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Reduced-order modelling using nonlinear modes and triple nonlinear modal
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bÉcole Centrale de Lyon, LTDS, CNRS UMR 5513, 69130 Écully, France

Abstract

This paper introduces a novel reduced-order modelling technique well-suited to the study of nonlinear
vibrations in large finite element models. The method combines the concepts of nonlinear complex modes
and characteristic constraint modes – or interface modes – to build a fully algebraic reduced-order model
easily solved by standard iterative solvers. The performance of the method is appraised on a nonlinear finite
element model of bladed disk in the presence of structural mistuning, highlighting the potential of this new
technique to deal with current industrial problematics.

Keywords: reduced-order model, nonlinear mode, characteristic constraint mode, interface mode,
component mode synthesis, mistuned bladed disk

1. Introduction

Despite the growing computing capabilities provided by recent advances in computer science and numer-
ical analysis, engineers are still facing some limitations when it comes to modelling large-scale industrial
structures, essentially due to the size of the mathematical models yielded by standard discretisation tech-
niques. These limitations make reduced-order modelling a key topic of research for the structural dynamics
community, and the literature is nowadays rich of many contributions. Classic component mode synthesis
(CMS) methods [1–5] are quite famous in mechanical engineering, mainly appreciated for their flexibility, and
are nowadays implemented in most commercial finite element (FE) softwares. Various improvements to these
techniques have been suggested [6], but some difficulties remain, especially when the system is subjected
to strong nonlinearities. Nonlinear phenomena are yet ubiquitous in classical physics, and even if a linear
analysis can often provide a good insight into the behaviour of the system, taking into accounts nonlinearities
in the simulations may sometimes prove necessary.

The present work aims at contributing to the endeavours of the scientific community in providing the
industry with novel and efficient reduced-order modelling techniques well suited to the study of nonlinear
systems. This paper introduces a new method relying on a substructuring approach to benefit from the
flexibility of standard CMS techniques. The key feature of this method is the use of so-called nonlinear
modes to capture the nonlinearities in the reduction basis. First initiated by Rosenberg [7–9] in the 1960s,
the concept of nonlinear mode, which can be seen as an extension of linear modes to nonlinear systems, has
been broadened by the contributions of many authors since then [10–20]. In addition to the literature that
provides today researchers and engineers with numerous analytical and numerical techniques to calculate
nonlinear modes, thoroughly reviewed by Renson et al. in [21], the improving hardware and software capa-
bilities provided by modern scientific computing make it possible nowadays to apply it to industrial structures.

The reduced order modeling technique derived in this paper can be split into three successive reduc-
tion steps yielding a parametric reduced-order model (ROM) retaining only a few generalised coordinates.
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To tackle the computation of steady-state vibrations, this ROM is then turned into a set of simultaneous al-
gebraic equations by assuming a multiharmonic solution, in a similar fashion to the harmonic balance method
(HBM). Frequency-based techniques such as the HBM have proved very efficient in the past to study the
forced response of nonlinear systems, especially when dealing with localised nonlinearities since they allow
an exact condensation of the problem on the nonlinear degrees of freedom (DOF) [22, 23]. However, these
methods are still struggling to handle large finite element models comprising thousands of nonlinear variables.
The method derived hereafter overcomes this difficulty by retaining nonlinear eigenvectors in the reduction
basis, allowing to treat the nonlinear DOFs as slave coordinates of the reduction. Moreover, most of the time
frequency-based appoaches require a systematic switch from frequency domain to time domain in order to
evaluate the nonlinear forces through a so-called alternating frequency-time (AFT) scheme [24, 25], which
can be computationally intensive, though providing great flexibility as to the nature of the nonlinearities that
can be tackled. To circumvent this numerical cost, it is proposed here to approximate the nonlinearities using
the nonlinear eigenvalues of the nonlinear modes in a procedure later referred to as spectral substitution. The
approach derived in this paper shares some similarities with the nonlinear modal synthesis procedure pro-
posed by Krack et al. [24] and used to compute the nonlinear forced response of a bladed-disk. However, the
method used in [24] assumed a perfectly cyclic structure to compute the nonlinear modes, and consequently
the reduction basis obtained is not suitable to the study of non-cyclic systems, such as the mistuned bladed-
disk tackled in section 4. By using a substructuring approach, the method proposed in the present paper
does not require any symmetry assumption, and is thus more flexible and applicable to a broader range of
nonlinear structures with no particular symmetry properties. The fixed-interface CMS method used here to
perform the substructuring can however result in a large number of linear DOFs, which is why the nonlinear
complex modes of the reduction basis – required to reduce the nonlinear DOFs – are used in combination
with a set of linear vectors referred to as characteristic constraint modes [26] or interface modes [27, 28] to
reduce the remaining linear DOFs.

This paper is divided into three sections. Cornerstone of the method, the notion of nonlinear com-
plex modes and their frequency-based computation are first reminded. The three steps of the reduced-order
modelling technique are then derived, followed by the multiharmonic recast of the ROM and the aforemen-
tionned spectral substitution used to approximate the nonlinear forces. Finally, the method is applied on a
three dimensional FE model of bladed disk subjected to dry friction nonlinearities and structural mistuning,
which highlights the potential of the proposed method in dealing with real-life engineering structures.

