained. Meaning that for 
any relation within the inferred network, the set of experimental data and rules used to build this relation can be 
consulted by the expert. Those are of particular importance when two potentially contradictory pieces of knowl-
edge are inferred, as these originate from contradictory experimental results. In that case, the user is able to go 
back to these experimental results, and either resolve the contradiction, or choose to ignore some. Finally, rules 
were built such that the inference process can be inverted, unveiling an unprecedented feature: the automatic 
proposition of experimental plans to test given biological hypotheses. We illustrate our method by building the 
signaling networks triggered by the folliculo-stimulating hormone receptor (FSHR) and the epidermal growth 
factor receptor (EGFR). Given that the binding of the follicle stimulating hormone (FSH) to its receptor is known 
to transactivate the EGFR, we also deduce an integrated network from experiments conducted in the study of 
both individual networks. This led us to the hypothesis that, as a result of FSH stimulation, p38 mitogen-activated 
protein kinase (p38MAPK) activates dual specificity mitogen-activated protein kinase kinase (MEK), through the 
transactivation of EGFR. We give first experimental evidences that validate this hypothesis.

Results and Discussion
Explicit interpretative rules.  Systems Biology mostly focuses on mechanisms: reactions (e.g. post-transla-
tional modifications, complexations) and modulations (e.g. catalyzes, inhibitions) of these reactions. This knowl-
edge is usually represented under the form of graphs, where nodes represent the involved molecules, and arcs 
represent reactions and modulations.

Biologists use implicit deductive reasoning to infer new biological knowledge from experimental results, thus 
interpreting them. The implicit deductive rules with which they reason follow the generic framework:

experimental result
pieces of biological knowledge

pieces of biological knowledge

IF an is observed
and some hold

THEN new are established or hypothesized (R1)

Those rules are general. Of course, a specific experimental result will lead to a specific interpretation, i.e. to an 
instantiated piece of biological knowledge, but the manner wherewith it is interpreted does not depend on this 
particular result. Hence rules in the form of (R1) do not apply only to a particular realization of an experiment 
but rather to some type of experiment, and it is possible to make explicit the general rules used to interpret results 
obtained from various types of experiments in order to automate the construction of signaling networks.

Building the rules.  For a given experiment type, we have built one or more interpretative rules by deciphering 
the molecular processes that come into play while undertaking this experiment. Let us consider a simple phos-
phorylation assay. In that type of experiment, the quantity of a given target phosphorylated molecule (e.g. phos-
phorylated extracellular signal-regulated kinase (phospho-ERK)) is compared between a cell lysate obtained from 
untreated cells (the control), and a cell lysate obtained from cells previously treated with a signal (e.g. an hormone 
such as FSH). The measurement of the quantity of the target molecule may be carried out by means of an antibody 
specific to the given phosphorylation or incorporation of radioactive phosphate for example. The only molecular 
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process that comes into play here is the production of the target molecule from another form of that molecule 
(e.g. phospho-ERK is produced by the phosphorylation of ERK), which is known to the experimenter. Hence, 
if ERK is more phosphorylated in the presence of FSH as compared to the control, we can conclude that FSH 
stimulates the phosphorylation of ERK. Of course, it doesn’t mean that this modulation is direct. Conversely, if 
the phosphorylation of ERK was weaker, we would conclude that FSH inhibits the phosphorylation. Finally, if 
the phosphorylation levels were identical in both conditions, we would conclude that FSH has no effect on the 
reaction.

An experimental result obtained from such an experiment can be interpreted by means of the following rule, 
considering that the detector is an antibody, and that a greater quantity of the target molecule was observed in the 
treated cells than in the control:

IF a phosphorylation assay in which the signal is a molecule X, the target molecule Ya being detected by an 
antibody A and obtained by transformation of a molecule Y, demonstrates a greater quantity of Ya in cells treated 
by X than in the control cells, THEN X stimulates the process that transforms Y into Ya.

This interpretative rule can be formalized in first-order logic as follows:

pa X Y A increase
antibodyAgainst A Y and modifiedForm Y Y
modulates X Y Y increase unknown confirmed

IF ( , , , )
and ( , ) ( , )

THEN ( , , , , , ) (R2)

a a

a

The left-hand side of the rule (before the “THEN”) is called its premises, while its right-hand side is called its 
conclusion. The experimental result is expressed in the premises, while its interpretation is given in the conclusion. 
Such deductive rules should be read as follows: IF the premises hold, THEN the conclusion holds.

Lowercase symbols before the opening parenthesis (e.g. pa (phosphorylation assay) or modulates) are pred-
icate symbols that express relations between molecules or parameters. Their arguments (here, variables and 
constants) are contained between the associated parentheses: lowercase symbols (e.g. increase, confirmed) are con-
stants that refer to molecules or specific parameters, while uppercase symbols (e.g. X, A) are variables that refer to 
any molecule or parameter value, and can be instantiated by constants. A fully instantiated predicate (i.e. with all 
its variables replaced by constants), such as modulates(fsh, erk, perk, increase, unknown, confirmed), is called a fact.

