Highly linear low-pass Gm – C filter with self-biasing transconductor for digital TV tuner

A. Abbasi, N Sulaiman, Rozita Teymourzadeh

To cite this version:

Highly linear low-pass $G_m – C$ filter with self-biasing transconductor for digital TV tuner

A. Abbasi, N. Sulaimana and Rozita Teymourzadeh, CEng.b

aIEEE Member University Putra Malaysia; bIEEE/IET Member Neonode Technology

A technique of multiple gated transistors on the basis of self-biasing circuit in this paper is chosen to enhance the linearity of the transconductor, whereas decreasing the bill-of-material (BOM) and complexity of the design. The transconductor is chosen by third-order chebyshev which tracks low-pass filter with low power consumption. The filter cutoff frequency is 50-200 MHz. The hybrid tracking low-pass filter is designed to defeat the problems related to a local oscillator harmonic-mixing for Advanced Television System Committee terrestrial digital TV tuner integrated circuit. The proposed operational transconductor amplifier (OTA) is designed in 90 nm CMOS technology. The simulation result with two-tone test at 100 MHz center frequency shows that the proposed OTA has 5 dBm Input-referred Third-Order Intercept Point (IIP3) improvement compared with a single-gate OTA in the third-order Chebyshev filter. The proposed OTA achieves maximum noise figure (NF) of 13 dB and maximum IIP3 of approximately 21.7 dBm at 100 MHz, whereas consuming 18 mA with 1.2 V supply voltage.

Keywords: ATSC, linearity, local oscillator harmonic mixing, multiple gated transistors, tracking filter, transconductor-C filter, self-biasing.

1. Introduction

In recent years, digital television (DTV) has become popular because of the high quality and band-width efficiency with several channels prepared to the users. Thus, DTV obtain more consideration in the market to try to decrease DTV costs. One of the approaches to reach the goal is to decrease the BOM (Greenberg et al. (2013)). A wide VHF/UHF frequency range from 48 MHz to 862 MHz have been utilized by several available cable TV and terrestrial standards like Digital Video Broadcasting (DVB) and Advanced Television System Committee (ATSC) where it can support hundred broadcasting channels. Broadband essence of the TV spectrum causes several serious problems. Local oscillator (LO) harmonic mixing problem is one of the critical challenges; the unfavorable input channel situated at odd-order harmonic frequencies of the square-wave LO signal in the RF path are down-converted and mixed with RF input. Therefore, it degrades the signal-to-noise ratio (SNR) of the tuner system (Cha, Kwon, Choi, Kim, & Lee (2010)).

Several studies discovered to solve the LO harmonic mixing difficulty like a double-conversion with up-and-down conversion architecture and single-conversion
receiver Hsiao, Meng, & Wei (2012); Stevenson et al. (2007); Syu, Meng, Teng, & Liao (2010); Ying-mei, Yong-kang, Zhi-hang, & Li (2010). However, they are based on external high-quality factor (Q) inductors, off-chip surface acoustic wave (SAW) filters and large number of mixers that are area consumers, bulky and expensive. Recently, a low cost and high integration structure was initiated as an excellent candidate with a harmonic rejection mixer (HRM) and direct-conversion receiver (Chen (2011); Lerstaveesin, Gupta, Kang, & Song (2008); Mohamed & Manoli (2013); Trabelsi, Bouzid, Derbel, & Masmoudi (2008)). As far as, HRM is not able to reject all odd-order harmonics of the LO that digital TV tuner system requires, a tracking filter is needed in order to eliminate undesirable signals with frequencies of LO odd-order harmonics. Furthermore, low noise and highly linear performances are the requirements of this filter to prevent from degrading the SNR of the whole receiver.

