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ABSTRACT  

Optical input/output interfaces between silicon-on-insulator (SOI) waveguides and optical fibers, allowing robust, cost-

effective and low-loss coupling of light, are fundamental functional elements in the library of silicon photonic devices. 

Surface grating couplers are particularly desirable as they allow wafer-scale device testing, yield improved alignment 

tolerances, and are compatible with state-of-the-art integration and packaging technologies. While several factors jointly 

contribute to the coupler performance, the grating directionality is a critical parameter for high-efficiency fiber-chip 

coupling. To address this issue, conventional coupler designs typically call upon comparatively complex architectures to 

improve light coupling efficiency. Increasing the intrinsic directionality of the grating by exploiting the blazing effects is 

another promising solution. In this paper, we report on our recent advances in development of low-loss grating couplers 

that afford excellent directionality, close to the theoretical limit of 100%. In particular, we demonstrate, by theory and 

experiments, several implementations of blazed grating couplers with layout features that are compatible with deep-

ultraviolet (deep-UV) optical lithography. Devices can be advantageously implemented on various photonic platforms, 

including industry-specific and the offerings of publicly accessible foundries. The first experimental realizations of 

uniform deep-UV-compatible couplers yield losses of -2.7 dB at 1.55-µm and a 3-dB bandwidth of 62 nm. A 

subwavelength-index-engineered impedance matching transition is used to reduce back-reflections down to -20 dB. 

Keywords: Silicon photonics, single-mode optical fiber, surface grating couplers, sub-wavelength grating 

metamaterials, deep-ultraviolet optical lithography, complementary metal-oxide-semiconductor technology 

1. INTRODUCTION  

Silicon-on-insulator (SOI) has become a compelling material platform for silicon photonics in order to realize nano-scale 

integrated devices. This is partly due to the compatibility with the established manufacturing tools, techniques, and 

testing processes developed by the industries of micro-electronics and fiber optic telecommunications. Furthermore, the 

fabrication services of silicon nanophotonic foundries has become widely accessible, thereby opening a new route for the 

fabless development of complex photonic integrated circuits that contain hundreds or even thousands of different 

components on a single silicon (Si) chip1-5. However, the sub-micrometric cross-sectional dimensions of SOI 

waveguides imposes a fundamental challenge for the efficient coupling of light to or from external optical ports5-10. 

   Optical interfacing between fibers and SOI nanophotonic platforms that ensure improved fabrication tolerance, 

reduced cost, and low-loss coupling are greatly recognized to be crucial on-chip functions in integrated photonics. In this 

context, surface grating couplers play elementary, yet substantial role for a widespread deployment. Grating-coupled 

optical interfaces allow a flexible positioning on the Si chip, thereby enabling wafer-scale device characterization, 

preferred for mass-volume scenarios5-8. In addition, the surface coupling structures afford enhanced alignment tolerances 

in comparison to the edge couplers9, 10 as well as are compatible with integration and packaging technologies4-8.   

   Surface grating couplers, with an out-of-plane coupling layout, are particularly unique components in the library of 

silicon photonic devices. They inherently desire a high vertical index contrast to provide an outstanding fiber-chip 

coupling. However, overall coupling efficiency is restricted by several factors. This mainly encompasses the back-

reflections at the waveguide-to-grating junction, the mode size disparity between the Gaussian-like optical fiber mode 

and the exponential decaying profile of the diffracted grating beam, as well as the parasitic optical power radiated into 



 

 
 

 

the bottom Si substrate. The first two issues may simultaneously be addressed by grating coupler apodization11-18. This 

includes approaches such as an etch depth variation11, a duty cycle optimization12, 13, or a sub-wavelength grating (SWG) 

refractive index engineering14-18. However, the limited diffraction efficiency of the grating towards the optical fiber, also 

known as a grating directionality, is a significant challenge.       

   The improvement of the grating diffraction performance may be achieved by exploiting the effect of thin-film 

interference via optimization of the radiation angle16-18. Additional techniques to enhance the directionality include 

supplementary high- or low-index overlayers19-22, backside wafer metallization23-25, distributed single or multi-layer 

Bragg reflectors26, 27, multi-level grating architectures28-30, or customized etch depths11, 31, 32. However, afore-described 

approaches typically result in comparatively complex structures, with the expense of specific fabrication steps and extra 

processing costs. As an alternative, it has been shown, both theoretically and experimentally, that the blazing effect may 

advantageously be exploited to achieve remarkably high grating directionalities33-39. Nevertheless, in many proof-of-

concept demonstrations33-38, high-efficiency blazed grating couplers were fabricated using a time-consuming and rather 

expensive electron beam (e-beam) lithography. Albeit proven useful, e-beam lithography systems are not suitable, 

especially due to lack of compatibility with large-volume industry-oriented applications. On the other hand, recent 

research works also suggest that the migration from 220-nm-thick SOI platforms towards their thicker counterparts4-6, 8, 

especially 300-nm-thick Si films, may be advantageous in terms of improving the performance of other passive and 

active photonic devices5, 8, 40.           