The predicate symbol modulates takes six arguments, and modulates (X, Y, Ya, E, D, S) qualifies the modulation 
by molecule X of the process that transforms molecule Y into molecule Ya. The three additional arguments are 
parameters of this modulation:

•	 E is the effect parameter. It stands for the effect of the modulation. It can take three values: increase, decrease, 
or noeffect, depending on whether the modulation is a stimulation, an inhibition or absent, respectively. This 
parameter is also an argument of predicates that express experimental results such as pa. For those, increase, 
decrease and noeffect constants indicate a higher, a lower and an equal quantity of a target molecule in the 
treated cells than in the control cells, respectively.

•	 D is the distance parameter. It stands for the distance with which the modulation takes place: a direct mod-
ulation (i.e. with no intermediaries) is represented by the direct constant, and an indirect stimulation by the 
indirect constant. As for the unknown constant, it indicates that the distance with which the modulation takes 
place is unknown.

•	 S is the status parameter. It can take one of the three values confirmed, hypothesis and infirmed. The confirmed 
constant indicates that the modulation has been experimentally validated; the hypothesis constant indicates 
that the modulation is hypothetical, and should be proved by further experiments; and the infirmed constant 
indicates that the modulation has been experimentally invalidated.

Different interpretative rules for different types of experiments.  Although the number of different experiment 
types that exist is large, the vast majority of experiments conducted in Systems Biology studies belong to a 
reduced list. We have gathered 28 different experiment types that were used to establish a comprehensive map 
of the FSHR-induced network4. Table 1 shows the different types of experiments taken into account. A complete 
description of the various types of experiments is given in Listing of predicates in Supplementary Note.

All these experiments can be classified into three main groups depending on the kind of biological knowledge 
they allow to deduce (see first column of Table 1). All experiment types can be further classified according to dif-
ferent additional criteria, such as the experimental method they bring to play, or the eventual disruptor they use 
(see Table 1 for more details). This last criterion allows to distinguish between simple assays (e.g. a phosphoryla-
tion assay (pa)) and their corresponding complex assays that are realized in presence of a disruptor (e.g. an inhibi-
tor in the case of an icppa). Based on this classification, we generalized the rules related to a number of experiment 
types taken into account (see Rule generalization in Supplementary Note for some example). In Table 1, all the 
experiment types that can be interpreted by the same general rules have the same color. All the rules are given in 
Listing of rules in Supplementary Note.

Simple and complex interpretative rules.  In (R2), premises are formed of predicates that cannot be deduced by 
any other interpretative rule: we call them background knowledge predicates. As for the conclusion, it is formed 
of a single predicate that provides deduced pieces of knowledge: we call it deduced predicate. We distinguish two 
kinds of rules, depending on whether they only use background knowledge in their premises, and thus do not 
require any information deduced from another rule (simple rules), or on the contrary cannot be interpreted in 
the absence of anterior knowledge (complex rules). Rule (R2) is an example of simple rule. All the rules built to 
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interpret experiments that involve inhibitors or antagonists are examples of complex rules, as they cannot be 
interpreted without the results of the same experiment conducted without the inhibitor or antagonist.

Let us consider the experiment that consists in comparing the phosphorylation of ERK induced by the FSH 
between untreated cells and cells treated with an inhibitor of protein kinase A (PKA) (for example, with the H89 
inhibitor23). The result of the experiment is that the phosphorylation of ERK induced by FSH is hampered by the 
inhibitor, from which an expert can make the hypothesis that PKA might be an intermediary of the activation 
of ERK by FSH. This type of experiment is called an icppa, and can be interpreted by the following rule when a 
decrease effect is observed:

iccpa X Y A I decrease
antibodyAgainst A Z inhibitorAgainst I Y
modifiedForm Y Y
notModified X
modulates X Z Z increase unknown confirmed
modulates Y Z Z increase unknown confirmed
modulates X Y Y increase unknown hypothesis

IF ( , , , , )
and ( , ) and ( , )
and ( , )
and ( )
and ( , , , , , )

THEN ( , , , , , )
and ( , , , , , ) (R3)

a

a a

a

a

a a

a a

a a

In this type of experiment, the signal is the molecule Xa (FSH in our example), and the corresponding rule is 
triggered only if Xa has no modified form, as the predicate notModified (Xa) appears in its premises. Biologically, 
this means that Xa is not modified in the reaction, which is the case for an extracellular hormone such as FSH, 
for example. From this type of experiment, we conclude that Ya (activated PKA) stimulates the transformation 
of Z (ERK) into Za (phospho-ERK), since the quantity of Za is decreased in presence of the inhibitor of Ya (H89). 
From this first conclusion, two alternatives appear: either Ya can influence Za independently from Xa (activated 
PKA stimulates the phosphorylation of ERK independently of FSH) and no other additional conclusion has to 
be made, or Ya is an intermediary of the induction of Za by Xa, meaning that additionally, Xa stimulates the trans-
formation of Y into Ya (FSH stimulates the activation of PKA). As we cannot choose between the two alternatives 
with only that experiment, both are considered as hypothetical until further confirmation, hence the hypothesis 
status for the additional conclusion of the second alternative.