2. Nonlinear complex modes

In this work, the definition of a nonlinear mode is that proposed by Laxalde and Thouverez in [15], and
later used in several papers [24, 25, 29–31]. This definition comes with a very flexible computation procedure
inspired by the HBM, allowing to tackle a broad range of systems without any restriction as to the intensity,
smoothness, and dissipation of the nonlinear effects. This procedure is briefly reminded hereunder. Further
information and examples can be found in the aforementioned papers.

Let a dynamical system be governed by the following set of ordinary differential equations (ODE),

Mẍ(t) + Cẋ(t) + Kx(t) + f(x, ẋ) = g(t) (1)

with M, C, K the mass, viscous damping, and linear stiffness matrices, respectively, g(t) the external load
vector, and f(x, ẋ) a nonlinear term from which may arise conservative as well as non-conservative forces.
A nonlinear complex mode of this system refers to a pseudo-periodic solution of the underlying autonomous
system. For practical reason, the autonomous system is here unaffected by viscous damping, but the procedure
is perfectly applicable when retaining the damping matrix. The system to solve is

Mẍ(t) + Kx(t) + f(x, ẋ) = 0 (2)

Due to the non-conservative effects that may arise from the nonlinear term, the solution is sought has a
decaying multi-harmonic oscillation

x(t) = Re

{∑
k∈N

xke
kλt

}
(3)
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where λ is the complex eigenvalue of the mode. This expression is then substituted into the autonomous
system and the orthogonality of the residual with respect to the basis functions ekλt is enforced by means of
the inner product

〈f |g〉 =
2

T

∫ T

0

f(t)g(t)dt (4)

with T the period of oscillation. The orthogonality of the basis functions can be taken advantage of by
neglecting the decay of the solution over the period used to enforce the orthogonality condition, as thoroughly
explained in [15]. Practically speaking, the real part of λ is neglected in the exponential functions below the
integral sign of the inner product. This assumption is not equivalent to neglecting the decay of the modes,
and has been validated in numerous papers dealing with nonlinear complex modes [15, 24, 25]. The procedure
yields a set of nonlinear and algebraic eigenproblems,(

(kλ)2M + K
)
xk + 〈f(. . . ,xk, . . . , λ)|ek〉 = 0 ∀k (5)

where ek stands for the basis function of k-th order. These equations are still coupled for all harmonic order
through the nonlinear term, and must be solved simultaneously, which can be easily achieved by classic
Newton-like solvers. It should be mentioned that the system is underdetermined, and must be supplemented
by two equations prior to starting the solver. A basic phase condition together with a sequential continuation
on a control coordinate q are used here as suggested in [15]. This control coordinate is used to normalise the
components xk, so as to yield what will be referred to as nonlinear eigenvectors ϕk,

xk = ϕkq (6)

As a consequence of the continuation scheme, the nonlinear mode, complex when non-conservative terms are
effective, refers to the set of eigenvectors ϕk(q) and the corresponding eigenvalue λ(q), known as functions
of the control coordinate q.

3. Triple nonlinear modal synthesis with spectral substitution

This section introduces the theory of the reduced-order modelling technique presented in this paper. The
method can be divided into three reduction steps, combined to a spectral substitution procedure allowing to
fully take advantage of the nonlinear modes. The method relies on a substructuring approach [6] in order
to provide both versatility and computational efficiency. It should be reminded that the second step of the
procedure and the spectral substitution were already tested and validated in a previous work [25], which has
led to the development of the method presented here so as to reveal its full potential on industrial structures.

3.1. First reduction - Fixed-interface CMS

The first step of the procedure consists in building N linear super-elements by means of a standard
Craig-Bampton fixed-interface CMS [32] retaining the boundary DOFs and the nonlinear DOFs as master
coordinates. The objective of this first reduction step is two-fold. First, it allows to reduce the computation
time of the nonlinear complex modes in section 3.2. Second, it makes the interpolation of the nonlinear
superelements much more efficient during the resolution since the size of the vectors and matrices interpolated
is reduced accordingly. This interpolation is discussed in the last paragraph of the current section. Let the
weak form governing the motion of a substructure after spatial discretisation be

Mẅ(t) + Cẇ(t) + Kw(t) + f(w, ẇ) = g(t) (7)

with

w(t) =

 wb(t)
wn(t)
wi(t)

 (8)

where wb(t), wn(t), and wi(t) are vectors of boundary, nonlinear, and internal (linear) DOFs, respectively.
The terms “boundary DOF” refer here to any linear DOF that will be retained as master DOF of the CMS,
and wb(t) can thus include linear DOFs that are not located on the physical boundaries of the substructures.

3



Let the substructure be made of N components subjected to internal nonlinearities, such as contact and
friction between components. Partitioning the set of internal DOFs accordingly,

wi(t) =


w

(1)
i (t)

...

w
(N)
i (t)

 (9)

with w
(j)
i (t) the internal DOFs vector of the j-th component. The initial partition of the DOFs is summarised

on figure 1. In accordance with the finite element model that will be studied in section 4, the substructure
on figure 1 represents a sector of bladed disk made of two components - a blade and the corresponding disk
sector - subjected to contact nonlinearities at the interface through the term f(w, ẇ). The Craig-Bampton

wb(t)

w
(1)
i (t)

wn(t)

w
(2)
i (t)

f(w, ẇ)

Figure 1: Substructuring and initial partition of the DOFs

transformation matrix of the substructure is

P =


I

Ψ(1) Φ(1)

...
. . .