   In this work, we report our results on the design, fabrication, and experiments of a high-directionality fiber-chip 

grating coupler, being seamlessly fabricated by using 193-nm deep-ultraviolet (deep-UV) photolithography. The grating 

coupler is implemented on a 300-nm-thick Si film in a 300 mm SOI wafer, relying on the combined deep (300 nm) and 

partial (150 nm) etching steps. More specifically, the proposed blazed grating coupler design, favoring a L-shaped device 

geometry, yields an eminently high directionality, exceeding 98%, with a reduced fabrication complexity compared to 

the previously demonstrated blazed coupling structures33-36. Experimentally, a total fiber-chip coupling loss up to -2.7 dB 

is demonstrated, with a 3-dB coupling bandwidth of 62 nm. Furthermore, the inclusion of a short SWG-index-engineered 

transition affords a noticeable reduction of the measured grating reflectivity, down to -20 dB.       

   This paper is organized as follows. After the introductory Section 1, the Section 2 describes the design of L-shaped 

high-directionality grating couplers. In Section 3, we describe the fabrication, characterization, and achieved 

experimental results. Section 4 provides a theoretical outlook towards the development of sub-decibel L-shaped coupling 

structures. Finally, conclusions are drawn in Section 5.  

2. DEVICE DESIGN  

Schematic views of the proposed L-shaped fiber-chip grating coupler with a SWG transition is shown in Figure 1.  

 

Figure 1. Schematics of a L-shaped fiber-chip grating coupler: (a) side (y-z plane) view and (b) top (x-z plane) view.   

   The grating diffraction period (Λ) is composed of deep- and shallow-etch trenches, with lengths denoted as LDET and 

LSET, respectively, and a non-etched Si strip of a length LNES. Here, the deep- and the partial-etched levels are set to be 

300 nm and 150 nm, respectively, for the definition of the grating coupler pattern. The device is optimized for a coupling 

of light with a transverse electrical (TE) polarization state, operating in a conventional optical communication band (C-

band), near a central wavelength of 1.55 µm. The designs of grating couplers were performed by using a two-

dimensional (2-D) Fourier-based tool41 and a three-dimensional (3-D) Finite Difference Time Domain (FDTD) 

simulator, from Lumerical42.     



 

 
 

 

   The L-shaped grating arrangement advantageously exploits the blazing effect for an extraordinary ultra-high 

diffraction performance, in which the optical power radiated towards the superstrate (upper cladding) is maximized, 

while the parasitic radiation of optical power into the bottom Si substrate is minimized. In this work, we define the 

grating directionality as the ratio between the power diffracted towards the upper cladding, where the optical fiber is 

situated, and the total out-coupled optical power (the sum of a power diffracted towards the superstrate and substrate).  

   At a first design stage, we optimized the grating coupler dimensions without a SWG grating transition. In Figure 2a - 

2c are shown 2-D calculations of the grating coupler directionality as a function of the length of the shallow-etch (LSET) 

and the non-etched (LNES) grating segments. Here, different lengths of the deep-etched grating trenches (LDET) were 

considered (LDET = 50 nm; LDET = 100 nm; and LDET = 150 nm). From this analysis, it became apparent that a broad span 

of grating geometries are viable to provide a high diffraction performance, typically higher than 90%, which in turn, also 

suggests relatively large tolerance in respect to the presence of fabrication errors. The following dimensions of the 

nominal grating coupler were chosen: LDET = 120 nm; LSET = 290 nm; and LNES = 310 nm39. This particular geometry 

affords a directionality of 98%. Furthermore, Figure 2d shows a grating directionality as a function of the depth variation 

in partially etched grating trenches, also proving an excellent tolerance to fabrication imperfections. The spectral 

performance of the grating directionality is shown in Figure 2e.      

 

Figure 2. 2-D contour maps of the directionality as a function of shallow- and non-etched grating segments, for different 

lengths of a deep-etched trenches: (a) LDET = 50 nm; (b) LDET = 100 nm; and (c) LDET = 150 nm. (d) Directionality as a 

function of the partial etch depth in grating trenches. (e) Spectral evolution of the directionality for nominal grating coupler 

designs, with and without the SWG transition stage, as predicted by 3-D FDTD calculations. 