Type of the 
conclusion Method Category Disruptor

Detection 
method Experiment type

Experimental result 
predicate Conceptual experiment type predicate

Modulation Dosage

Enzymatic assay Radio

25EA ea(X, S1, S2, E) simpleEa(X, S1, S2, E)

Antagonist 50ACPEA acpea(X, S1, S2, I, E)

complexEa(X, S1, S2, I, E)Inhibitor 50ICPEA icpea(X, S1, S2, I, E)

siRNA 75SCPEA scpea(X, S1, S2, I, E)

Phosphorylation 
assay

Antibody 25PA pa(X, Y, A, E)
simplePa(X, Y, A, E)

Radio 25PRA pra(X, Y, A, E)

Antagonist
Antibody

50ACPPA acppa(X, Y, A, I, E)

complexPa(X, Y, A, I, E)Inhibitor
50ICPPA icppa(X, Y, A, I, E)

Radio 50ICPPRA icppra(X, Y, A, I, E)

siRNA Antibody 75SCPPA scppa(X, Y, A, I, E)

ELISA Antibody

25ELISA elisa(X, A, E) simpleElisa(X, A, E)

Inhibitor 50ICELISA icelisa(X, A, I, E)
complexElisa(X, A, I, E)

siRNA 75SCELISA scelisa(X, A, I, E)

Radio-immunology 
Experiment Radio

25RIA ria(X, A, E) simpleRia(X, A, E)

Inhibitor 50ICRIA icria(X, A, I, E) complexRia(X, A, I, E)

Western Blot Antibody

25WB wb(X, A, E) simpleWb(X, A, E)

Inhibitor
50ICWB icWb(X, A, E)

complexWb(X, A, I, E)
75RIWB riWb(X, A, E)

QRTPCR
25RTPCR qrtpcr(X, Y, E) simpleQrtpcr(X, Y, E)

Inhibitor 50ICQRTPCR icqrtpcr(X, Y, I, E) complexQrtpcr(X, Y, I, E)

Interaction

Precipitation IP 25IP ip(X, S1)

oneToManyInteractionExp(X, S1)
Pulldown

GSTPulldown 25GSTPULLDOWN gstPulldown(X, S1)

BDPulldown 25BDPULLDOWN bdPulldown(X, S1)

FRET FRET 50FRET fret(X, Y) oneToOneInteractionExp(X, Y)

Cristallography Cristallography 1003D threeD(S1) manyInteractionExp(S1)

Precipitation IP 125IPD ipd(X, Y, S1, E) effectOnOneToManyInteractionExp(X, Y, S1, E)

Localization Fluorescence 
Coloration 25FLUO 25IHC fluo(A, C, E)ihc(A, C, E) detectionExp(A, C, E)

Table 1.  All types of experiments that can be interpreted by the set of expert rules. Experiments that can be 
interpreted by the same general rule have the same color.
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The following rule allows interpreting the same type of experiment, but leaving the possibility that Xa is the 
modified form of its inactive counterpart X:

icppa X Y A I
antibodyAgainst A Z inhibitorAgainst I Y
modifiedForm Y Y
modifiedForm X X
modulates X Z Z increase unknown confirmed
modulates Y Z Z increase unknown confirmed
modulates X Y Y increase unknown hypothesis
modulates Y X X increase unknown hypothesis

IF ( , , , , decrease)
and ( , ) and ( , )
and ( , )
and ( , )
and ( , , , , , )

THEN ( , , , , , )
and ( , , , , , )
and ( , , , , , ) (R4)

a

a a

a

a

a a

a a

a a

a a

This rule has one more conclusion compared to rule (R3):

modulates Y X X increase unknown hypothesis( , , , , , )a a

The two alternatives given for the case where Xa has no modified form remain valid, but there is a third one: Xa 
might be an intermediary of the induction of Za by Ya, and thus Ya might stimulate the process that transforms X 
into Xa. As for the previous case, we cannot rule out any alternative.

Figure 1 shows the interpretation made from an icppa in the case where the signal has as no modified form 
(top) and in the case where it has one (bottom). For the case where Xa has a modified form, the network on the left 
represents the alternative where Ya is an intermediary of the induction of Za by Xa, and the network on the right 
the alternative where it is Xa that is an intermediary between Ya and Za.