Ψ(N) Φ(N)

 (10)

with Ψ(j) and Φ(j) the matrices of static modeshapes and fixed-interface eigenvectors for the j-th component
of the substructure, respectively. The static modeshapes are vectors obtained by successive application of a
unit displacement on a master DOF while enforcing a zero displacement on the others, readily computed by
solving

Ψ(j) = −(K(j)
ss )−1K(j)

sm (11)

where subscripts s and m refer to slave (wi(t)) and master (wb(t), wn(t)) coordinates. The fixed-interface
eigenvectors Φ(j) are obtained by solving the generalised eigenvalue problem of the substructure after clamp-
ing the master DOFs, and truncation of the resulting modes according to any criterion relevant to the problem
(e.g. cutoff frequency or effective modal mass [32]),

(K(j)
ss − ω2M(j)

ss )Φ(j) = 0 (12)

Assuming w(t) = Px(t), the projection of the equations onto the subspace spanned by P yields a first ROM
retaining the boundary DOFs wb(t), the nonlinear DOFs wn(t), and the modal participation factors r(t) of
the fixed-interface modes. The equations of motion of the substructure are now given by

M′ẍ(t) + C′ẋ(t) + K′x(t) + f ′(x, ẋ) = g′(t) (13)
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with

x(t) =

 wb(t)
wn(t)
r(t)

 (14)

and

M′ = PTMP (15)

C′ = PTCP (16)

K′ = PTKP (17)

f ′ = PTf (18)

g′ = PTg (19)

This first reduction step and the resulting generalised coordinates are reported on figure 2. The blue dot at
the tip of the blade is the physical DOF which will be used as a control coordinate of the nonlinear modes,
and must thus be retained as a master coordinate of the Craig-Bampton CMS. It should be pointed out that
the quality of this first reduction step will impact the accuracy of the final ROM, which is why the number
of fixed-interface modes retained at this stage must be sufficient to capture the behaviour of the components
in the frequency range of interest [32].

wb(t)

w
(1)
i (t)

wn(t)

w
(2)
i (t)

f(w, ẇ)

wb(t)

wn(t)

r(1)(t)

r(2)(t)

f 0(x, ẋ)

Figure 2: First reduction step (Craig-Bampton CMS)

3.2. Second reduction - Nonlinear modes

The second step of the procedure consists in reducing the nonlinear DOFs wn(t) and the modal participa-
tion factors r(t) by projection of the first ROM onto the subspace spanned by a set of fixed-interface nonlinear
modes and a new set of static modeshapes. The equations are derived here regardless of the method used to
compute the nonlinear modes, and are thus quite general. The spectral substitution step presented afterwards
will, however, specifically take advantage of the methodology presented in section 2. The expression of the
reduction basis is

Q(q) =

(
I 0
Ψ Φ(q)

)
(20)

with Φ(q) the matrix made of the fixed-interface eigenvectors of the nonlinear modes (see equation 6),
function of a set of control coordinates q, and Ψ the matrix of static modeshapes. These static modeshapes
are computed in a classic manner on the underlying linear system, as given by equation (11), retaining wn(t)
and r(t) as slave coordinates and wb(t) as master coordinates. For contact and friction non-linearities, the first
ROM is linearised at low energy level by bonding the components of a given substructure. Thus, the static
modeshapes allow information to be conveyed from the boundaries throughout the substructure, regardless
of the potential gaps between components. Again, assuming x(t) = Q(q)y(t) and enforcing orthogonality
of the residual with respect to the subspace spanned by this new basis, the procedure yields the following
nonlinear ROM,

M′′ÿ(t) + C′′ẏ(t) + K′′y(t) + f ′′(y, ẏ) = g′′(t) (21)
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with the generalised coordinates

y(t) =

{
wb(t)
q(t)

}
(22)

and

M′′ = (PQ)TM(PQ) (23)

C′′ = (PQ)TC(PQ) (24)

K′′ = (PQ)TK(PQ) (25)

f ′′ = (PQ)Tf (26)

g′′ = (PQ)Tg (27)

This second reduction step and the resulting generalised coordinates are reported on figure 3. It can be seen
that all the linear modal coordinates r(t) as well as all the nonlinear DOFs wn(t) have disappeared and are
now slave coordinates of the ROM. The control coordinates q(t) of the nonlinear modes are represented here
by a single dot, but are in practice as many as there are nonlinear modes retained in the reduction basis of
the substructure. Furthermore, in equation (21), all the terms are nonlinear through their dependency upon

wb(t)

wn(t)

r(1)(t)

r(2)(t)

f 0(x, ẋ)

wb(t)

q(t)f 00(y, ẏ)

Figure 3: Second reduction step (nonlinear modes)

q, inherited from the reduction basis Q(q). This dependency is not explicitly written for better legibility,
but should be kept in mind in the remainder of the paper.