   At a next phase of device design, we implemented a short SWG metamaterial transition stage between the injection 

waveguide and the grating in order to control the back-reflections. This metamaterial-based transition has been realized 

by exploiting the concept of SWG nano-structuration. This technologically profound concept was demonstrated for the 

first time in Refs.43-45, and most recently, extensively utilized in a variety of photonic devices46, including components 

for wideband47-49 and narrowband50-52 spectral operation, sensing structures53-55, or waveguides for extended mid-infrared 

(mid-IR) wavelengths56, 57, to name a few outstanding implementations.  

   More specifically, the SWG anti-reflection transition was implemented along the transversal direction, i.e. 

perpendicular to the light propagation direction (along the x-direction). We designed section length (LSWG) and the 



 

 
 

 

widths of the filling gaps (WG) and lateral Si strips (WB) to minimize the back-reflections. Figure 3a shows the grating 

reflectivity, calculated by 3-D FDTD, as a function of the gap width (WG) and the length of an anti-reflection section 

(LSWG). The transversal SWG period (ΛSWG) was fixed to 400 nm, being small enough to suppress diffraction effects14, 15.  

According to these simulations, the reflectivity can be minimized for different SWG configuration, thereby this approach 

provide a good design flexibility. In Figure 3b, we compare the spectral performance of the reflectivity for the grating 

coupler designs with and without the SWG anti-reflection stage, considering LSWG = 255 nm and WG = 100 nm39. The 

proposed SWG transition stage yields an eight-fold reduction in grating reflectivity, from a 16% (-8 dB) to 2% (-17 dB) 

at a reference wavelength of 1.55 µm. It is worth mentioning that the proposed SWG metamaterial transition minimizes 

the back-reflections in the waveguide-to-grating junction across broad spectral range, exceeding 100 nm.  

 

Figure 3. (a) 2-D contour map of the grating reflectivity as a function of the length of the SWG transition and the width of 

transversal gaps. (b) Spectral evolution of the reflectivity for nominal grating coupler designs, with and without the SWG 

transition stage, as predicted by 3-D FDTD calculations. 

   It is worth highlighting that the implementation of SWG reflection-cancelling stage does not affect the grating 

directionality. According to our 3-D FDTD simulations, the grating coupler with SWG-index engineered transition still 

provides a directionality higher that 98%, as shown in Figure 2e. We calculated the coupling efficiency for both grating 

coupler designs, with and without the SWG transition. As shown in Figures 4a and 4b, both 2-D and 3-D calculations 

predict a coupling loss of around -2 dB for both coupler designs, with an off-vertical fiber angle of 22°. Apodization 

techniques, as will be discussed in Section 4, may advantageously be utilized to improve the overall coupling 

performance, which in turn, allows us to deeply exploit the potential of the L-shaped surface grating couplers.  

 

Figure 4. 2-D and 3-D calculations of the overall coupling losses as a function of a wavelength for nominal grating coupler 

designs (a) without and (b) with a SWG-index-engineered transition.  

3. FABRICATION AND OPTICAL TESTING  

Fiber-chip grating couplers were fabricated using a 300 mm SOI photonic platform with a 193-nm deep-UV optical 

lithography. The vertical dimensions are composed 300-nm-thick Si layer and 720-nm-thick buried oxide (BOX) layer. 

The double-level etching process was utilized to define the geometry of the grating coupler, with a 150 nm partial Si etch 

level for shallow-etch trenches and 300 nm deep etching for full-etch grating trenches and interconnecting strip 

waveguides, respectively. The grating couplers were 15-µm-wide and 21-µm-long, and were connected to the single-

mode waveguides by adiabatic tapers with a length of 500 µm. Finally, fabricated devices were covered by a layer of 

silicon dioxide (SiO2), which acts as a protection layer. The scanning electron microscopy (SEM) images of fabricated 

double-etch L-shaped surface grating couplers are shown in Figure 5d. 



 

 
 

 

 

Figure 5. (a) Tested coupling loss as a function of a wavelength for both L-shaped grating designs. Detail look on a response 

of grating couplers: (b) without and (c) with SWG transition stage. (d) SEM images of fabricated L-shaped grating couplers.   

   Fabricated fiber-chip grating couplers were characterized in a back-to-back testing configuration. Cleaved single-mode 

optical fibers (SMF-28) were used as external access ports at the input and the output of the Si chip. The overall fiber-

chip coupling efficiency was determined from the insertion loss measurements of two identical surface grating couplers 

with a back-to-back arrangement.  

   The measured fiber-chip coupling efficiencies, with and without a SWG transition stage, are shown in Figures 5a - 5c. 