Analytical rules.  In addition to interpretative rules, we have built a set of analytical rules that do not inter-
pret any experimental result, but allow to either complete the background knowledge, or to deduce new pieces 
of knowledge or hypotheses. For example, rule (R5) allows generating an hypothetical modulation based on the 
distance of already known modulations. Its meaning is the following: if Xa modulates a process that transforms Z 
into Za, Ya modulates the same process but with a direct distance (i.e. with no intermediary coming into play), and 
Ya is the modified form of Y, then Xa might modulate the process that transforms Y into Ya.

modulates X Z Z increase unknown confirmed
modulates Y Z Z increase direct confirmed
modifiedForm Y Y
modulates X Y Y increase unknown hypothesis

IF ( , , , , , )
and ( , , , , , )
and ( , )

THEN ( , , , , , ) (R5)

a a

a a

a

a a

Figure 1.  Interpretation of a phosphorylation assay with an inhibitor. (A) Case where Xa has no modified form, 
treated by rule (R3). In the first alternative (left), Ya influences the transformation independently from Xa; in the 
second alternative (right), Ya is an intermediary of the induction of Za by Xa. (B) Case where Xa has a modified 
form X, treated by rule (R4). In the first alternative (left), Ya influences the transformation independently from 
Xa; in the second alternative (middle), Ya is an intermediary of the induction of Za by Xa; in the last alternative 
(right), Xa is an intermediary of the induction of Za by Ya. For both cases, the confirmed or hypothetical facts 
that result from the superposition of the different alternatives are represented under the form of a resulting 
network, on the right of the figure. Blue modulations represent premises, green modulations conclusions that are 
confirmed, red ones hypotheses, and dashed ones conclusions that could be indirect and explained by transitivity.
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Here, we make the hypothesis that Y is an intermediary of the modulation of Z by X. We do not hypothesize that 
it is X that is an intermediary between Y and Z, since we know that Y has a direct effect on Z.

Two tasks: building networks and inferring experimental plans.  Automated construction of cell 
signaling networks via deduction.  The set of interpretative and analytical rules we propose allows establishing 
automatically new pieces of knowledge from a number of given experimental results. More precisely, given a set of 
background facts and a set of experimental facts, these rules allow deducing new facts that can then be represented 
under the form of a signaling network (using the SBGN PD language5 for example). A step by step example of 
such a deductive task is given in Example of deduction in Supplementary Note.

By using formal explicit rules and facts, one can track the different deduction steps that lead to a particular 
fact, in a way that is understandable, and thus verifiable, by the biologist. For a deduced relation, the set of experi-
mental results and rules that enabled its deduction is called its trace. Traces are especially useful when automated 
reasoning leads to facts that could seem contradictory. For example, two facts, one qualifying the stimulation of 
a process by a molecule and the other the inhibition of that same process by the same molecule can sometimes 
be obtained. This is quite possible, for example if two different pathways exist, leading to the same reaction, one 
being inhibitory and the other activatory. However, experimental results that lead to such a pair of facts should 
be carefully verified, since they could also result from erroneous experiments. In this case, thanks to traces, our 
system allows the user going back to these two results, and possibly choosing to ignore one.

Automated proposition of experimental plans via abduction.  Our method also allows to go further. It is often the 
case that a given molecule or reaction is expected to participate in a given signaling network, and the question 
then arises of choosing experiments that could validate this hypothesis. Our approach provides a way of answer-
ing this question through a method of reasoning called abduction, that can be seen as the inverse process of 
deduction, and whose goal is to find minimal explanations of an observation, given a background logical theory.

In order to check a given biological hypothesis, we first assume that this hypothesis is true, and formalize this 
assumption by a fact with the status confirmed. Then, using abductive reasoning, we obtain minimal alternative sets 
of experimental results, each set alone being sufficient to explain the biological fact. The obtained set of inferred 
experimental results constitutes an experimental plan, that can be carried out in order to test the input hypothesis. 
A step by step example of such an abductive task is given in Example of abduction in Supplementary Note.

Application to the FSHR-induced and the EGFR-induced signaling networks.  We applied our 
method to the network induced by the FSHR, and to the network induced by the EGFR. FSH is a pituitary 
hormone of major importance in the control of male and female reproduction. It acts via its cognate receptor, 
the FSHR, a Gs-coupled seven transmembrane domain receptor. In females, FSH participates, inter alia, in the 
induction of ovarian follicles’ growth and maturation. In males, it participates in the induction of spermatogen-
esis by stimulating Sertoli cells. When FSH binds to its receptor, the latter triggers several signaling pathways: 
the G-dependent pathway, leading to the production of second messenger cyclic AMP (cAMP), but also the 
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-dependent and β-arrestin-dependent pathways. As for 
the epidermal growth factor (EGF), it participates in the tissue growth. It acts via its cognate receptor (the EGFR), 
which belongs to the tyrosine kinase receptors (RTK) family. Activation of EGFR triggers three main signaling 
pathways: the ERK pathway, the PI3K/protein kinase B (Akt) pathway, and the Jakus kinase (JAK)/signal trans-
ducer and activator of transcription protein (STAT) pathway. Finally, these two networks are not independent of 
each other: the EGFR is transactivated by the FSHR induced network, via the Rous sarcoma oncogene (Src) (see4 
for a review).

