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Camille Pouchol∗ Emmanuel Trélat† Enrique Zuazua‡

May 28, 2018

Abstract

We consider the problem of controlling parabolic semilinear equations arising in
population dynamics, either in finite time or infinite time. These are the monostable
and bistable equations on (0, L) for a density of individuals 0 6 y(t, x) 6 1, with
Dirichlet controls taking their values in [0, 1]. We prove that the system can never
be steered to extinction (steady state 0) or invasion (steady state 1) in finite time,
but is asymptotically controllable to 1 independently of the size L, and to 0 if the
length L of the interval domain is less than some threshold value L?, which can be
computed from transcendental integrals. In the bistable case, controlling to the other
homogeneous steady state 0 < θ < 1 is much more intricate. We rely on a staircase
control strategy to prove that θ can be reached in finite time if and only if L < L?.
The phase plane analysis of those equations is instrumental in the whole process. It
allows us to read obstacles to controllability, compute the threshold value for domain
size as well as design the path of steady states for the control strategy.

1 Introduction

For L > 0, 0 6 T 6 +∞, we consider the following controlled reaction-diffusion equation
on (0, L)× (0, T ) 

yt − yxx = f(y),

y(t, 0) = u(t), y(t, L) = v(t),

y(0) = y0.

(1)
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where f is a C1 nonlinearity satisfying f(0) = f(1) = 0, with initial data 0 6 y0 6 1 in
L∞(0, L). The Dirichlet controls u and v are measurable functions satisfying the constraints

0 6 u(t) 6 1, 0 6 v(t) 6 1. (2)

In such a setting, (1) admits a unique solution in

L2((0, T )× (0, L)) ∩ C([0, T ];H−1(0, L)),

see for instance [13]. The constraints on the controls entail

0 6 y(t, x) 6 1,

for all a.e. (t, x) ∈ [0, T ]× [0, L], by the parabolic comparison principle [23, 11].

We will consider two types of functions.

(H1) The monostable case: f > 0 on (0, 1). In such a case, we will also assume f ′(0) > 0.
The typical example is f(y) = y(1− y).

(H2) The bistable case: f < 0 on (0, θ) and f > 0 on (θ, 1) where 0 < θ < 1. In
such a case, we will also assume f ′(0) < 0 and f ′(1) < 0. The typical example is
f(y) = y(1− y)(y − θ).

We also set
F (y) :=

∫ y

0
f(z) dz for y ∈ [0, 1]. (3)

In the case (H2), we will without loss of generality always assume F (1) > 0, which is
equivalent to θ 6 1

2 when f(y) = y(1 − y)(y − θ). If F (1) < 0, one can set z = 1 − y to
apply the results obtained when F (1) > 0.

By means of appropriately chosen Dirichlet controls u(t) and v(t) in L∞(0, T ; [0, 1]) at
x = 0 and x = L respectively, our goal is to control the equation towards either the steady
states 0, 1, or in cases (H2), also towards the steady state θ.

Let us denote a a generic solution of f(y) = 0, namely a = 0, a = 1 or also a = θ in the
case (H2). Our goal is to provide controls u, v steering the system to those homogeneous
steady states. We will say that the controlled equation (1) is

• controllable in finite time towards a if for any initial condition 0 6 y0 6 1 in L∞(Ω),
there exist 0 6 T < +∞, controls u, v ∈ L∞(0, T ; [0, 1]) such that

y(T, ·) = a.

• controllable in infinite time towards a if for any initial condition 0 6 y0 6 1 in L∞(Ω),
there exist controls u, v ∈ L∞(0,+∞; [0, 1]) such that

y(t, ·) −→ a

uniformly in [0, L] as t tends to +∞.

2



Motivations. These models are ubiquitous in population dynamics (see [1, 9, 20]) but
they also appear in other contexts, e.g. in the theory of combustion. Let us use the point
of view of population dynamics to introduce the main modeling aspects.

In case (H1), having in mind the example f(y) = y(1−y), there is exponential increase of y
whenever y > 0, but there is a saturation effect near y = 1 because the full capacity of the
system has been reached. In case (H2), f takes negative values close to 0 to model the fact
that a minimal density θ is required for reproduction and cooperation, under which the
population will die out. The state θ is unstable in the absence of diffusion, since f ′(θ) > 0.

These models are also amenable to modeling invasion phenomena, because (when posed on
the whole space) they typically have solutions called travelling waves in the form y(x− ct)
for certain speeds c, linking the states 0 and 1, see the pioneering work [10].

For such problems, it is thus a requirement for the solution to satisfy y > 0, a condition
which is fulfilled with non-negative Dirichlet boundary conditions. We might consider
using controls that are above 1, taking into account the possibility for releases at 0 or L
to be above the capacity of the system.

However, there are contexts in which y is the proportion of individuals of type A over the
total number of individuals of types A and B. This can be obtained as the suitable limit of
a system of two reaction-diffusion equations for each type [27]. Thus, we shall also impose
that the controls are below 1 to cover these cases, which will not be a restriction for the
results.

In applications, it is common to target extinction or invasion of a given population: the
goal is to reach the steady state 0 or the steady state 1. Converging to an intermediate
steady state such as θ can also be desirable if the goal is to maintain the population all
over the domain, but below invasion levels.

If one thinks of y as a proportion of one species over the total number of individuals in two
species, reaching θ is one way of ensuring coexistence on the whole domain (0, L). Doing
it is a priori a more challenging task than for 0 and 1 since θ is an unstable equilibrium
for the dynamical system y′ = f(y).

On the control for model (1). The literature for the control of semilinear parabolic
equations such as (1) is abundant, whether it is by means of Dirichlet controls or controls
acting inside the domain [3, 31]. The typical results (for nonlinearities small enough to
avoid blow-up) when such controls are unbounded is the possibility to control towards 0
in any time T > 0 [12, 5, 6], but of course at the expense of controls becoming larger and
larger as T becomes smaller [7].

Much effort has been recently put into studying controllability problems also in the presence
of constraints on the controls, because it is a quite common assumption for applications.
Such additional control constraints, and in particular non-negativity constraints, may dra-
matically change the types of results one can obtain [21, 16]. Controllability to 0 is no
longer granted, and when it is, a minimal time for controllability might appear. Also note
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that even with unbounded controls, constraints on the state itself can lead to absence of
controllability or appearances of minimal times for it to hold true [17].

Finally, it is also possible to think of controlling variables that enter nonlinearly in the
equation, such as the Allee parameter θ [29]. In those cases, however, the control has a
much weaker effect on the equation, thereby weakening the controllability properties.

A simple static strategy. The simplest approach to steering the system to a homoge-
neous steady state a is by choosing constant controls u(t) = v(t) = a, a strategy we shall
call static in what follows. A crucial result due to Matano is that any trajectory must
converge to some stationary state.
Theorem 1 ([18]-Theorem B). Consider the equation

yt − yxx = f(y),

y(t, 0) = ū, y(t, L) = v̄,

y(0) = y0,

(4)

with some constant controls 0 6 ū, v̄ 6 1. Then y(t, ·) converges uniformly to some sta-
tionary state as t→ +∞, i.e., a solution ȳ of{

−ȳxx = f(ȳ),

ȳ(0) = ū, ȳ(L) = v̄.
(5)

This classical but nontrivial result is established thanks to the strong maximum principle,
in the spirit of work that followed studying the number of oscillation points or of sign
changes of solutions (lap-number, see [19]) as time evolves.