More specifically, an experimental peak coupling efficiency of -3.4 dB near a wavelength of 1560 nm, with a 3-dB 

bandwidth of 46 nm, was tested for a grating coupler design without the SWG transition. Here, the spectral response of 

the grating coupler exhibits noticeable Fabry-Perrot fringes. From the amplitude of fringes, which varies between 0.7 dB 

and 0.85 dB and a periodicity of ~0.26 nm, we estimated a grating reflectivity of ~8% (-11 dB). The origin of these 

ripples is attributed to the back-reflections caused by the large discontinuity at the interface between the grating and the 

injection waveguide. Conversely, for a grating coupler with a SWG transition stage, the tested coupling efficiency 

reaches the peak of -2.7 dB at the wavelength of 1565 nm, with a coupling bandwidth of 62 nm. In this case, the coupler 

spectral response still shows some residual fringes, yet of comparatively smaller amplitudes up to 0.1 dB. This yields a 

reflectivity of ~1% (-20 dB), which is an eight-fold reduction in the measured back-reflections.   

4. L-SHAPED GRATING COUPLERS OF SUB-DECIBEL LOSSES 

In order to further improve the performance of the blazed surface grating couplers with a L-shaped geometry, the grating 

coupler is apodized by using SWG refractive index engineering. The apodization was performed by varying the effective 

refractive index of the SWG metamaterial in the etched grating trenches, both deep- and shallow-etch segments, along 



 

 
 

 

the propagation direction (z-direction) to match the near-field profile of the radiated grating beam to the mode of SMF-

28 optical fiber, i.e. to a Gaussian-like fiber mode profile of a 10.4 µm mode field diameter (MFD) at a central 

wavelength of 1.55 µm. By adjusting the SWG filling factor, defined as WG,i/ΛSWG, a wide range of SWG refractive 

indexes may be synthesized14, 15, yet keeping critical dimensions compatible with the deep-UV optical lithography5-8. 

The optimal apodized device geometry was determined according to design strategy reported in Refs.16-18.  

 

Figure 6. Estimated spectral performance of a L-shaped apodized fiber-chip grating coupler: (a) directionality; (b) 

reflectivity; and (c) coupling loss. (d) 2-D contour map of the coupling loss as a function of the wavelength and the 

minimum feature sizes.   

   According to our design predictions, the apodized L-shaped grating coupler yields a fiber-chip coupling of -0.45 dB, 

with a directionality of 98% and low back-reflections of 0.45% (-23.5 dB). The calculated 1-dB and 3-dB coupling 

bandwidth of the device is 34 nm and 59 nm, respectively. The spectral performance of a proposed L-shaped apodized 

grating coupler is shown in Figures 6a - 6c. Furthermore, the apodized L-shaped fiber-chip grating couplers also exhibits 

an improved robustness in respect to the different restrictions for minimum feature sizes. In particular, as shown in 

Figure 6d, the apodized L-shaped coupler designs predict an impressive coupling performance variability from -0.45 dB 

to -1 dB, for a critical dimensions variation in a range from 80 nm to 200 nm, thereby affording a fiber-chip coupling 

loss penalty of only 0.55 dB. These features of the proposed high-directionality grating coupler with a SWG 

metamaterial refractive index apodization hold the promise to realize integrated circuits that require efficient, robust, and 

foundry-compatible fiber-chip optical interfaces for deployment of silicon nanophotonic technology in large-volume 

applications.  

5. CONCLUSION  

In summary, we reported on the design, fabrication, and experimental demonstration of SWG-index-engineered fiber-

chip grating couplers that simultaneously afford a high-directionality and a low-reflectivity, favoring a simplified L-

shaped device geometry. The coupling devices were seamlessly realized on a 300 mm SOI wafer in a foundry-

compatible fabrication flow, including 193 nm deep-UV optical lithography and double-level dry etching process. The 

fabricated grating couplers yielded a tested fiber-chip coupling efficiency up to -2.7 dB, with a 3-dB bandwidth of 62 

nm. Furthermore, we also demonstrated by experiments that a short SWG transition stage effectively reduced the 

reflectivity down to 1%. This was an eight-fold enhancement in comparison to the conventional blazed grating couplers. 

In addition, we also theoretically elaborated a L-shaped fiber-chip grating coupler apodized by means of SWG 

metamaterial refractive index engineering that predicts a sub-decibel coupling efficiency of -0.45 dB. Coupling device 

predicts a large tolerance to the minimum feature size restrictions, being critical for device fabrication as well as for the 



 

 
 

 

pattern fidelity of the SWG structures. These results prove the desired compatibility with the large-volume 

manufacturing processes, thereby opening a promising route towards further deployment of high-performance and price-

reduced fiber-chip coupling interfaces in silicon nanophotonic applications. 
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