We first built the FSHR induced network, by automatically interpreting a set of experimental results linked to 
this network, which had been used in a previous review4. We then automatically interpreted this set of experimen-
tal results by augmenting it with another set of results related to the EGFR induced network. This last interpreta-
tion allowed discovering a new hypothesis, for which we subsequently acquired experimental evidence.

Retrieving experimental and background knowledge facts.  The set of experimental and background knowledge 
facts related to both networks was retrieved from the literature (see Methods for further details). For the FSHR 
induced network, 191 experimental results were retrieved, whereas this number reached 274 for the EGFR 
induced network. In total, 1448 background facts were also retrieved for both networks together.

Automatic inference of the FSHR induced network.  We performed the interpretation of the 191 experimental 
results related to the FSHR induced network, using the set of expert rules and the set of background knowledge 
facts. We obtained 1535 new facts. Among them, 1184 facts corresponded to background knowledge facts or 
modulations with a noeffect parameter status. The remaining 351 pertinent facts (i.e. formalizing a process, the 
modulation of a process or the localization of a molecule) formed together a molecular network. We compared 
this network to the FSHR induced network that we previously built manually using the same set of experiments4 
(see Supplementary Fig. S1 for an overview of this network), which will be considered as the reference network. 
We give an overview of the result of this comparison for the G protein pathway in Comparison for the G protein 
pathway Supplementary Note.

Most differences observed between the two networks can be explained, either by the fact that in graphical 
representations some details are omitted for the sake of clarity, or by the presence of knowledge in the reference 
network transferred from other networks, mostly from signaling networks triggered by other GPCRs. This tends 
to show that our expert rules are complete enough to deduce all the main processes and modulations of a given 
network.
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We conducted a similar work on the signaling network of the EGFR (Epidermal Growth Factor Receptor). 
In that case, our reference was the network of the Pathway Interaction Database (PID)24. Similar to the FSHR 
case, we extracted the experimental facts from the literature cited in the PID network, and ran the inference. 
Comparison of the inferred and reference networks showed no significant differences.

Discovering a new hypothesis on the phosphorylation of MEK by p38MAPK.  Because of its complexity, a signaling 
network is often not studied as a whole, but through the study of individual pathways. However, these different 
pathways are not independent of each other, and the cellular outcome of the stimulation results from the precise 
timing and intensity of their activation. Consequently, new knowledge would certainly arise from the study of the 
complete network, which is possible only through automated modeling. To illustrate this, and because EGFR is 
known to be transactivated by FSHR, we decided to merge the sets of experimental and background knowledge 
facts related to the FSHR and the EGFR. We then used our expert rules to deduce new facts from this set. As 
expected, none of the new deduced facts was obtained by using interpretative rules: indeed, all experimental facts 
had already been used to deduce facts for each of the two networks. However, rule (R5) allowed generating new 
hypotheses that were not generated by either of the two sets of experimental results alone. Eleven such new facts 
were found. Although many of them are not really useful for understanding the biological outcome of the stimula-
tion, one interesting hypothesis emerging from this analysis is that phosphorylated p38MAPK could activate MEK:

modulates pp mapk mek pmek increase unknown hypothesis( 38 , , , , , ) (F1)

This hypothesis is deeply interesting for two main reasons. First, p38MAPK is known as the target of 
stress-activated MAP2K (MAP2K3, MAP2K4 and MAP2K6 in particular), whereas MEK targets MAPK3 (among 
which ERK) involved in growth. Establishing the existence of a cross-talk between the stress and growth MAPK 
pathways would show that the two systems are not as insulated as generally thought. Moreover, in signaling cas-
cades, a MAP2K usually activates a MAPK. But here, the hypothesis is that a MAPK (p38) activates a MAP2K 
(MEK). Second, validating this hypothesis would allow to validate at the same time a number of other hypotheses 
also generated using rule (R5), that relate to modulations of the phosphorylation of MEK by molecules upstream 
of phospho-p38MAPK. This gives more weight to such hypotheses, and illustrates one advantage of automatic 
reasoning: after a small change in the whole theory (here, the addition of a new modulation), new pieces of 
knowledge that are a consequence of this change can easily be deduced, even if the new pieces of knowledge are 
located far from where the change is initially made within the network.