Note that the limit stationary state is not necessarily known: the above result only as-
serts its existence. Moreover, it is not necessarily unique. As a consequence, choosing
u(t) = v(t) = a will work asymptotically (independently of the initial condition) if the ho-
mogeneous solution a is the only solution to the above stationary problem (5) for ū = v̄ = a.

Threshold for domain size and obstacles. Intuitively, one can expect that if L is
small, y = a will be the only solution to the previous stationary problem, while if L is
large, there might be others. It is indeed well-known that there exists a threshold for L
under which a is the only solution, and above which there is at least one other [15].

Let us clarify this point with a = 0: it is proved in [15], (Theorem 1.4. for the monostable
case (H1), Theorem 1.5. for the bistable case (H2)) that there exists a positive solution
0 < z 6 1 to {

−zxx = λf(z),

z(0) = z(1) = 0,

depending on the position of λ with respect to some threshold. This is equivalent to L
being above some threshold, since after changing variables through z(x) = y( xL), L and λ
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are related by λ = 1
L2 . We denote this threshold L? both in the monostable and bistable

cases.

It is easily checked (after change of variables) that this result also applies to prove the
existence of a threshold for θ in the bistable case (H2), which we will denote Lθ and which
satisfies Lθ < L?. Indeed, any non-zero solution y to the stationary problem with null
Dirichlet boundary conditions will reach its maximum above θ: at such a maximum point
x0, there must hold f(y(x0)) = −yxx(x0) > 0 and thus y(x0) is in (θ, 1). As a consequence,
this solution will cross θ at least twice and give rise to a solution of the stationary problem
with θ-boundary conditions, on a smaller interval.

We shall see that there also exists a threshold for a = 1, which is infinite under the
hypothesis that F (1) > 0. To unify statements, this infinite threshold will be denoted
by L1.

When ū = v̄ = a, other stationary solutions ȳ to (5) than a are obstacles for the static
control strategy to work, since if y0 > ȳ (resp. y0 6 ȳ), then y(t, ·) > ȳ (resp. y(t, ·) 6 ȳ)
for the solution of the controlled model with constant controls u(t) = v(t) = a. This a
again a consequence of the parabolic comparison principle.

Note that these obstacles also come up naturally for the construction of so-called bubbles,
i.e., initial conditions in the case (H2) on the whole space, which are big enough to induce
invasion [28, 2].

Consequently, combining Matano’s Theorem with this threshold phenomenon already yields
that the static strategy with u(t) = v(t) = a is such that (leaving aside the case of L = La
for the moment):

• for L < La, any initial condition converges asymptotically to a,

• for L > La, there exist some initial conditions for which the solution will not converge
to a.

Application to invasion and extinction. Another application of the comparison prin-
ciple shows that it suffices to consider the static strategy in the case of a = 0 and a = 1.
We take a = 0 to illustrate the idea. The solution y of the controlled equation of (1) is
such that y(t, x) > z(t, x) where z solves the same equation but with u(t) = v(t) = 0.
Thus a given control strategy will reach 0 in finite or infinite time if and only if the static
strategy does too.

Also, whenever y0 6= 0, there holds z(t, x) > 0 inside (0, L) for all times, by the strong
parabolic maximum principle [23]. It entails that when y0 6= 0, it is possible to reach the
state 0 only asymptotically, and the same holds for 1. At this stage, for a = 0 or a = 1, we
can state that the system is not controllable to a in finite time, and that it is controllable
in infinite time towards a depending on the position of L with respect to La.
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Designing strategies for θ. The previous reasoning shows that the steady state θ will
asymptotically attract all trajectories if L is small enough, more precisely if L < Lθ, just
by the static strategy of putting u(t) = v(t) = θ on both sides. One can then hope to
reach θ in finite time, by waiting for the system to be close enough to θ in order to use a
local controllability result [24, 5, 12].

Contrarily to the case of 0 and 1, the static strategy might be improved for the control
towards θ since controls can take values both above and below θ. If either 0 or 1 attracts
all trajectories, our idea is to try and use a path of steady states linking θ to 0 (or 1), in
order to use the staircase method inspired by [4] and its development in [21]. It allows to
steer (in finite time) any steady state to another one, as long as they are linked by a path
of steady states.

Main results. In this paper, we provide a complete understanding of controllability
properties towards constant steady states for the equation (1), and the central tool is the
phase plane analysis for the ODE −y′′ = f(y). First, it will provide us with a different
approach to establish the existence of thresholds. We shall actually get more precise
results by proving that L1 = +∞ (due to F (1) > 0 which implies that 1 has an advantage
over 0), and that L? is positive and can be computed explicitly as the infimum of some
transcendental integrals. More precisely, we will show that

• (1) is controllable in infinite time towards 0 if and only if L 6 L? in the case (H1)
under generic conditions on f , and if and only if L < L? in the case (H2),

• (1) is controllable in infinite time towards 1 independently of L in both cases (H1)
and (H2).

Recall that, by the strong parabolic maximum principle, controllability to 0 or 1 is never
possible within finite time. Furthermore, L? = π/

√
f ′(0) under generic conditions on f

in the case (H1). In the case (H2), let us stress that our integral formula for L? was
established for cubic nonlinearities, already with phase plane analysis in [26], but for other
purposes.

Second, phase plane analysis will also be critical in understanding the controllability prop-
erties of θ. We already know from the reasonings above that θ can be reached asymptot-
ically by the simple static strategy, which works for L < Lθ. The main contribution of
our paper is the design of a control strategy which works not only for L < Lθ, but more
generally for L < L?. More precisely, we shall prove in the case (H2) that

(1) is controllable in finite time towards θ if and only if L < L?.

The proof of this equivalence as well as the design of an appropriate control strategy are
instrumentally based on the phase plane analysis of the dynamical system −y′′ = f(y), in
the region 0 6 y 6 1, which involves the three steady states 0, θ and 1. It might seem
surprising that θ cannot be reached independently of the value of L, since controls can
take values both below and above it. This is because for L > L?, a non-trivial solution to
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the stationary problem with zero Dirichlet boundary conditions is also an obstacle for the
control towards θ.

Such a strategy is far from obvious due to the instability of θ for the corresponding ODE.
The main idea is to use the staircase method, together with a fine analysis of the phase
plane showing that there is a path of steady states linking 0 and θ if and only if L < L?.
Actually, because the controls must be non-negative, 0 is not an appropriate steady state
and we shall need to find, again by phase plane analysis, another globally asymptotically
stable steady state yinit close to 0 such that a path of steady states still links yinit to θ.
We will also explain why there is a minimal time for controllability: one cannot hope to
reach θ in arbitrarily small time, and finally we will prove that among all initial conditions
0 6 y0 6 1 in L∞(0, L), there exists a uniform time of controllability.