3.3. Third reduction - Interface modes

For large-scale systems, such as three dimensional FE models commonly encountered in the industry, the
set of boundary DOFs wb(t) can comprise a large number of variables, and hence significantly impact the
order-reduction of Craig-Bampton-like CMS. To overcome this, it has been shown in the literature that the
boundaries can be efficiently reduced by projection of the interface onto a subspace spanned by a set of so-
called characteristic constraint modes [26] or interface modes [27, 28], computed on the global ROM obtained
after assembling all the substructures. The subsystem corresponding to the interface (i.e. concatenation
of all wb(t)) is extracted from this global ROM, and the eigenvectors are computed from the generalised
eigenvalue problem (

K′′g b
+ λM′′

g b

)
v = 0 (28)

where K′′g and M′′
g are the stiffness and mass matrices of the global ROM, restricted to the boundary DOFs

(i.e. subscript b) in (28). The modes are then filtered based on a frequency criterion, retaining the modes in
the same frequency range than those retained in the previous reductions [26–28]. The size of the eigenvectors
v of equation (28) is equal to the overall number of DOFs at the interface between all substructures. The
restriction of these global eigenvectors to a given substructure is finally concatenated to form a reduction
basis Γ for the boundaries. The new reduction basis of the substructure is

R =

(
Γ 0
0 I

)
(29)
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and again, assuming y(t) = Rz(t), and enforcing orthogonality of the residual with respect to the subspace
spanned by R, the procedure yields the final nonlinear ROM,

M′′′z̈(t) + C′′′ż(t) + K′′′z(t) + f ′′′(z, ż) = g′′′(t) (30)

with

z(t) =

{
p(t)
q(t)

}
(31)

and

M′′′ = (PQR)TM(PQR) (32)

C′′′ = (PQR)TC(PQR) (33)

K′′′ = (PQR)TK(PQR) (34)

f ′′′ = (PQR)Tf (35)

g′′′ = (PQR)Tg (36)

where p(t) are the generalised coordinates of the interface modes, driving the motion of the boundaries for
every substructure. This third reduction step and the resulting generalised coordinates are reported on figure
4, on which only six dots are used to represent the modal coordinates of the interface modes p(t) for legibility
purpose. The overall reduction from the initial weak form (7) to the final ROM (30) can be seen as an

wb(t)

q(t)f 00(y, ẏ)

p(t)

f 000(z, ż) q(t)

Figure 4: Third reduction step (interface modes)

application of the Galerkin method where the reduction subspace is spanned by the parametric matrix

T(q) = P Q(q) R (37)

Each of the matrices being made of modal vectors, the reduction procedure described in this paper will thus
be referred to as triple nonlinear modal synthesis hereafter.

This three-step procedure yields a highly reduced model, but the term f ′′′(z, ż) in equation (30) might
still be cumbersome to compute. In practice, the nonlinear law is usually known as a function of the physical
DOFs only, and rebuilding wn(t) to determine the nonlinear forces at each step of the solver could eventually
impact the efficiency of the method. The next section shows how this term can be supplemented by an ap-
proximation relying on the eigenvalues of the nonlinear modes, referred to as spectral substitution, introduced
and validated in a previous work [25].

3.4. Spectral substitution

In this work, the procedure focuses on computing the steady-state forced response of nonlinear systems,
allowing to seek the solution as a multi-harmonic oscillation. Before introducing what is here referred to as
spectral substitution, the three reduction steps presented above need first to be derived explicitly for such a
solution, written as

w(t) = Re

{∑
k∈N

wke
ikΩt

}
(38)
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After substitution of this approximation into equation (7), and enforcing the orthogonality of the residual
with respect to the basis functions by means of the inner product defined in (4), a classic HBM-like algebraic
system is obtained, (

(ikΩ)2M + (ikΩ)C + K
)
wk + 〈f(. . . ,wk, . . . ,Ω)|ek〉 = 〈g|ek〉 (39)

In that specific case, the first reduction step using the Craig-Bampton transformation matrix P yields the
following ROM, steady-state or HBM equivalent to (13),(

(ikΩ)2M′ + (ikΩ)C′ + K′
)
xk + 〈f ′(. . . ,xk, . . . ,Ω)|ek〉 = 〈g′|ek〉 (40)

Similarly to a standard HBM procedure, the time-independant generalised coordinates xk are assumed to
vary for each harmonic, the matrix P being here the same for all k. In the second reduction step, this
dependency upon the harmonic order k is captured within the reduction basis through the eigenvectors of
the nonlinear modes. Hence, the matrices of the previous section are now written Qk and Φk, where the
latter is made of all the nonlinear eigenvectors of k-th order ϕk retained in the ROM,

Qk =

(
I 0
Ψ Φk

)
(41)

This amounts to assuming that the k-th harmonic of the internal DOFs wn(t) and r(t) can be approximated
by the k-th harmonics of the fixed-interface nonlinear modes, as applied successfully in [24, 25]. Thus,
assuming xk = Qky, it comes(