Experimental plans to establish the phosphorylation of MEK by phospho-p38MAPK in the FSHR system.  Having 
deduced the hypothesis that MEK may be phosphorylated by phospho-p38MAPK (fact (F1)), we inferred auto-
matically all experimental plans that would allow validating it. We obtained six different experimental plans, each 
containing only one experiment to carry out. Those six plans were derived from the following abduced facts:

•	 icpea(pmek, s_1_erk1, s_1_perk1, sb203580, decrease)
•	 icpea(pmek, s_1_erk2, s_1_perk2, sb203580, decrease)
•	 icria(fsh, r_pmek, sb203580, decrease)
•	 icelisa(fsh, a_pmek, sb203580, decrease)
•	 pa(pp38mapk, mek, a_pmek, increase)
•	 icppa(fsh, mek, a_pmek, sb203580, decrease)

Experimental plans containing the icria, the icelisa and the icppa predicates proposed to study the effect of an 
inhibitor of p38MAPK (here, SB203580, which has been shown to be extremely specific, and has no effect on MEK 
and ERK activities25) on the stimulation of FSH-triggered MEK phosphorylation using a radio-immunologic 
assay, a phosphorylation assay or an ELISA, respectively. The two icpea plans proposed to study the effect of the 
exact same inhibitor on the activity of MEK, through the study in vitro of ERK phosphorylation. Finally, the plan 
with the pa proposed to test directly the effect of phosphorylated p38MAPK on MEK phosphorylation using a 
phosphorylation assay.

We carried out the simplest plan to implement, which was the icppa. This plan proposed to inhibit p38MAPK 
and to observe the phosphorylation of MEK in stimulated cells using an antibody specific to the phosphorylated 
(active) form of MEK, and to compare with activated cells in the absence of the inhibitor. The results (Fig. 2) 
confirm the hypothesis: p38MAPK stimulates the phophorylation of MEK, and through it, the phosphorylation 
of ERK. Indeed, the phosphorylation level of MEK is significantly lower in the presence of SB203580, an inhibitor 
of p38MAPK, than in the control conditions. The same phenomenon is observed for the phosphorylation level 
of ERK.

As this hypothesis did not arise from the study of the FSHR signaling network alone, it was also interesting to 
test whether this modulation arose through the transactivation of EGFR, or was an unknown consequence of the 
EGFR-independent FSHR signaling pathway. For this purpose we repeated the experiment in the presence of an 
inhibitor of the EGFR. Comparing the levels of MEK or ERK phosphorylation in the presence of Tyrphostin, the 
inhibitor of EGFR, shows a tendency to decrease, but this effect is not significant. Comparing the phosphorylation 
of ERK is the presence of both Tyrphostin and SB203580 shows a significant decrease as compared to control con-
ditions, but also to the conditions with SB203580 alone. Moreover, this is not observed for MEK phosphorylation 
levels. This could mean that there exists a pathway leading to ERK phosphorylation which depends on EGFR 
(since the effect is decreased in the presence of Tyrphostin), but neither on p38MAPK (since SB203580 is present 
in both conditions), nor on MEK (since the effect is not observed for MEK).
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However, the observed differences could also be due to technical reasons, such as differences in quality or 
affinity of the antibodies used to detect the phosphorylated forms of MEK and ERK, or differences in the total 
amounts of both proteins present in the cells. Drawing more definitive conclusions would require more experi-
ments, using different protocols, which was not the scope of the present paper.

From deduced facts to mathematical models.  The output of our method is a set of logical deduced 
facts that formalize knowledge on molecular mechanisms, and that form together a molecular network. These 
facts can easily be translated to standard graphical or textual languages, such as SBGN PD5/SBGN ER26 or 
BioPax27. Also, the output networks represent static knowledge and do not carry any dynamics semantics. Hence, 
they can be used as inputs for (automatic) mathematical model building under a wide variety of semantics and 
formalisms, such as the rule-based entity-centered semantics and ODEs9,28,29, plain ODEs30, or qualitative seman-
tics29,31. These mathematical models can in turn be stored and exchanged using standard formats such as the 
BioNetGen Language format28 for rule-based models, or the Systems Biology Markup Language format32 for 
ODEs and qualitative models.

Scalability and automation.  One weakness of our framework that clearly appeared during this work is 
the manual entry of experimental and background facts. Going through scientific papers to extract experimental 
results and formating them for the inference engine is a tedious and error-prone task. Consequently, scalability 
of the method, apart from pure computational aspects, will also need the automation of this extraction and for-
mating task. This led us to start the development of a method, using natural language processing, to automate this 
task. We have already shown that we can isolate, within a scientific paper, the sentences relative to the results of an 
experiment33. We are now developing cascades within the CasSys system34 to format these experimental results as 
facts that could be used directly within the framework described in the present paper. The first tests have shown 
that we were able to extract and format successfully both background and experimental facts with good precision 
(76%) and recall (88%).