Outline of the paper. The paper is organized as follows. In Section 2, we focus on the
case of 0 and 1. Phase plane analysis allows us to recover the existence of the threshold L?

and to find an formula for it, together with some estimates. The problem of controllability
towards θ is investigated in detail in Section 3, where we first recall the staircase method
before using it with the help of phase plane analysis. Finally, Section 4 is devoted to
numerical simulations confirming theoretical results and providing alternatives such as
minimal time strategies. It is concluded by some byproducts and perspectives which follow
from our work.

2 Threshold length L? for extinction and invasion

2.1 A general result for invasion

We recall that we assume F (1) > 0 (thus 0 and 1 do not play the same role in the bistable
case).
Proposition 1. Whether f satisfies (H1) or (H2), (1) is controllable in infinite time
towards 1 for all L > 0, namely L1 = +∞.

Proof. As explained in the introduction, Matano’s Theorem 1 and the parabolic comparison
principle combined imply that (1) is controllable towards 1 in infinite time if and only if
the only solution to {

−wxx = f(w),

w(0) = 1, w(L) = 1,
(6)

with 0 6 w 6 1 on [0, L], is the constant 1. The equation −wxx = f(w) is a second-order
ODE which can be rewritten as wx = z, zx = −f(w), and there is a solution to the previous
equation if and only if there are curves (w(x), w′(x)) in the phase portrait (w,w′) starting
and ending on the axis w = 1, which satisfy 0 6 w 6 1. In both cases, (H1) and (H2), the
only such a curve is the trivial one: w ≡ 1.
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For completeness, we give an analytical proof. Assume there is a such a function 0 6 w 6 1
which is not identically 1. Then there is x0 ∈ (0, L) such that w reaches its minimum,
satisfying w(x0) < 1. Since w′(x0) = 0, the conservation of the energy 1

2w
′2 + F (w) yields

1
2(w′(0))2 + F (1) = F (w(x0)) which implies F (w(x0)) > F (1). If f satisfies (H1) or (H2)
with F (1) > 0, the last inequality imposes w(x0) = 1, a contradiction. If f satisfies
(H2) together with F (1) = 0, then w′(0) = 0. Then w would solve the second-order
ODE −wxx = f(w) with w(0) = 1, w′(0) = 0, meaning that w would be identically 1 by
Cauchy-Lipschitz uniqueness, a contradiction.

Remark 1. In the case (H1), a Lyapunov functional exists and can be used to prove
convergence to 1 [22]. Indeed, consider the solution to{

yt − yxx = f(y),

y(t, 0) = 1, y(t, L) = 1,

and, for t > 0, the functional V (t) :=
∫ L
0

(
y(t, x)− 1− ln(y(t, x))

)
dx. Then

dV

dt
= −

∫ L

0

(
yx(t, x)

y(t, x)

)2

dx−
∫ L

0
f(y(t, x))

1− y(t, x)

y(t, x)
dx 6 0.

Up to our knowledge, however, no such Lyapunov functional has been exhibited in the
case (H2).

2.2 A general result for extinction

Let us first note that in the case (H2) and if F (1) = 0, the argument given for the state 1
in the previous section works similarly for 0, because the phase plane shows that 0 is the
only solution to {

−wxx = f(w),

w(0) = 0, w(L) = 0,
(7)

Thus, F (1) = 0 is a particular case for which (1) is controllable in infinite time towards 0
regardless of L. We now assume F (1) > 0 for the rest of this section.

Let us introduce some notations. In what follows, we will need to invert the function F .

In the case (H1), F is increasing, and thus its inverse F−1 is well-defined, mapping [0, F (1)]
onto [0, 1].

In the case (H2) and if F (1) > 0, F decreases from 0 to F (θ), and then increases from
F (θ) to F (1) > 0. There is thus a unique θ1 ∈ (θ, 1) such that F (θ1) = 0. We choose to
denote F−1 the inverse of F on [θ1, 1] which maps [0, F (1)] onto [θ1, 1]. If F (1) = 0, we
set θ1 = 1.
Proposition 2. In cases (H1) and (H2), there exists L? such that

• if L < L?, (1) is controllable towards 0 in infinite time,
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• if L > L?, (1) is not controllable towards 0 in infinite time.

Furthermore,

L? = inf
α∈(0,F (1))

√
2

∫ F−1(α)

0

dy√
α− F (y)

. (8)

It also holds that L? > 0, which we shall prove in the next subsection as a byproduct of
Proposition (3). What happens if L = L?, will also be clarified in the next subsection,
depending on whether f is of monostable type (H1) or bistable type (H2).

Proof. We know that (1) is controllable towards 0 in infinite time if and only if the only
solution to {

−wxx = f(w),

w(0) = 0, w(L) = 0,
(9)

with 0 6 w 6 1 on [0, L], is the constant 0. There is a non-zero solution to the previous
equation if and only if there are curves (w(x), w′(x)) in the phase portrait (w,w′) starting
and ending on the w′-axis having length L exactly, with the starting and ending points
different from the origin.

Let us parametrize such curves by their starting point
(
0,
√

2α
)
where α ∈ (0, F (1)]. If

these curves end on the w′-axis, the end-point is
(
0,−
√

2α
)
and we denote L(α) the time

required for them to reach this end-point. By symmetry, this is also twice the time for
this trajectory to reach the w-axis, at a point which we denote ymax(α). To illustrate
these curves, we refer to Figure 1 for a schematic view of the phase portrait, given in the
case (H1).

0 ymax(α) 1

−
√

2F (1)

−
√
2α

√
2α

√
2F (1)

y

y′ 1
2y
′2 + F (y) = F (1)

Trajectory linking 0 and 0

Figure 1: Phase portrait in the monostable case (H1) (here f(y) = y(1 − y)), with the
trajectory of energy 1

2y
′2+F (y) = F (1) and an example of trajectory parametrized with α.
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Finally, we use the fact that y increases from 0 to ymax(α), which makes of y a C1-
diffeomorphism from

[
0, 12L(α)

]
onto [0, ymax(α)], allowing us to compute

L(α) = 2

∫ L(α)
2

0
dz = 2

∫ ymax(α)

0

dy

y′
.

The energy 1
2(y′)2 + F (y) is conserved along trajectories, so that F (ymax(α)) = α, and

inverting this yields ymax(α) = F−1(α). We also have y′ =
√

2
√
α− F (y), and we arrive

at

L(α) =
√

2

∫ F−1(α)

0

dy√
α− F (y)

.

It is easy to check that this integral is finite, except, as we will see, for α = F (1). Thus, L?

is well-defined. From this formula, one clearly infers that if L < L?, there is no curve other
than 0 linking two points on the w′-axis such that the corresponding trajectory satisfies
0 6 w 6 1. Thus, if L < L?, (1) is controllable towards 0 in infinite time.

To prove the second point, we compute L(F (1)) =
√

2
∫ 1
0

dy√
F (1)−F (y)

= +∞ because

F (1) − F (z) ∼
z→1
−f ′(1)

2 (1 − z)2, since F ′(1) = f(1) = 0. Consequently, L(F (1)) = +∞
leading to L(α) → +∞ as α tends to F (1). Owing to the continuity of α 7→ L(α),
this implies the existence of a non-zero stationary solution to (5) (with ū = v̄ = 0) and
equivalently, the non-controllability of (1) towards 0 in infinite time, as soon as L > L?.