(ikΩ)2M′ + (ikΩ)C′ + K′
)
Qky + 〈f ′(. . . ,Qky, . . . ,Ω)|ek〉 = 〈g′|ek〉 (42)

with the time-independant coordinates

y =

{
wb

q

}
(43)

where wb refers to the boundary DOFs and q refers to the control coordinates of the nonlinear modes,
used as generalised coordinates of the ROM. Recalling that the nonlinear complex modes are such that each
eigenvector is related to its control coordinate through the relation (6), the spectral substitution consists
in substituting the projection of the nonlinear forces from the eigenproblems (5) into the forced response
equation, as thoroughly discussed in [25]. The nonlinear softening, stiffening, or dissipation, is thus accounted
for by the variations of the complex eigenvalues of the nonlinear modes. Reorganizing the terms to factor y,
the substitution yields,

〈f ′(. . . ,Qky, . . . ,Ω)|ek〉 = −F′ky (44)

with

F′k =

(
0 0
0 (M′

iiΦkΛ
2k2 + K′iiΦk)

)
(45)

where Λ is the nonlinear spectral matrix, made of the eigenvalues distributed along the diagonal. The
subscript i refers here to the set of internal DOFs wn(t) and r(t), since the nonlinear modes are computed
for fixed-boundaries (i.e. wb(t) = 0). Substituting this expression into equation (42), it comes(

(ikΩ)2M′ + (ikΩ)C′ + K′
)
Qky − F′ky = 〈g′|ek〉 (46)

The orthogonalization of the residual with respect to the subspace spanned by Qk yields the ROM equivalent
to (21) (

(ikΩ)2M′′
k + (ikΩ)C′′k + K′′k − F′′k

)
y = 〈g′′|ek〉 (47)

The projection of the boundary DOFs onto the subspace spanned by the interface modes, last step of the
triple nonlinear modal synthesis, can then be performed by means of the same matrix R defined in (29) to
derive the final ROM, equivalent to (30)(

(ikΩ)2M′′′
k + (ikΩ)C′′′k + K′′′k − F′′′k

)
z = 〈g′′′|ek〉 (48)
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with time-independant generalised coordinates

z =

{
p
q

}
(49)

and

M′′′
k = (PQkR)TM(PQkR) (50)

C′′′k = (PQkR)TC(PQkR) (51)

K′′′k = (PQkR)TK(PQkR) (52)

F′′′k = (RQk)TF′kR (53)

g′′′k = (PQkR)Tg (54)

The spectral substitution is illustrated on figure 5, showing the new time-independant generalised coordinates
and the term F′′′k (q) approximating the nonlinear forces.

�F000
k (q)

p(t)

f 000(z, ż) q(t)

p

q

Figure 5: Spectral substitution

The algebraic system of equation (48) can be seen as a nonlinear superelement for a given substructure,
suited to the study of steady-state vibrations. The overall ROM is obtained by assembling these superele-
ments through the generalised coordinates driving the motion of the boundaries. Here, due to the use of
interface modes, computed on the whole structure, the submatrices associated to p are simply added up in
the assembling process [27]. The benefit of using a substructuring approach is two-fold. First, it allows to
significantly reduce the numerical effort dedicated to the computation of the nonlinear modes, which can
be relatively intensive for industrial models, by dealing with smaller nonlinear systems. Second, since the
substructures can be treated independantly, it is possible to reorganise the superelements so as to create a
new global ROM without requiring to recompute the nonlinear modes, providing greater versatility to the
method. This last point will be taken advantage of in the next section.

Another important remark concerns the nonlinearity of the superelements. Due to their dependency
upon q, variable of the problem, it is indeed necessary to evaluate the superelements at each trial of the
iterative solver used to solve the ROM. Since the modes are computed through a sequential continuation
scheme, they are only known for discrete values of their control coordinate. However, it has proved very
efficient to build a linear interpolant upstream for each mode, and call it whenever required by the solver.
Besides, this interpolation procedure allows to easily derive the expression of the jacobian matrix of the sys-
tem, required by most iterative solvers, thus bypassing the cost of numerical differentiation. The interested
reader is referred to reference [25] for further information on the matter.

4. Numerical applications

As already mentioned, the triple nonlinear modal synthesis method presented in this paper is an extension
of a previous work [25], where the use of nonlinear complex modes and spectral substitution was tested and
validated on a lumped parameter model. The promising performance revealed in this former study has led
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to the present work, which aims at taking the method to a whole new level by tackling large-scale industrial
models.

Bladed disks are key components in turbomachinery, performing the compression and expansion of the
gas flow through multiple rotor and stator stages, as required for the thermodynamic cycle to result in energy
production. In operation, each bladed disk is subjected to unsteady pressure fields that may lead to high
cycle fatigue (HCF) failures of the blades, making of vibration mitigation a topic of the utmost importance
for manufacturers. In the field of bladed disk dynamics, mistuning refers to the structural discrepancies that
break the cyclic symmetry property of the ideal structure. Discrepancies that are in practice inevitable,
naturally arising from manufacturing processes and in-operation wear. In terms of vibrations, the main con-
sequence of mistuning is a localization of the energy on a subset of blades, resulting in an amplification of
the vibration levels compared to the so-called tuned counterpart. This amplification may compromise the
design of the component against HCF, and allowing engineers to predict the phenomenon through simulations
rather than testing is a significant but promising challenge for the industry. Many reduced-order modelling
techniques dedicated to the mistuning of bladed disk can be found in the literature [33–40], and prove very
efficient as long as the study is focused on linear structures. However, taking into account nonlinearities in
the simulations can be of primary importance in the design process since they are known to have a strong
impact on the vibration level, as pointed out in several numerical and experimental investigations [41–43]. A
detailed review on vibration prediction of bladed disks in the presence of friction phenomena can be found
in [44].