This work is still preliminary, and will require many more developments. However, we already have a proof of 
concept that such automated extraction and formatting of background and experimental facts from literature is 
feasible using natural language processing.

Another question is how scalable is the method? Giving a definitive answer to this question would require 
a very large dataset of experimental facts, which will be available only after completion of the natural language 
treatment-based extraction and formatting method. However, the computation times observed during our first 
tests seem to depend linearly on the number of experimental facts (Table 2). Similarly, the number of deduced 
facts seems to depend linearly on the number of experimental facts. Finally, the computation times are very low, 
and if the linearity is confirmed, the framework could be applied to very large datasets.

Knowledge transfer.  As discussed above, in the signaling network we built, some relations were missing 
because they have not been demonstrated in the case of the FSHR and/or the EGFR. However, these relations are 
considered as true by the experts, either because they have been demonstrated using purified proteins, or because 
they have been demonstrated for many different conditions.

As an example, when we reconstructed the EGFR signaling network, we did not obtain the inhibition relation 
between Tsc2 and Rheb. Indeed, in the scientific paper corpus we have used, this inhibition of Rheb by Tsc2 was 
not demonstrated. We then searched the literature for such a demonstration, but we could not find an exper-
iment demonstrating that EGF-activated Tsc2 inhibits Rheb. However, we found many papers demonstrating 
this inhibition relation, using purified proteins35 or in vivo, following different stimulations such as insulin36, 
ephrin37 or tissue plasminogen activator38. More generally, Tsc2 has been shown to be an important hub in the 
signaling pathways triggered by many different signals such as amino acid availability, growth factors, cytokines, 
and energy39. Thus, in this particular example, it seems reasonable to consider that in the EGFR pathway Rheb is 
inhibited by Tsc2.

Figure 2.  (A) Levels of MEK and (B) levels of ERK phosphorylation in HEK293 cells expressing the FSHR 
10 min after activation by FSH in the presence or absence of SB203580 (inhibitor of p38MAPK) and presence or 
absence of tyrphostin (inhibitor of EGFR). Significant differences are labeled with stars. Results are expressed 
as the % of the maximum response elicited by FSH in the absence of any inhibitor. (C) The SBGN AF43 map 
representing the different pathways triggered by the FSHR, as well as the transactivation of the EGFR via Src. 
Our confirmed hypothesis, that p38MAPK stimulates the phosphorylation of MEK, is colored in red.
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This raises the question of transferring knowledge between different networks and/or different biological 
conditions. The example above is a direct action, demonstrated using purified proteins. In such cases we could 
consider that in any cell, and under any condition, if the two proteins are present, the conclusion holds. But many 
possible cases are more difficult to decide than this one. For example, can experimental data obtained in a given 
cell line be used to build a network in another cell line? Or when the cell lines are the same, but the experimen-
tal conditions, such as growth media, are different? These are of course questions that cannot be answered only 
through computational tools, and it will ultimately be the user’s decision. However, tools can be designed to guide 
this decision. In our framework the user can always come back to the experimental data used to deduce a given 
relation. This can be such a guiding element, but more will have to be added in the future.

Conclusions
In this article, we propose a logic-based method to automate the construction of signaling networks. Our method 
tries to reproduce the reasoning made by biologists when interpreting experimental results, by automatically 
deducing new knowledge using a set of expert rules that make explicit this reasoning. These rules allow interpret-
ing experimental results coming from a large variety of experiments that are usually employed in cell signaling, 
and to infer precise mechanisms, at the molecular reaction scale. Moreover, they allow formulating a number of 
biological hypotheses, and experimental plans to validate them. Our method allowed us to successfully recon-
struct two large networks: the FSH-triggered and the EGF-triggered networks. Using the two sets of underlying 
data at the same time led us to formulate the hypothesis that p38MAPK would stimulate the phosphorylation 
of MEK. In order to validate this hypothesis, we automatically inferred an experimental plan using our method, 
that we have carried out. The results obtained show that p38MAPK stimulates the phosphorylation of MEK in 
an FSHR-induced system, as MEK activation is significantly lower in the presence of p38MAPK inhibitor. As a 
consequence, ERK phosphorylation is also decreased when p38MAPK is inhibited. We also observed further 
inhibition of activity in the presence of the EGFR inhibitor for ERK, but not for MEK. This could be the effect 
of another activation mechanism of ERK, depending on EGFR transactivation, but not on p38MAPK or MEK. 
This first experimental validation would need to be consolidated, which is not the object of the present paper. 
However, it constitutes a first step in the discovery of a yet-unknown cross-talk between these two very important 
signaling pathways.