Remark 2. Since α 7→ ymax(α) is increasing with α, we can instead parametrize by
β := ymax(α) leading to the alternative formulae

L? = inf
β∈(0,1)

√
2

∫ β

0

dy√
F (β)− F (y)

and

L? = inf
β∈(θ1,1)

√
2

∫ β

0

dy√
F (β)− F (y)

,

in cases (H1) and (H2) respectively.

2.3 Estimating L?

Let us start by giving a global bound for L?, valid both in cases (H1) and (H2).
Proposition 3. It holds that

L? >
π√

maxy∈[0,1]
f(y)
y

. (10)
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Proof. Let 0 6 y0 6 1 be given in L∞(0, L) and consider the solution to (1) with null
boundary Dirichlet values. For R := maxy∈[0,1]

(
f(y)
y

)
, we can bound

yt − yxx = f(y) =

(
f(y)

y

)
y 6 Ry on (0, L).

Subsequently, y is a subsolution of the equation
zt − zxx = Rz,

z(t, 0) = 0, z(t, L) = 0,

z(0) = y0.

(11)

From the comparison principle for parabolic equations, we deduce y(t, x) 6 z(t, x). Now,
using the Hilbertian basis of L2(0, L) formed by eigenvectors of the operator A : z 7→
−zxx −Rz with Dirichlet boundary conditions, it is standard that

‖z(t, ·)‖L2(0,L) 6 ‖y0‖L2(0,L)e
−λ1t 6

√
Le−λ1t

where λ1 is the first eigenvalue of A, given by λ1 := −R + π2

L2 . Thus it is clear that
z(t, ·)→ 0 independently of y0 as soon as L < π√

R
.

In the case (H1), it is possible to obtain the actual value of L? under an additional sufficient
condition on the function f .
Proposition 4. Let f satisfy (H1) be a C2 function. Further assume

f2 > 2Ff ′ on [0, 1]. (12)

Then
L? =

π√
f ′(0)

.

The hypothesis clearly applies to concave functions, whence the following corollary.
Corollary 1. Let f satisfy (H1). If f is concave on [0, 1], then L? = π√

f ′(0)
. In particular,

if f(y) = y(1− y), then L? = π.

Proof (of Proposition 4). Let us first prove that α 7→ L(α) is increasing on (0, F (1)). We
first change variables by setting u = αF−1(y), yielding L(α) =

√
2α
∫ 1
0

(F−1)′(αu)√
1−u du. Now

we compute the derivative of the previous expression for α ∈ (0, F (1))

L′(α) =
1√
2α

∫ 1

0

(F−1)′(αu)√
1− u du+

√
2α

∫ 1

0

u(F−1)(2)(αu)√
1− u dz

=
1√
2α

∫ 1

0

(F−1)′(αu) + 2(αu)(F−1)(2)(αu)√
1− u du.

11



If F−1(z) + 2z(F−1)(2)(z) > 0 for all z ∈ (0, F (1)) our claim is proved. Computing the
derivatives, we find

(F−1)′(z) + 2z(F−1)(2)(z) =
1

f(F−1(z))

(
1− 2z

f ′(F−1(z))

(f(F−1(z)))2

)
.

Changing variables again through z = F (y), the last quantity is non-negative on (0, F (1))

if and only if 1− 2F (y) f
′(y)

f2(z)
> 0 on (0, 1), which is exactly the hypothesis (12).

At this stage, we can claim that
L? = lim

α→0
L(α),

and it remains to compute the limit. Recall that

L(α) =
√

2α

∫ 1

0

(F−1)′(αu)√
1− u du =

√
2α

∫ 1

0

1√
1− u

1

f(F−1(αu))
du.

Since F (y) ∼
y→0

F (2)(0)
2 y2 = f ′(0)

2 y2, F−1(z) ∼
z→0

√
2z
f ′(0) . As a consequence, f(F−1(z)) ∼

z→0

f ′(0)F−1(z) ∼
z→0

√
2f ′(0)z. Finally, we arrive at 1

f(F−1(αu))
∼
α→0

1√
2αf ′(0)u

leading to

L(α) ∼
α→0

1√
f ′(0)

∫ 1

0

1√
u(1− u)

du =
π√
f ′(0)

,

whence the result.

From the previous result, we know we see that the infimum is attained at the boundary of
(0, F (1)), thus we know what happens for L = L?: there is no obstacle to the convergence
to 0.
Corollary 2. Let f satisfy (H1) and (12). Then (1) is controllable towards 0 in infinite
time if and only if L 6 L?.
Remark 3. Note that from the previous results, we see that exponential convergence to 0
is often granted, and concavity assumptions for f near 0 are critical: in such a setting, the
linear part dominates and linear stability results can provide global stability.

We now turn our attention towards the case (H2), for which there is no simple formula.
When F (1) = 0, we set L? = +∞ in agreement with the result of 1 which applies to 0 when
F (1) = 0. In other words, (1) is controllable in infinite time towards 0 when F (1) = 0,
whatever the value of L.
Proposition 5. Let f satisfy (H2) and F (1) > 0. Then α 7→ L(α) reaches a minimum at
some point of (0, F (1)).

Proof. We define g(α) := 1√
2
L(α) =

∫ F−1(α)
0

dy√
α−F (y)

to get rid of the constant, split the

integral in two on the intervals [0, θ1] and [θ1, F
−1(α)], and change variables in the second
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integral as in the monostable case to uncover

g(α) =

∫ θ1

0

dy√
α− F (y)

+
√
α

∫ 1

0

(F−1)′(αu)√
1− u du.

We first note that the second integral converges to 0 when α tends to 0, while the first
one converges to

∫ θ1
0

dy√
−F (y)

= +∞ because F (y) ∼
y→0

f ′(0)
2 y2. Thus, the infimum of

L(α) =
√

2g(α) is a minimum, reached inside (0, F (1)).

From the previous result, we know what happens for L = L?: there is an obstacle to the
convergence to 0.
Corollary 3. Let f satisfy (H2). Then (1) is controllable towards 0 in infinite time if and
only if L < L?.

3 Controlling towards θ in the bistable case

In this Section, we assume the function f to be of type (H2). First recall the simple static
strategy to try and reach θ, which consists in setting θ on the boundary. This strategy is
successful if and only if L is below the threshold Lθ, and as such works only for smaller
domains when compared with the one we are about to introduce for L < L? (recall that
Lθ < L?).

Estimates for Lθ. Let us start by explaining how one can obtain a formula and some
estimates on Lθ, thanks to the results established in the previous Section 2. We are looking
for solutions 0 6 w 6 1, w 6= θ to the stationary problem{

−wxx = f(w),

w(0) = θ, w(L) = θ,
(13)

and we can look only for solutions satisfying either w > θ or w 6 θ when estimating the
threshold Lθ, since any solution taking values both above and below θ, will yield solutions
to (13) on a smaller interval. After change of variables z = w − θ (resp. z = θ − w), we
are faced with −zxx = −f(θ − z) (resp. −zxx = f(θ + z)) with null Dirichlet boundary
conditions. Thus, using the results established previously, we have the following formula
for Lθ:

Lθ = inf
β∈(0,1)

√
2

∣∣∣∣∣
∫ β

θ

dy√
F (β)− F (y)

∣∣∣∣∣ .
It is possible to go further in estimating Lθ. If we proceed as in Proposition 3, we find

Lθ >
π√

maxy∈[0,1]

∣∣∣f(y−θ)y−θ

∣∣∣ .
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Finally, as in Lemma 4, we can prove that if f is of class C2 satisfying f2(y) > 2(F (y)−
F (θ))f ′(y) on [0, 1], then Lθ = π/

√
f ′(θ). Note that this condition requires, when F (1) >

0, that f be concave near θ, which is never the case for the classical cubic nonlinearity
f(y) = y(1− y)(y − θ).