In this section, it is shown that the reduced-order modelling method derived in the present paper can
be used to build a ROM of an industrial bladed disk accounting for both discrepancies and dry friction
nonlinearities, and synthesise the forced response of the structure at low computational cost.

4.1. Finite element model

The FE model used in this analysis is a rotor stage of free turbine shown on figure 6a. The bladed disk is
made of 24 blades, and can be divided into as many sectors (see figure 6b), where each blade is inserted into
a slot machined at the periphery of the disk. The nonlinearities considered in the analysis are the dry friction
forces acting in the joint. One sector comprises 35,532 DOFs, 2,994 of which are on the cyclic boundaries

(a) Full model (b) Sector

Figure 6: Finite element model of the bladed disk

and 888 of which are in the contact area between the blade and the disk. The corresponding mesh of the
full model reaches 816,840 DOFs, 35,928 of which are on the cyclic boundaries and 21,312 of which are in
the contact areas, hence impacted by nonlinear forces. Table 1 summarises the mesh statistics of the FE
model. The classic approach to compute the forced response of such a model is to enforce cyclic boundary
conditions so as to only deal with one sector, and recast the nonlinear ODEs in the frequency domain by
means of a standard HBM or equivalent method [24, 45], which allow an exact condensation of the system
on the nonlinear DOFs in relative coordinates [22]. However, in the presence of mistuning, the structure is
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Table 1: Mesh statistics of the FE model

DOF number Blade Disk Sector Full model
Contact 444 444 888 21 312
Boundaries — 2994 2994 35 928
Total 15 222 20 310 35 532 816 840

no longer symmetrical and this strategy requires the whole bladed disk to be modelled, resulting in a very
large nonlinear system which must be solved at each frequency step. The triple nonlinear modal synthesis
presented here does not bypass this requirement, but it allows for such a reduction that the final ROM of
the whole mistuned bladed disk only retains a few coordinates and can thus be solved with very little com-
putational effort.

Considering a given substructure the first step of the procedure consists in creating as many linear
superelement as there are components in the substructure. Here, the substructure is a sector comprising two
components, the blade and the sector of disk. A commercial FE software is used to prestress the bladed disk
at 20,000 rpm through a nonlinear static analysis. Then, the mass matrix and the stiffness matrix – includ-
ing stress-stiffening and spin-softening effects – are exported for each component, together with the contact
pressures at the interface. The superelements are then built following the equations in section 3.1. The
linear superelement of the blade is created by retaining 50 fixed-interface modes and 447 static modeshapes
– 444 corresponding to the nonlinear DOFs and 3 corresponding to observation DOFs at the blade tip on
the trailing edge (red spot on figure 6b). The linear superelement of the disk is built from 10 fixed-interface
modes and 3438 static modeshapes – 444 corresponding to the nonlinear DOFs and 2994 corresponding to
the boundary DOFs. Overall, this first reduction ensures the convergence of the modes in the [0 - 40]kHz
frequency range with less than 1% of error on the natural frequencies. The rather small number of fixed-
interface modes retained for the disk is simply due to the very high stiffness of the component when both
cyclic boundaries are fixed.

The second step of the triple nonlinear modal synthesis consists in computing the fixed-interface non-
linear modes that will be used as a reduced basis for all the interior DOFs in the first ROM i.e. for the modal
coordinates r(t) and the nonlinear DOFs wn(t). The boundary DOFs wb(t) are thus fixed, and the nonlin-
ear complex modes of the resulting clamped sector are then computed following the methodology described
in section 2. Here, one nonlinear mode is computed – using the azimuthal DOFs of the observation node
as a control coordinate – and is associated to the first bending motion of the blade. The nonlinear forces
are computed by means of the dynamic lagrangian frequency-time (DLFT) procedure described in [22, 43],
using a friction coefficient of 0.15 and an initial normal load of 200N corresponding to the contact pressures
extracted from the nonlinear static analysis. The eigenvectors ϕk and the eigenvalue λ are computed for a
control coordinate sweeping through the range [0 - 0.45]mm with a step of 0.005mm.

The third step of the triple nonlinear modal synthesis consists in computing a new basis for the large
number of boundary DOFs still retained as generalised coordinates after the second reduction step. Following
the procedure described in section 3.3, a set of 150 eigenvectors is computed on the full system, and restricted
to the boundary DOF wb(t) of the substructure to form a matrix Γ spanning a reduction subspace for the
boundaries. Retaining 150 eigenvectors ensures the convergence of the modes up to 43kHz with less than
1% of error on the natural frequencies. Since the eigenvectors in Γ are computed on the whole model, after
assembling the superelements of the second step, they incorporate the possible mistuning pattern affecting
the bladed disk.

Eventually, through these three reduction steps, the triple nonlinear modal synthesis allows to turn a
large-scale FE model into a small ROM retaining only a few generalised coordinates. When it comes to
reduced-order modelling, the upfront cost dedicated to building the ROM is an important piece of infor-
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mation when appraising the computing performance of a method. Here, the computation time1 and order
reduction associated to each reduction step is summarised in Table 2. The generalised coordinates of the
final ROM corresponds to the 150 interfaces modes used to reduce the boundaries and to the 24 nonlinear
modes retained overall (i.e. one per sector).