Although preliminary, these results demonstrate that our method allows to make high-level hypotheses, based 
on already known facts, and could be an important driving force for understanding the signaling pathways in 
their complexity. Applying our method to large sets of experimental data could be facilitated by new evolutions, 
and our efforts will take two directions. First, we need to expand the number of experiments that can be auto-
matically interpreted. In particular, experiments involving the use of mutants (either cells expressing mutant 
proteins, or even knock-out animals) are often used, but the corresponding rules are delicate to establish, since the 
driving idea for making a mutation is often implicit. Another important area we have to formalize corresponds 
to the in vivo experiments. Second, we have to be able to extract the facts automatically from scientific papers. 
Indeed, manually gathering the relevant literature, extracting the experimental data, and subsequently writing the 
facts is a tedious task, and consequently limits the applicability of the method. A standard format for reporting 
experimental results would of course greatly facilitate automated extraction, and the work discussed here could be 
straightforwardly used to design such a format. However, we do not believe scientific community is ready to for-
mat and report experimental results, and not enough results would be gathered by this mean to make the method 
really powerful. Instead, we are developing a method, based on natural language processing, which should allow 
to extract and format experimental facts directly from published papers.

Methods
Retrieving the experimental facts.  Experimental facts relative to both networks have been manually 
retrieved from the literature. The corpus of scientific papers considered for FSHR signaling was the exact same one 
used to build a comprehensive literature network4, so that the inferred network and the literature network could 
be compared. This corpus was initially assembled by reviewing the literature. As for the corpus of scientific papers 
considered for EGFR signaling, it has been found in the PID24 (data now available through the NDEx database40).

Deduction with answer set programming.  Deduction was performed by means of answer set program-
ming (ASP) using the clingo software41. Our expert rules were straightforwardly translated into ASP rules. The 
ASP program consists of a set of background knowledge and experimental facts, and the translated expert rules. 
This program has a unique answer set which is exactly the set of facts that can be deduced from the initial facts 
and the rules. Traces can be obtained at the same time as sets of deduced facts by using a simple transformation 
of the ASP rules (see Traces in ASP in Supplementary Note for more details). Computations were made on an 
Intel(R) Xeon(R) CPU E5-1620v4 @ 3.50 GHz.

Network FSHR EGFR FSHR + EGFR

Experimental facts 191 274 465

New facts 1552 2413 3058

Pertinent facts 344 583 993

CPU time (s) 4.4 8.7 12.8

Table 2.  Numbers of experimental facts, deduced facts and computation times for the studied networks.
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Inference of experimental plans with SOLAR.  Inference of experimental plans was performed with the 
software SOLAR42, using abductive reasoning. As for deduction with ASP, the expert rules were straightforwardly 
translated into SOLAR’s input language. Experimental plans for a given hypothesis were then computed using the 
negation of the hypothesis as the top clause.

Cell Culture and Western-blots.  Human embryonic kidney (HEK)-293 cells stably expressing mFSH-R 
were cultured in minimum Eagle’s medium supplemented with 10% fetal bovine serum and 1% penicillin/strep-
tomycin in 100-mm dishes. Slow growing early passage (<10) cells were divided into 12-well plates and, at 50% 
confluency, serum-starved for 4 h prior to stimulation. Cells were then incubated with SB203580 (10 μM, 30 min) 
(Sigma, St Louis, MO), Tyrphostin (10 μM, 1 h) (Sigma) or the combination of the 2 inhibitors, before stimulation 
with 100 ng/ml (3.3 nM) of recombinant human FSH (Merck Serono, Darmstadt, Germany). Cell lysates were 
done in 2 × SDS-sample buffer (pH 6.8), followed by boiling. Equivalent amounts of proteins were separated by 
SDS/PAGE on Tris-glycine polyacrylamide gels, transferred to nitrocellulose membranes, and immunoblotted 
with rabbit polyclonal antibodies. The anti- phospho (T202/Y204, diluted 1:2,000) and total (diluted 1:6,000) ERK 
1/2 antibodies were from Cell Signaling Technology (Beverly, MA) and Santa Cruz (Dallas, TX), respectively. 
Rabbit anti-phospho-MEK 1/2 (S217/S221, diluted 1:1,000) and mouse anti-total MEK 1/2 (diluted 1:2,000) 
antibodies were from Cell Signaling Technology (Beverly, MA). Goat anti-rabbit IRDye® 680 antibody (Licor®, 
Lincoln, NE) was used for detection with an Odyssey® CLx scanner (Licor®) and signals were quantified using 
Image Studio software (Licor®). Normalization was applied as ratio of phospho ERK/total ERK signals. Data were 
analyzed using the GraphPad PRISM software and differences between two groups were assessed by a two-tailed 
paired t-test. The cut-off for significance is either 0.05 (⋆) or 0.001 (⋆⋆).

Data and scripts.  All data and scripts that we used to establish the results presented in this document are 
available at: http://bios.tours.inra.fr/bios_group/sites/bios_group/IMG/zip/archive_article.zip.
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