Existence of a minimal time for controllability. Before proving controllability to-
wards θ for L < L? in finite time, a simple argument suffices to explain why it is not
possible to steer the system to θ in arbitrarily small time. For simplicity, assume that
y0 ∈ C([0, L]), and first that y0 is strictly above θ at least at one point in space inside Ω.
As usual, whatever the controls, we can write y(t, ·) > z(t, ·), where z(t, ·) starts from y0
but with zero Dirichlet boundary conditions.

Since the trajectory z(t, ·) is smooth in time, it requires a positive time t1 to be uniformly
below θ, and so if there exists a time T and a control strategy such that y(T, ·) = θ, there
must hold that T > t1. If y0 is below θ somewhere inside (0, L), we argue similarly by
comparing to the trajectory associated with Dirichlet boundary controls equal to 1.

3.1 Control along a path of steady states

We will say that a steady state ȳ associated with static controls ū, v̄ is admissible if

0 < ū, v̄ < 1.

This property will be of great importance because we shall need to make small variations
around the controls ū, v̄ when making use of the staircase method.

Finally, we will say that there exists a path of steady states linking two steady states ȳ0
and ȳ1 if there is a set of steady states S and a continuous mapping

γ : [0, 1] 7−→ S

such that γ(0) = ȳ0, γ(1) = ȳ1, where S is endowed with the C([0, L])-topology. The
corresponding 1-parameter family of controls will be denoted by (ūs, v̄s)06s61.

We start by giving a local exact controllability result, which holds uniformly given a family
of steady states and rests on the local controllability for a single steady state, well known in
the 1D case [24] and since then generalized [5, 12], see for example [21] for a full derivation.
We stress that the controls provided by this result do not necessarily lie in [0, 1]. We also
emphasize that such a uniform result is possible because, by definition, steady states are
taken to be between 0 and 1.
Lemma 1. Let S be a set of steady states ȳ associated with controls ū, v̄. Let T > 0 be
fixed. Then there exist constants C(T ) > 0, δ(T ) > 0 such that for all ȳ ∈ S, for all
0 6 y0 6 1 in L∞(0, L) with

‖y0 − ȳ‖∞ 6 δ(T ),
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there exist controls u, v ∈ L∞(0, T ;R) such that the solution of (1) starting at y0 satisfies

y(T, ·) = ȳ.

Furthermore,

max (|u(t)− ū|, |v(t)− v̄|) 6 C(T ) ‖y0 − ȳ‖∞ on (0, T ).

With this lemma, we can now explain the staircase method. Applied with a path of
admissible steady states, it ensures that one can steer any steady state to another one by
controls with values in [0, 1].
Proposition 6. Assume that there exists a path of admissible steady states (ȳs)06s61 as-
sociated with controls (ūs, v̄s)06s61. Then there exists a time tf > 0 and a control strategy
u, v ∈ L∞(0, tf ; [0, 1]) such that the solution of (1) starting at ȳ0 satisfies

y(tf , ·) = ȳ1.

The proof simply goes by applying a finite number of times the local controllability result
along the (compact) path of steady states.

Proof. We use the previous result with time T = 1. By continuity, δ0 := min06s61(ūs, v̄s, 1−
ūs, 1− v̄s) > 0. We choose an integer N large enough such that for all k = 1, . . . , N ,∥∥∥ȳ k−1

N
− ȳ k

N

∥∥∥
∞

6 ε,

where ε will be defined below.

For k = 1, . . . , N , let uk, vk be the controls in L∞(0, 1;R) such that the solution of (1)
starting at ȳ k−1

N
reaches exactly ȳ k

N
at time 1. These controls are such that

max
(∣∣∣uk(t)− ū k

N

∣∣∣ , ∣∣∣vk(t)− v̄ k
N

∣∣∣) 6 C(1)
∥∥∥ȳ k−1

N
− ȳ k

N

∥∥∥
∞

6 C(1)ε

on [0, 1]. In particular, uk(t) > ū k
N
− C(1)ε > 0 for ε small enough. We prove similarly

that uk is bounded away from 1, and the reasoning for vk is the same. At this stage, it
suffices to define (u(t), v(t)) = (uk(t− k), vk(t− k)) for t ∈ (k, k+ 1) to obtain the desired
controls, with tf = N .

3.2 Phase portrait in the case (H2)

To define a path of steady states linking an appropriate state (say yinit) to the state θ,
phase plane analysis is again instrumental. We will indeed consider a path of steady
states (ws)06s61 (such that w0 = yinit and w1 = θ) by choosing a path of initial conditions
s ∈ [0, 1] 7→ (ws(0), w′s(0)) in the phase plane. For some L fixed, the corresponding controls
are s ∈ [0, 1] 7→ (ws(0), ws(L)), but there is no reason in general that 0 6 ws(L) 6 1.
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However, if 0 6 ws(L) 6 1 for all s ∈ [0, 1], this method gives a path of steady states,
defined by the controls s ∈ [0, 1] 7→ (ws(0), ws(L)). The continuity of the mapping s 7→ ws
is ensured by continuity of solutions of ODEs with respect to initial conditions.

To ensure that the chosen path of initial conditions does not violate 0 6 ws(L) 6 1,
we must analyze further elementary properties of the phase portrait in the case (H2), an
example of which we depict on Figure 2.

0 θa θ1 1

−
√

2F (1)

√
2F (1)

y

y′ 1
2y
′2 + F (y) = F (1)
1
2y
′2 + F (y) = 0

Trajectory linking a and a
Region Γ

Figure 2: Phase portrait in the bistable case (H2). (Here, f(y) = y(1− y)(y − θ), θ = 1
3 .)

The hatched region is Γ, delimited by the trajectory of energy 1
2y
′2 + F (y) = 0. Also

depicted: the trajectory of energy 1
2y
′2 + F (y) = F (1) and an example of a trajectory

starting at a and ending at a.

There are two curves of importance in the phase portrait for (H2). The first one is defined
by the energy 1

2y
′2 + F (y) = F (1), while the second is a homoclinic curve and has energy

1
2y
′2+F (y) = 0. Note that if one starts with an initial condition along the first curve (resp.

the second curve), it takes an infinite time (here, length), for the corresponding solution
to the ODE −w′′ = f(w) to reach 1 (resp. 0). The first result has been established in
Proposition 2, the second in Proposition 5. With the notations of these propositions, this
is because L(α) tends to +∞ when α tends to 0 or F (1).

We define Γ to be the region defined by the set of points (x, y) such that |y| 6
√
−2F (x),

that is, those delimited by the homoclinic curve. The important result in what follows is
that any initial condition (w(0), w′(0)) inside Γ is such that the corresponding trajectory
w(x) remains indefinitely between 0 and 1 (actually, between 0 and θ1).