In this study, a highly linear, low noise and low power CMOS tracking filter to overcome the problem of LO harmonic-mixing is implemented in a 90 nm CMOS technology for ATSC terrestrial and cable standard. The third-order chebyshev filter, called hybrid tracking low-pass filter (HTLPF), including of first-order passive RC filter and the second-order Gm-C filter is introduced for low power consumption. The method of multiple gate transistor (MGTR), without external bias circuitry is proposed to reduce BOM, complexity of the design and improve linearity (Abbasi, Rozita Teymourzadeh, & Sulaiman (2014), Kwon & Lee (2011), Jin & Kim (2011); I. S. Kim (2000); T. W. Kim, Kim, & Lee (2004)).

2. Literature of Tracking Filter

High linearity and low noise performance with low power are the critical performances of the tracking filter because the sensitivity of entire system depends on it. There are many publications in this area (Comer, Comer, Casper, & Korth (1999); Gupta, Lerstaveesin, Kang, & Song (2007); Kwon, Kim, & Lee (2009); Sun, Jeong, Lee, Lee, & Lee (2010)). Passive filters are generally desired (Aldeeb & Kalkur (2014)) due to high linearity performance. However, bulky and large inductance raises BOM and extra pins. In the area of active filter design, those issues cited before have been solved. A coupled-resonator topology by Gupta et al. (2007) is employed by fourth-order active tunable filter to overcome the problem of LO harmonics with HRM. However, it does not have good linearity and noise performance. In Sun et al. (2010), source degeneration method is adopted to enhance the performance of linearity for an active band-pass filter. However, it has the problem with linearity and noise performance. Recently, a third-order hybrid tracking low-pass filter adopting MGTR method is introduced with high linearity and good noise performance. In addition, the power efficiency of this filter regarding to other performance is plausible. However, the transconductor used in Kwon & Lee (2011), in Fig. 1, shows that the external bias circuitry increases BOM, complexity of the design and area consumption, especially, with big resistors and extra capacitors.

3. Filter Requirement

A direct-conversion receiver has been introduced with positive specification such as low power dissipation, less BOM and low cost; however, it has the LO harmonic-mixing problem. There are many papers trying to solve the problem of LO harmonics with HRM (Lerstaveesin et al. (2008), Moseley, Ru, Klumperink, & Nauta
(2009); Rafi, Piovaccari, Vancorenland, & Tuttle (2011)). However, to overcome the problem of LO harmonics with an HRM regarding to digital TV requirements, HRM needs many sub-mixers and phase-shifted LOs that makes HRM intricate and impossible (Shah (2009)). Over 60 dB rejection is obtained by employing a harmonic rejection stage for third and also fifth LO harmonics (Moseley et al. (2009)). However, it makes system complicated. By using simple circuit by Cha, Song, Kim, & Lee (2008), over 60 dB rejection for third-order LO harmonics is obtained but it cannot reject other LO harmonics. Since the harmonic rejection ratio (HRR) should be higher than 60 dB for all LO harmonics, tracking filter needs to be used. High linearity and low noise are essential performance of the filter due to not degrading the SNR of the whole tuner system.

A block diagram of TV tuner with a tracking low-pass filter (TLPF) proposed by Kwon & Lee (2011) and an HRM with mismatch calibration suggested by Cha et al. (2008) is indicated in Fig. 2. With these two match circuits, the requirements for RF front-end to remove all LO harmonics more than 60 dB is achieved. Table 1. shows the requirement of TLPF rejection and HRM with mismatch calibration. It should repress signals by over 20 dB and 43 dB at fifth and seventh LO harmonics, respectively.

Figure 1. Transconductor proposed by Kwon & Lee (2011).