Table 2: Computational cost and order reduction of the triple nonlinear modal synthesis

Reduction step Computation time (min) Size of the ROM
Step 0 (Initial model) — 816,840
Step 1 (Fixed-interface CMS) 17 58,752
Step 2 (Nonlinear modes) 30 35,952
Step 3 (Interface modes) 10 174

4.2. Results and performance

This section summarises the results obtained by means of the triple nonlinear modal synthesis on two
different test cases based on the FE model described above. The first case consists in studying the frequency
response of the bladed disk when the sectors are subjected to a purely random frequency-based mistuning
pattern. In the second case, an intentional mistuning pattern is applied on the structure by defining a slightly
different blade geometry, and distributing the two types of sectors according to a specific pattern to form the
whole bladed disk. A random frequency-based mistuning pattern is also applied on the resulting system. For
both cases, the evolution of the response curve with respect to the excitation level and the random mistuning
magnitude is highlighted.

In all the simulations carried out, Rayleigh damping model [32] is used so as to set a modal damp-
ing ratio of 0.01% for the first bending mode. It should be pointed out here that changing the coefficients of
Rayleigh damping does not require to re-compute the nonlinear modes, as long as the linear damping matrix
C is not retained in equation (2). For legibility purpose, as commonly encountered in the literature, the
mistuned response curves hereunder correspond to the maximum reponse observed on the whole structure.
This way of representing the frequency response allows to point out simultaneously the vibration amplitude,
relevant quantity for the design against HCF, as well as the spreading of the response arising from mistuning.

4.2.1. Randomly mistuned bladed disk

This section is dedicated to the study of a nominal bladed disk made of 24 identical sectors, subjected to
random mistuning patterns. Random mistuning is most of the time quantified in terms of deviation from the
nominal natural frequencies of the components [37], easily compared to test data. Thus, the random patterns
used here consist in small perturbations added to the natural frequencies of the nonlinear modes retained to
build the superelements. Each perturbation is drawn from a normal distribution with mean value the natural
frequency of the nominal sector, the standard deviation being hereafter referred to as mistuning magnitude
or mistuning level. It should be reminded that the interface modes matrix Γ of equation (29) – used to
span the reduction subspace of the boundary DOFs wb(t) – is computed on a system that incorporates these
perturbations. In this study, the target mode (referring to the tuned system) is the first bending mode of
the blades, excited with a travelling wave acting on the blade tips and possessing 6 nodal diameters.

First, the same random mistuning pattern is retained, and the excitation level is gradually increased
so as to observe the influence of the nonlinearities on the response. At low amplitude, the vibration level
introduces very little slip in the joint, the contact pressure arising from the centrifugal load maintaining
the components close to a bonded state. As a consequence, the frequency reponse curve is close to that of
the underlying linear system with bonded interfaces, as observed on figures 7a and 7b. As the strength of

1Intel(R) Xeon(R) CPU E5-2690 @ 2.90GHz.
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the excitation is increased, a larger amount of energy is dissipated in the contact. This dissipation is ac-
counted for by the gradual amplitude reduction (with respect to the linear case) observed on figures 7c to 7e.
In terms of computation time, each one of these simulations took 5h to 10h on a standard computer cluster2.

Another parameter of interest for designers when investigating the impact of random mistuning on the
forced response is the mistuning level itself. Confined to the linear domain, studies have shown [37] indeed
that the standard deviation of the natural frequencies to the nominal design was a key parameter driving
the amplification of the vibrations in mistuned structures. This information is of primary importance in the
design process, and carrying out such numerical investigations while retaining nonlinearities in the analysis
is definitely a promising topic of research for the industry. Thanks to its interesting performance, the triple
nonlinear modal synthesis presented in this paper could open up the way to such investigations. Figures 8a
to 8e have been obtained by gradually increasing the random mistuning level affecting the bladed disk at a
fixed excitation amplitude. The curves clearly illustrate the increasing frequency spreading of the response
as the mistuning grows, but also an increase of the maximum amplitude with respect to the tuned case –
about 10% – as shown on figures 9a to 9d on which the tuned responses are superimposed and the linear ones
dropped. A close-up on the response at resonance, as shown on figure 8a, allows to exhibit the characteristic
asymmetry of the peak arising from the softening behaviour of dry friction nonlinearities. These simulations
required from 5h to 10h on a standard computer cluster3. Carrying out statistical investigations to deter-
mine the evolution of the amplification factor arising from random mistuning on such a model would thus be
conceivable provided that high performance computing facilities are available, which could be of tremendous
interest for bladed disk designers.