Finally, let us fix some a ∈ [0, 1]. We look at all the trajectories starting with w(0) = a
and outside the interior of Γ, namely with

√
−2F (a) 6 w′(0) 6

√
2(F (1)− F (a)). We
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define La to be the minimal time for such trajectories to reach a again. Note that with
this definition, we clearly have L0 = L?.

3.3 The control strategy induced by phase plane analysis

Let us now define the control strategy, which works not only for L < Lθ but more generally
for L < L?, based on the staircase method. The core idea is to find a path of steady states
between 0 and θ, which, as we shall see, is possible if and only if L < L?. However 0 is
not admissible so that we must instead resort to another close admissible steady state. We
will build an admissible steady state yinit such that

• yinit can be reached asymptotically for any initial condition,

• there exists a path of admissible steady states linking yinit to θ.

The key lemma in order to obtain such a state is the following.
Lemma 2. Let L < L?. Then for any ε < θ1 small enough, the solutions 0 6 w 6 1 of{

−wxx = f(w),

w(0) = ε, w(L) = ε.
(14)

are in Γ, namely they must be such that |w′(0)| 6
√
−2F (ε).

At this stage, we do not know that yinit is unique, a fact which is not necessary for the
proof of the next theorem, but we shall clarify this point in the next subsection.

Proof. With the notations of Subsection 3.2, Lε tends to L0 = L? when ε tends to 0, and
thus we can choose ε small enough such that L < Lε < L?. Consequently, by the very
definition of Lε, there is no solution to (14) other than those in Γ.

Theorem 2. (1) is controllable towards θ in finite time (or infinite time) if and only
if L < L?.

Proof. We fix L < L? and some initial data 0 6 y0 6 1 in L∞(0, L). Assume that
ε > 0 is small enough so that the conclusions of Lemma 2 hold true. The idea is to first
use static Dirichlet controls u(t) = v(t) = ε for a long time, because Lemma 2 ensures
that the trajectory will converge to some steady state yinit in Γ, independently of the
initial condition. Such a steady state can then be reached exactly because of the local
controllability result. Finally, the fact that yinit is in Γ allows us to find a path of steady
states linking it to θ, so that it remains to use the staircase method.

First step. We start by approaching a steady state yinit in Γ. Consider the equation
yt − yxx = f(y),

y(t, 0) = ε, y(t, L) = ε,

y(0) = y0.
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Then, by Theorem 1, the solution must converge to a steady state with Dirichlet boundary
conditions (ε, ε). By Lemma 2, this is some state in Γ, which we denote yinit. In particular,
for any η > 0, there exists t0 > 0 such that for t > t0, ‖y(t, ·)− yinit‖∞ 6 η. Thus, we
start by taking u(t) = ε, v(t) = ε on (0, t0) (η and the corresponding t0 will be fixed
appropriately in the next step).

Second step. We now make use of Lemma 1 with for example time 1 and choosing η
(and corresponding t0) such that C(1)η is small enough for ε − C(1)η > 0 to hold. This
provides controls ũ, ṽ in L∞(0, 1; [0, 1]) such that defining u(t) = ũ(t− t0), v(t) = ṽ(t− t0)
on (t0, t0 + 1), we have y(t0 + 1, ·) = yinit.

Third step. We build a path c of initial conditions linking the initial conditions associated
with yinit, i.e. (ε, y′init(0)), and θ, i.e., (θ, 0). The simplest choice is the straight line,
illustrated by Figure 3 below.

0 ε θ θ1 1

−
√

2F (1)

√
2F (1)

.
y

y′ Path of initial conditions c
Starting steady state yinit

Figure 3: The path c of initial conditions, from those of yinit (black dot) and those for θ.
The state yinit is also depicted.

We denote γ the path of admissible steady states associated with c, and it now just re-
mains to follow this path: by Theorem 6, there exist a time T0 and controls u0, v0 in
L∞(0, T0; [0, 1]) bringing yinit to θ. We set u(t) = u0(t− (t0 + 1)), v(t) = v0(t− (t0 + 1))
on (t0 + 1, t0 + 1 + T0) and T = t0 + 1 + T0. The controls u and v are indeed such that
y(t, ·) reaches exactly θ at time T .

We now prove the converse and assume L > L?. We already saw in the Introduction that
if there exists a nontrivial solution 0 6 w 6 1 to{

−wxx = f(w),

w(0) = 0, w(L) = 0,
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it satisfies w > θ somewhere inside (0, L). As already pointed out when it came to con-
trolling towards 0, for any control strategy u(t), v(t), the solution of (1) with y0 > w
satisfies y(t, ·) > w. If we had found a control strategy bringing us in finite (or infinite
time) towards θ, we would have w 6 θ, a contradiction.

Remark 4. The path c is a path of initial conditions (ws(0), w′s(0)), indexed by 0 6 s 6 1.
To clarify the associated steady states, we depict a typical example in Figure 4. In the
previous proof, the control on the left us = ws(0) has been chosen to increase from ε
to θ. We find that the corresponding control on the right vs = ws(L) rapidly takes values
above θ.

0 1 2 3 4 5 6 7 8 9 10
0
ε

0.2

θ

0.5

x

ws

Figure 4: Path of steady states (ws) from yinit (in blue) to θ (in red), for L = 10, f(y) =
y(1− y)(y − θ), θ = 1

3 , ε = 0.02.

Assume that Lθ 6 L < L? and that the non-homogeneous solution to the stationary
problem with θ-boundary conditions, say z, satisfies z 6 θ. Then a path of steady states
with controls us and vs both below θ would not work because z would be an obstacle for
a trajectory starting from y0 6 z. This explains why some controls vs on the right are
above θ.

3.4 Uniform time of controllability

Let us now use this control strategy to prove that there are no initial conditions requiring
an arbitrarily long (finite) time to be brought to θ. In other words, denoting Tmin(y0) the
minimal time for some initial condition 0 6 y0 6 1 in L∞(0, L) to be controlled to θ, we
have the following proposition.
Proposition 7. For L < L?, there exists a uniform time T > 0 below which all initial
conditions 0 6 y0 6 1 in L∞(0, L) are controllable to θ, namely

sup Tmin(y0) <∞, (15)

where the supremum is taken over all 0 6 y0 6 1 in L∞(0, L).
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Proof. Let L < L? be fixed. We will make use of the control strategy of Theorem 2. Let
us remark that the time required by the second step (exact controllability to yinit) and by
the third step (following the path of steady states) are independent of y0. To conclude,
we must analyse whether the time for the first step (approaching yinit) can be taken to
be uniform over all possible initial conditions. This relies on the following lemma, which
clarifies the uniqueness of yinit.

Lemma 3. There is only one solution 0 6 yinit 6 1 to the stationary problem{
−wxx = f(w),

w(0) = ε, w(L) = ε,

for ε small enough.