Figure 2. Block diagram of RF front-end for digital TV by Cha et al. (2010).
Table 1. HRM and Filter Specification Cha et al. (2010)

<table>
<thead>
<tr>
<th>LO harmonics</th>
<th>3rd</th>
<th>5th</th>
<th>7th and 9th</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRM rejection</td>
<td>>60 dB</td>
<td>>40 dB</td>
<td>>17 dB</td>
</tr>
<tr>
<td>Filter rejection requirement</td>
<td>None</td>
<td>>20 dB</td>
<td>> 43 dB</td>
</tr>
<tr>
<td>Filtering range</td>
<td>48 MHz ∼ 172 MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Hybrid Tracking Low-Pass Filter

In this section, hybrid tracking low-pass filter with high linearity and low power for ATSC terrestrial digital TV tuner is demonstrated. In Fig. 3, it is inferred that the third-order chebyshev filter consist of the second-order transconductor-C filter and the first-order passive RC. Table 2. shows the values for the transistors and capacitors.

The HTLPF transfer function is indicated below Kwon & Lee (2011)

\[H_{HTLPF}(s) = \frac{1}{sR_1C_1 + \frac{G_{m1}G_{m2}}{C_2C_3} s^2 + \frac{G_{m2}}{C_2} s + \frac{G_{m1}G_{m2}}{C_2C_3}} \] (1)

where \(G_{mi} \) represents the transconductance of the i-th transconductor, \(C_i \) demonstrates the capacitance of the i-th capacitor and \(R_1 \) indicates the resistance of the resistor. The third-order chebyshev low-pass filter is adopted due to the requirement in Table 1. to reject all LO harmonic. From two stages of the third-order chebyshev low-pass filter, the RC went after a second-order transconductor-C filter, the real and complex conjugate poles are calculated. Because of utilizing HRM with mismatch calibration circuitry Cha et al. (2008), the requirement for turning range of the cutoff frequency changes from 48 MHz to 172 MHz.

Table 2. Capacitors and transistors Value

<table>
<thead>
<tr>
<th>Components</th>
<th>(C_1 [\text{pF}])</th>
<th>(C_2 [\text{pF}])</th>
<th>(C_3 [\text{pF}])</th>
<th>(G_{mi} [\text{mS}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 MHz</td>
<td>10</td>
<td>36</td>
<td>71</td>
<td>16</td>
</tr>
<tr>
<td>75 MHz</td>
<td>8</td>
<td>24</td>
<td>47</td>
<td>16</td>
</tr>
<tr>
<td>100 MHz</td>
<td>5</td>
<td>19</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>150 MHz</td>
<td>4</td>
<td>12</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>200 MHz</td>
<td>3</td>
<td>9</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Transistor</td>
<td>MT</td>
<td>ST</td>
<td>LT</td>
<td>CT</td>
</tr>
<tr>
<td>Sizes([W/L])</td>
<td>115(\mu m) /0.18(\mu m)</td>
<td>13(\mu m) /0.11(\mu m)</td>
<td>200(\mu m) /0.18(\mu m)</td>
<td>200(\mu m) /0.09(\mu m)</td>
</tr>
</tbody>
</table>
4.1 G_m Block

In the $G_m - C$ filter design, G_m block plays a critical role to degrade the linearity performance. In HTLPF, the linearity of the filter related on $G_m - C$ part of the filter because the passive filter is linear enough. The requirement of the linear $G_m - C$ filter is a highly linear G_m block.

In the literature, many linearization techniques have been published to improve IIP3 of RF circuit. Source degeneration is the most popular technique which applies an inductor or a resistor (Monsurro, Pennisi, Scotti, & Trifiletti (2007)). However, resistor degrades noise performance and inductor increases area consumption. (Fayed & Ismail (2005)) introduce a transconductor linearized by MOSFETs in triode region. However, this method uses extra power because of using MOSFET in triode region.