4.2.2. Intentionally mistuned bladed disk

The numerous investigations dedicated to mistuning in the last decades have led to the emergence of what
is commonly referred to as intentional mistuning in the literature [37]. In general, intentional mistuning refers
to the intentional introduction of a mistuning pattern in the design process from a chosen set of nominal
sectors. Not only does this allow to improve the robustness of the design faced with random mistuning, but it
has also proved to increase the stability of the bladed disk in terms of aeroelastic phenomena such as flutter.
This paper does not aim at providing a thorough literature review about mistuning, and the interested reader
is referred to [37] for further information. However, given the growing interest of the industry for the subject,
it seems interesting to point out how the reduced-order modelling method derived in the present paper can
be of great use when tackling such challenging problematics. Relying on a substructuring approach, a key
advantage of the triple nonlinear modal synthesis is to deal with each substructure regardless of the others.
For a bladed disk, that means being allowed to handle as many nominal sectors as desired when building
the structure. The following section presents a few results obtained when an intentional mistuning pattern
is added to the bladed disk model used previously.

The intentional mistuning pattern used hereafter is a so-called alternate or square-wave pattern [37],
built from two nominal sectors referred to as sector A and sector B, distributed according to the pattern
reported in table 3 to form the whole bladed disk. The main advantage of a square-wave pattern is that
only two types of sectors are required, which makes of it a practical solution for designers. Here, the sector
A is the sector used in the previous section, and the sector B is defined from the sector A by reducing the
thickness of the blade by 0.1mm at the tip. The fixed-interface nonlinear modes of this newly defined sector
are computed by means of the procedure described in section 2. The inertia loss arising from the thickness
reduction at the blade tip results in a frequency shift of the first bending mode by 1.3%.

The two parametric investigations presented in the previous section – with respect to the amplitude
of the excitation and to the mistuning level – are then carried out on this intentionaly mistuned bladed disk.
For a given random mistuning pattern, applied by adding a small perturbation to the natural frequencies of
the nonlinear modes, the forced response of the structure for different excitation levels is reported on figures
10a to 10e. The influence of the dry friction nonlinearities in terms of damping clearly stands out once again,

2Intel(R) Xeon(R) CPU E5-2690 @ 2.90GHz.
3Intel(R) Xeon(R) CPU E5-2690 @ 2.90GHz.
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Figure 7: Forced response of the randomly mistuned bladed disk for different excitation levels A (nonlinear —, linear —)
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Figure 8: Forced response of the randomly mistuned bladed disk for different mistuning levels σ (nonlinear —, linear —)
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Figure 9: Forced response of the randomly mistuned bladed disk for different mistuning levels σ (mistuned —, tuned - - -)

Table 3: Intentional mistuning pattern

Sector 1 2 3 4 5 6 7 8 9 10 11 12
Type A B A B A B A B A B A B
Sector 13 14 15 16 17 18 19 20 21 22 23 24
Type A B A B A B A B A B A B
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as shown by the drastic reduction of the amplitude compared to the linear system as soon as the excitation
is strong enough to trigger the onset of slip in the contact areas. As to the impact of the random mistuning
magnitude, the results are reported on figures 11 and 12, and it is interesting to notice that for small mistun-
ing levels, the response is confined to the neighbourhood of the nominal (i.e. tuned) response. As one could
have expected, as the random mistuning level grows, the two packs of resonances gradually merge into one
with a broad frequency span (cf. figures 11c to 11e). Since it is a data of interest for designers, it is worth
pointing out here that these simulations predict a 13% amplification of the vibration level compared to the
nominal system, better highlighted on figure 12.

5. Conclusion

This paper introduced a reduced-order modelling technique well-suited to the study of large-scale indus-
trial structures subjected to nonlinear forces and harmonic forcing. The method relies on a substructuring
approach, and uses the concept of nonlinear complex modes to capture the nonlinearities in the reduction
basis of each substructure. These modes are computed in the frequency domain through a numerical pro-
cedure similar to the well known harmonic balance method, and are very flexible as to the nature of the
nonlinearities, allowing to tackle strong, non-smooth, and dissipative nonlinear forces. By combining these
nonlinear modes with a set of characteristic constraint modes – or interface modes – computed on the under-
lying linear system, a highly reduced model can be obtained. To take advantage of the information captured
in the nonlinear modes, the corresponding nonlinear eigenvalues are used in a so-called spectral substitution
procedure allowing to recast the ROM in a fully algebraic form, easily tackled by standard iterative solvers.
The capabilities of the method have been illustrated on a finite element model of bladed disk subjected to
strong contact and dry friction nonlinearities at the blade-disk joints. Thanks to the substructuring ap-
proach, various mistuning patterns – random and intentional – have been readily tested, thus highlighting
the potential of the proposed method to deal with current industrial problematics.

The performance of the reduced-order modelling method derived in this paper makes it an interest-
ing candidate to perform on large FE models statistical investigations that were restricted so far to small
lumped-parameter models in the presence of nonlinearities, such as the mistuning of bladed disks subjected
to dry friction tackled here as an example. The versatility of nonlinear complex modes would also allow
to tackle other types of nonlinearities, such as large displacement or finite strains, which are bound to gain
in importance in the design process as engineers opt for lighter structures to improve the efficiency of their
products.
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Figure 10: Forced response of the intentionally mistuned bladed disk subjected to a given random mistuning pattern for different
excitation levels A (nonlinear —, linear —)
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Figure 11: Forced response of the intentionally mistuned bladed disk for different random mistuning levels σ (nonlinear —,
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Figure 12: Forced response of the intentionally mistuned bladed disk for different random mistuning levels σ (mistuned —,
tuned - - -)
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