Let us temporarily assume this result and explain how it concludes the proof. Recall that
the second step requires to be close enough to yinit so that the local exact controllability
result can be used with controls lying in [0, 1]. As in the previous proof, we characterize
the corresponding neighborhood in L∞(0, L) by η, that is, the first step is stopped when
‖y(t, ·)− yinit‖L∞ 6 η. We take the two extremal initial conditions y00 = 0 and y10 = 1, and
denote the corresponding trajectories y0 and y1, with controls u(t) = v(t) = ε. We know
that these trajectories both converge to the unique solution yinit of (3), so that we can
choose t? such that for t > t?, both

∥∥y0(t, ·)− yinit∥∥L∞ 6 η and
∥∥y1(t, ·)− yinit∥∥L∞ 6 η

hold.

For any initial condition y00 = 0 6 y0 6 1 = y10, the parabolic comparison principle yields
that the corresponding trajectory y with controls u(t) = v(t) = ε satisfies y0 6 y 6 y1

for all times. In particular, we have ‖y(t, ·)− yinit‖L∞ 6 η for t > t?. This proves that
the first step takes a uniform time (bounded by t?) to bring any initial condition to the
prescribed neighborhood of yinit.

We now complete the proof by proving Lemma 3. Let us first prove that for ε small enough,
any solution of the previous problem will be such that w 6 ε. To do so, we shall prove
that a solution with w > ε exists only for values of L which tend to +∞ e as ε tends to 0.
Indeed, we already know by Lemma 2 that these solutions are curves in the phase plane
lying in the region Γ for ε small enough. If w > ε, such a solution must be associated to
some initial condition w(0) = ε, 0 6 w′(0) 6 −

√
−2F (ε) (not w′(0) < 0, since otherwise

w is below ε close to x = 0). As ε tends to 0, these curves tend to the homoclinic curve
delimiting the region Γ, which links 0 to 0 but in infinite time. Thus, for ε small enough
there are no solutions w > ε to the stationary problem for some fixed L.

At this stage, it remains to prove that there exists only one solution 0 6 w 6 ε of the
stationary problem for ε small enough. Assume that there are two, w1 and w2, so that
the difference z = w1 − w2 satisfies the elliptic equation −zxx = f(w1) − f(w2), with
z(0) = z(L) = 0. We choose ε small enough so that f is decreasing on [0, ε]. First assume
z′(0) > 0. Then z′ > 0 at least locally around 0. If z′ > 0 on the whole (0, L), then
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ε = w1(L) > w2(L) = ε which is not possible. Thus there must be some x0 ∈ (0, L) such
that z′(x0) = 0, and we may choose it to be the first zero of z′. At x0 it must hold that
zxx(x0) 6 0. However, on (0, x0], we have z(x) = w1(x) − w2(x) > 0. Because both w1

and w2 are below ε and due to the monotonicity of f , we obtain at x0

−zxx(x0) = f (w1(x0))− f(w2(x0)) < 0,

a contradiction.

If z′(0) < 0, the reasoning is the same as before to get a contradiction. Hence, we necessarily
have z′(0) = 0: w1 and w2 have the same derivative at 0. By Cauchy-Lipschitz uniqueness,
w1 = w2.

4 Numerical simulations, comments and perspectives

4.1 A numerical optimal control approach

We consider the case (H2), and look for numerical control strategies to reach the state θ
with the goal of both

• illustrating the theoretical results,

• investigating alternative strategies to the staircase one obtained by phase plane anal-
ysis.

To this end, we consider the following optimal control problem for some final time T > 0:

minimize CT (u, v) = ‖y(T, ·)− θ‖2L2(0,L)

over controls u, v ∈ L∞(0, T ; [0, 1]), and where y solves (1).

We are interested in seeing whether, for a given L > 0, we can find some T > 0 such that
this optimal control problem leads to a very small cost: this will correspond to a strategy
such that y(T, ·) is very close to θ. We do not need to reach θ exactly because we know
that, once very close to it, there is a control strategy to reach it exactly, given by Lemma 1.
In some instances, we will also force the controls to be equal to θ to illustrate when this
control strategy suffices to reach θ.

To study this optimal control problem from a numerical point of view, we use direct
methods. In a few words, the idea is to discretize the whole problem both in time and
space, through discretization parameters Nt and Nx, and to solve the resulting high but
finite-dimensional optimization problem. This last step is done through the combination
of automatic differentiation softwares (with the modeling language AMPL, see [8]) and
expert optimization routines (with the open-source package IpOpt, see [30]).

All the numerical experiments will be led with

f(y) = y(1− y)(y − θ), θ =
1

3
.
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In this section, we take
y0 = 0.1

x

L
+ 0.8

(
1− x

L

)
,

and
Nx = 60, Nt = 400.

With this choice of function f , θ, using the formula for L?, we find numerically L? ≈ 10.43.
As for the threshold Lθ, we find Lθ ≈ 6.29.

We start by taking L = 5 < Lθ and impose θ on the boundary. For T = 20, we indeed
find that this is enough to approach θ, see Figure 5.
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0.4

0.6

0.8

1

x
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Figure 5: Static strategy u = v = θ and resulting state y(t, ·) from time 0 (in blue), to T
(in red) with intermediate times T

4 ,
T
2 ,

3T
4 (in dashed line). Here, L = 5 < Lθ and T = 20.

For Lθ < L = 8 < L? and T = 20 (or larger final times), the static strategy is not enough
as already known theoretically and evidenced by the upper graphs of Figure 6. The lower
graphs show the optimal control, as obtained numerically, to reach θ: the interesting
feature is that it oscillates very quickly around θ near the final time T . This is a common
feature when controlling a heat equation to zero [14]. Also worth mentioning is the fact
that controls take small values for a long time, which is reminiscent of the first long phase
of our staircase strategy with u(t) = v(t) = ε for a small ε.

For L = 12 > L? and even for a large final time T = 100, the control strategy minimizing
the cost does not bring the final state close to θ, see Figure 7. One can see that the control
is close to 0 for a long time, trying to bring the solution down but it remains blocked by
a non-zero solution to the stationary problem with zero Dirichlet boundary conditions.

About taking the same Dirichlet controls u = v. One important feature reflected
by these simulations is that the optimal controls u and v are actually very close to one
another, almost equal after some time. Further simulations (see also the next section)
performed with u = v indeed indicate that it is possible to design a control strategy with
u = v to reach θ, whenever L < L?. It remains an open problem to prove it, because we
stress again that the strategy developed in Section 3 is such that u 6= v.
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Figure 6: Static strategy u = v = θ (upper) or optimal controls u, v (lower) and resulting
state y(t, ·) from time 0 (in blue), to T (in red) with intermediate times T
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4.2 Control in minimal time

We numerically investigate the minimal time problem, which is well-posed as proved in
Section 3, i.e., we consider the optimal control problem

minimize tf

over controls u, v ∈ L∞(0, T ; [0, 1]), and where y solves (1) together with

y(tf , ·) = θ.
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As before, we discretize the whole problem to estimate the minimal time and corresponding
optimal strategy. All simulations of this section are conducted with L = 8 < L?, and the
same initial condition y0 = 0.1 xL+0.8

(
1− x

L

)
as in the previous section. The corresponding

results are reported in Figure 8.

For the initial condition y0, we approximately find tf ≈ 5.2. The optimal controls are
bang-bang, i.e.,, they take only the extremal values 0 and 1, except near tf . They are
identically equal to 0 up until t ≈ 3.2 and then oscillate more and more rapidly. Thus, we
conjecture that the optimal controls have an infinite number of switchings near the final
time tf , a phenomenon called chattering. Note that the discretization parameters are here
Nx = 100 and Nt = 1000, which is necessary for a good approximation of the behavior
near the final time.