The MGTR method is one of the best examples to improve the linearity of the transconductor without any degradation in gain, noise Figure, and power dissipation. The current source i_{DS} of the simple common source defined by using Taylor series expansion B. Kim, Ko, & Lee (2000); T. W. Kim et al. (2004)

$$
 i_{DS} = I_{dc} + g_m v_{gs} + \frac{g_m'}{2!} v_{gs}^2 + \frac{g_m''}{3!} v_{gs}^3 + ...
$$

(2)

here the first and the second derivative is defined, with respect to gate-source voltage v_{gs}, by g_m' and g_m'' respectively. It is well known that the third-order intermodulation distortion (IMD3) of system is related to v_{gs}^3. In MGTR, g_m'' that has an critical role in defining the performance of linearity, mostly IMD3 and output-referred third-order intercept point (OIP3) can approach zero by MGTR method.

Fig. 4 shows the proposed transconductor used in HTLPF. MGTR method is used to enhance the linearity performance. The main transistors (MT) have fully differential (FD) structure. The second transistor (ST) has pseudo-differential (PD) structure. The control transistor (CT) control the current flowing in the ST. Regarding to $I = K W (V_{GS} - V_{th})^2$, controling the current is approximately similar to controlling the V_{GS} to shift the $g_{m''}$ of the ST.

Fig. 5 indicates the characteristics of g_m and g_m'' of OTA. Fig. 5(a) indicate the overall g_m which coming from superposing g_m of MT and ST. Fig. 5(b) which is close to zero are achieved by superposing g_m'' of MT and ST. The reason that MT is chosen as a FD and ST is chosen as a PD presented in Kwon & Lee (2011).
4.2 Power Efficiency

Power efficiency of the transconductor, G_m/I_D, plays an critical role in the power efficiency of the filter, where G_m is the overall transconductance and I_D is the current consumption of the transconductor. Generally, from G_m/C cutoff frequency of the system can be calculated, hence, high cutoff frequency is required large G_m with reasonable C. Therefore, more current is required. The MGTR method is an effective way to reach high linearity performance with low power consumption Kwon & Lee (2011).

4.3 Linearity and performance improvement

It is undeniable that many variables can limit the linearity performance, by integration of the first derivative of transconductance (g_m') and harmonic feedbacks by parasitic capacitors of MGTR and inductance components, such as wire bonding (Aparin & Larson (2005); T. W. Kim et al. (2004)). The MGTR method can mostly overcome with this phenomenon. Equation (3) shows the IIP3 of Common-source MOSFET.
\[IIP_3(2\omega_n - \omega_b) = 1/(6Re[Z_s(\omega)]|H(\omega)||A_1(\omega)|^3|\varepsilon(\Delta\omega, 2\omega)|) \] (3)

\[\varepsilon(\Delta\omega, 2\omega) = g_3 - g_{OB} \] (4)

\[g_{OB} = \frac{(2g_2^3)}{3}\left(\frac{2}{g_1 + g(\Delta\omega)} + \frac{1}{g_1 + g(2\omega)}\right) \] (5)

Where \(H(\omega), A_1(\omega)\) and \(Z_s(\omega)\) are the linear part of the equation and determined by requiring gain and noise figure. The value of \(\varepsilon(\Delta\omega, 2\omega)\) depends on \(Z_S\) and \(Z_L\) at sub-harmonic \(\Delta\omega\) and second harmonic \(2\omega\) frequency. It is known [60] that, \(Z_S(\Delta\omega)\) and \(Z_L(\Delta\omega)\) have small value and do not affect \(\varepsilon(\Delta\omega, 2\omega)\). On the other hand, \(Z_S(2\omega)\) and \(Z_L(2\omega)\) have the sufficient value to affect \(\varepsilon(\Delta\omega, 2\omega)\) and reduce IIP3. In CS MOSFET, the \(g(2\omega)\) is approximately given by equation (6) (B. Kim, Ko, & Lee (2001), Kwon et al. (2009)).

\[g(2\omega) \simeq g_m \times \frac{1 + 2j\omega C_{gs}Z_1 + 2j\omega C_{gd}Z_2}{1 + \omega TC_{gd}Z_2} \] (6)

Here \(Z_1\) is the impedance looking into the source and \(Z_2\) is the impedance looking into the load. The \(\omega_T\) is the unit current cutoff angular frequency defined as \(\omega_T = g_m/\epsilon_{gs}\). It is well-known by Kwon et al. (2009), \(g_{OB}\) reduced, finally the effect of \(\varepsilon(\Delta\omega, 2\omega)\) on the IIP3 decreased. In equation (6), \(Z_2\) is important for increasing the value of \(g(2\omega)\). In the OTA the output impedance is large, thus the effect of the combination of \(g_m\) and the second harmonic feedback might be critical. On the other hand, the capacitors in OTA-C structure make the output impedance small. Therefore, \(Z_2\) in OTA-C structure is small. As a result, the linearity performance of \(G_m - C\) Filter, employing MGTR, works well.

4.4 Noise distortion evaluation

From each noise source of HTLPF, such as resistor and transconductor, the overall output noise power spectrum density (PSD) of the HTLPF is achieved. \(R_1, G_{m1}\) and \(G_{m2}\) are the noise source of the HTLPF. As a result, the overall output noise PSD of the HTLPF is in Kwon & Lee (2011)

\[S_{No,HTLPF} = S_{No,R1} + S_{No,Gm1} + S_{No,Gm2} = H^2_{HTLPF}.S_{Ni,R1} + H^2N.Gm1.SNi,Gm1 + H^2N.Gm2.SNi,Gm2 \] (7)

Here \(S_{Ni,Gmi}\) and \(S_{Ni,R1}\) are transconductor \(G_{mi}\) and input-referred noise PSD.
of R_1 respectively. Besides, $H_{N,Gm1}(s)$ and $H_{HTLPF}(s)$ are transfer function from noise source of transconductor G_{m1} to output and transfer function of the HTLPF, respectively.

$$H^2_{N,Gm1} = H^2_{N,Gm2} = H_{Biquad}(s) = \frac{(g_{m1}g_{m2})/(C_2C_3)}{(s^2 + s g_{m2}/C_3 + (g_{m1}g_{m2})/(C_2C_3))} \quad (8)$$

Due to the fact that the dominating of $g_{m,ST}$ and $g_{m,LT}$ is less, they can be ignored in the calculation. Thus, the NF of third-order low-pass filter is given by

The NF of HTLPF can be expressed to

$$NF_{HTLPF} \approx 1 + \frac{R_1}{R_s}$$

$$\left(1 + \omega_0^2 R_1^2 C_1^2\right) \left(1 + \frac{1}{Q^2_{Biquad}}\right) \frac{2\gamma}{g_{m,MT}R_s} \quad (9)$$

where $\omega_0 = \sqrt{G_{m1}G_{m2}/C_2C_3}$, $Q_{Biquad} = \omega_0 C_3/G_{m2}$, $g_{m,MT}$ is transconductance of the MT in Fig. 4, and γ presents a noise parameter. The noise effect of ST and CT are ignored because of negligible contribution and operating in subthreshold region. Table 3 shows the specification of hybrid tracking filter.

<table>
<thead>
<tr>
<th>Technology</th>
<th>90 nm technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter type</td>
<td>Third-order chebyshev low-pass filter</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>1.2 V</td>
</tr>
<tr>
<td>Current consumption</td>
<td>18 mA</td>
</tr>
<tr>
<td>Tuning range of cutoff frequency</td>
<td>50 MHz \sim 200 MHz</td>
</tr>
<tr>
<td>Attenuation</td>
<td>48 dB @ higher order harmonics</td>
</tr>
<tr>
<td></td>
<td>39 dB @ 5th order harmonic</td>
</tr>
<tr>
<td></td>
<td>26 dB @ 3rd order harmonic</td>
</tr>
<tr>
<td>Output referred third-order intercept point</td>
<td>21.7 dBm</td>
</tr>
<tr>
<td>NF</td>
<td>13 dB</td>
</tr>
</tbody>
</table>