At the end of the phase with both controls at 0, y(t, ·) is not close to 0, as evidenced
by the state in green in Figure 8. Thus, the second phase does not start on a stationary
state since we know that the only stationary state with null boundary conditions is 0 for
L < L?. It is also does not seem that y(t, ·) is close to some path of steady states during
the chattering phase. Consequently, simulations indicate that the staircase strategy is not
the minimal time strategy.
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Figure 8: Optimal controls u, v (lower) and resulting state y(t, ·) from time 0 (in blue), to
tf (in red) with intermediate times 0.6tf (in green), 0.7tf , 0.8tf , 0.9tf (in dashed line).

As already stressed, simulations suggest that it is possible to control the system to θ with
the same controls on both sides. A simulation of the minimal time problem with the same
control u at x = 0 and x = L is presented in Figure 9. For this non-symmetric initial
condition, the minimal time is about 5 times the minimal time with two controls, showing
that the two degrees of freedom strongly accelerate the convergence to θ. The strategy
however remains the same: the control is bang-bang equal to 0 for a long time, and then
chatters around the final time. After the first phase with null control, the state is almost 0.
The oscillations then gradually fill up the state θ, starting from the middle.

Finally, let us mention that for symmetric initial conditions, simulations for the minimal
time problem (not shown here) exhibit symmetric controls u(t) = v(t).
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Figure 9: Optimal control u and resulting state y(t, ·) from time 0 (in blue), to tf (in red)
with intermediate times 0.7tf (in green), and several others from 0.95tf to tf (in dashed
line).

4.3 Comments and perspectives

Fully parametrized model. Explicitly considering the diffusion parameter µ, namely

yt − µyxx = f(y), (16)

it is easily seen after change of variables that the thresholds L?, Lθ scale like √µ. When
exponential convergence holds as given by Lemma 3, the rate of convergence is the first
eigenvalue of the Dirichlet Laplacian and thus scales like µ.

Other boundary conditions and steady states. As a byproduct of our analysis, we
also have proved results for 

yt − yxx = f(y),

y(t, 0) = u(t), yx(t, L) = 0,

y(0) = y0,

(17)

namely the system where there is only one control at x = 0, while a Neumann boundary
condition is enforced at the other end of the domain. Indeed, the same phase plane analysis
shows that it is controllable towards 0 in infinite time if and only if (putting u(t) = 0 at
the left end) L 6 L?

2 in the monostable case (L < L?

2 in the bistable case, respectively).

Simulations not shown here suggest that this system can be controlled to θ if L < L?

2 in
the bistable case, and it is an open problem to prove it (as our control strategy requires to
act on both ends).

Also note that our overall strategy would also work it we had Neumann controls instead of
Dirichlet controls. It can also be used to reach other stationary states, while the strategy
as well as possible obstacles and corresponding threshold values are all readable on the
phase plane.

The multi-dimensional case. Understanding what happens in the previous case would
be critical in view of tackling the problem in higher dimension. It is indeed natural to think
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of situations where the control acts only on a part of the boundary, while the rest of the
boundary is endowed with Neumann conditions. For such non-homogeneous boundary
conditions, stability results would be required to carry out an analysis in the spirit of ours.

If the control acts on the whole boundary, the problem of controllability towards 0 again
leads to analyzing whether only the trivial solution solves the stationary problem, because
the result of Matano has been generalized [25]. Then, the threshold phenomenon is already
known [15]. In this work, it is stated for{

−∆y = λf(y) in Ω,

y = 0 on ∂Ω

where the parameter related to the domain size is λ. However, there are up to our knowl-
edge no explicit formulae for the threshold value, although bounding like in Subsection 2.3
still works.

For the control towards 1 and in the monostable case (H1), the Lyapunov functional
introduced in Remark 1 works in arbitrary dimension [22]. For the control towards θ in
the bistable case (H2) with the static strategy of putting θ on the whole of ∂Ω, there is
also a threshold as can be proved thanks to the above result.

Non-local extension. A possible extension of the monostable case is to replace the
classical nonlinearity f(y) = y(1− y), by a non-local one, namely

f(x, y) = y

(
1−

∫ L

0
K(x, z)y(z) dz

)
where K is a kernel accounting for interactions between individuals at positions x and
z and the equation is usually called the non-local Fisher-KPP equation [22]. Since the
corresponding stationary equation depends on x, the phase portrait technique does not
apply and extending the controllability properties considered in this paper is a completely
open problem.

Controllability above the thresholds. It is natural to analyze which initial condi-
tions can still be brought to 0 or θ, when L > L?. Let us give a simple negative result in
this direction. To answer the question, the multiplicity of stationary solutions is critical
and there are many results [15]. Generally, these solutions are ordered, and thus, the max-
imal one will attract all initial conditions that are uniformly above it, by the comparison
principle and Matano’s theorem. Going more deeply would require to analyze the basin of
attraction of each stationary solution.

There are also some initial data for which we can prove controllability towards θ with our
staircase strategy. Indeed, lack of controllability for L > L? comes from the impossibility
to make the first step of the proof work, namely to let any initial condition reach the state
yinit close to 0. The second part, however, still works: θ is linked to any steady state in
the region Γ, independently of L. Thus, for any L > 0, we can control any of these steady
states to θ, as well as any initial condition close to one of them (it has to be close enough
for the local controllability argument to apply).
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Open-loop or feedback control. Our control strategy towards θ is completely con-
structive and open-loop since we first put low controls ε on both sides up until the trajectory
is close enough to yinit, and the waiting time can be taken to be independent of the ini-
tial condition, as proved in Proposition 7. The staircase phase requires controls achieving
local controllability, which are also open-loop and constructive: these controls are indeed
obtained by the HUM method, namely the minimization of an appropriate functional [14].

The strategy can also be defined in feedback form, since the first phase can be made to
last up until the trajectory is close enough to yinit, while the staircase one could also be
designed in feedback form, by adapting the results of [4].

Minimal time. For a given initial condition, theoretically estimating the minimal
time for controllability towards θ and corresponding controls is an open problem in our
semilinear setting, since spectral estimates specific to the linear case (used in [16]) are not
available.

Same controls on both sides. The controllability properties proved in the present
paper require acting with different controls on both sides only for the state θ, although
numerical simulations suggest that these properties also hold with u = v. Proving it is an
open problem, and an interesting question is whether this could also be done thanks to a
path of steady states.

Path of steady states. More generally, the staircase strategy is instrumental in our
proof and the underlying path of steady states is obtained by phase plane analysis. Thus,
in view of tackling problems in dimension higher than 1, finding alternatives to the phase
plane approach is a relevant open problem.

A possible approach to develop intuition on possible paths of steady states is to build
an optimal control problem forcing the system to remain close to stationary states, for
example by adding a constraint like

|∆y + f(y)| 6 ε,

where ε is small. However, this constraint alone would be too restrictive since there must
be a first phase which consists in reaching some steady state on the path. These two
requirements make the construction of such optimal control problems highly non-trivial.
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