5. Design verification and Measurement

The proposed transconductor with self-biased MGTR method adopted with third-order chebyshev low-pass filter, to solve the LO harmonics, was tested with Advance Design System in 90 nm technology and compared with single-gate transconductor without STs and CTs transistors shown in Fig. 6. It consumes 21.6 mW with a 1.2 V supply voltage. The calculated frequency response of the filter is illustrated in Fig. 7. Thus, from 50 MHz to 200 MHz frequency response achieved. 26 dB, 39 dB and 48 dB rejection are attained for three, five, and seven times greater than the cutoff frequency of the HTLPF. Therefore, it can support the requirements shown in Table 1. As a result, by using both HRM with mismatch calibration and HTLPF, over 60 dB rejection can be achieved for all odd-order LO harmonics.
Fig. 8 indicates the calculated NF of HTLPF based on 50 Ω reference is approximately 13 dB in different cutoff frequencies. Fig. 9 plots the linearity performance of the HTLPF with MGTR and single gate transconductor. The two-tone, 100 and 105 MHz are created, mixed and used for input of the HTLPF. Fig. 9(c) draws the output versus input power to show the IIP3 of 21.7 dBm in 100 MHz cutoff frequency with 5 dBm improvement compare with Fig. 9(a). Fig. 9(d) shows the IMD3 and third-order LO harmonic rejection that reject IMD3 22 dB more than Fig. 9(b). Table 3. indicates the summary of overall performance of the HTLPF. Table 4. shows the comparison between this work and previous works.

![Figure 6. Single-gate transconductor without MGTR.](image)

![Figure 7. Frequency response.](image)

![Figure 8. Noise figure of different cutoff frequency of filter.](image)
(a) IIP3 with single-gate.

(b) IMD3 with single-gate.

(c) IIP3 with MGTR.

(d) IMD3 with MGTR.

Figure 9. Linearity measurements of third-order chebyshev filter with MGTR and single-transistor transconductor.

Table 4. Comparison with Previous Works

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>0.18µm CMOS</td>
<td>0.13µm CMOS</td>
<td>0.13µm CMOS</td>
</tr>
<tr>
<td>Cutoff freq [MHz]</td>
<td>50-200</td>
<td>70-280</td>
<td>200</td>
</tr>
<tr>
<td>IIP3 [dBm]</td>
<td>17.3</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Filter order (N)</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>single (S) or</td>
<td>S</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Differential (D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdc [mW]</td>
<td>23.4</td>
<td>21</td>
<td>5.2</td>
</tr>
</tbody>
</table>
6. Conclusion

To address the LO harmonic mixing problem, which is major problem for ATSC terrestrial digital TV standard, a very linear third-order chebyshev HTLPF is designed with 90 nm CMOS technology. By adopting RC filter with second-order transconductor-C filter, a third-order chebyshev filter is created. The MGTR method with internal biasing circuit is employed to enhance the linearity of the HTLPF. 13 dB NF with 21.7 dBm IIP3, while consuming 18 mA from 1.2 V supply voltage, can be achieved from HTLPF by self-biased MGTR linearization technique. The cutoff frequency of the filter can be tuned form 50 to 200 MHz. By adopting HTLPF with HRM with mismatch calibration circuit, over 60 dB LO harmonic rejection is attained.

References

Darvishi, M., Van der Zee, R., Klumperink, E., & Nauta, B. (2012). A 0.3-to-1.2 ghz tunable 4 th-order switched g m-c bandpass filter with; 55db ultimate rejection and out-of-band iip3 of+ 29dbm. In Solid-state circuits conference digest of technical papers (isscc), 2012 ieee international (pp. 358–360).

Hsiao, Y.-C., Meng, C., & Wei, H.-J. (2012). 60-ghz 0.18-um cmos dual-conversion receiver using schottky diode mixer and slow-wave rat-race hybrid. In *Millimeter waves (gsmm), 2012 5th global symposium on* (pp. 343–346).

