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Abstract

Vector control is critical to limit the circulation of vector-borne diseases like chikungunya,
dengue or zika which have become important issues around the world. Among them the Sterile
Insect Technique (SIT) and the Incompatible Insect Technique (IIT) recently aroused a renewed
interest. In this paper we derive and study a minimalistic mathematical model designed for
Aedes mosquito population elimination by SIT/IIT. Contrary to most of the previous models,
it is bistable in general, allowing simultaneously for elimination of the population and for its
survival. We consider different types of releases (constant, periodic or impulsive) and show
necessary conditions to reach elimination in each case. We also estimate both sufficient and
minimal treatment times. Biological parameters are estimated from a case study of an Aedes
polynesiensis population, for which extensive numerical investigations illustrate the analytical
results. The applications of this work are two-fold: to help identifying some key parameters
that may need further field investigations, and to help designing release protocols.

Keywords: Vector control, elimination, sterile insect technique, monotone dynamical system, basin
of attraction, numerical simulation, Aedes spp
MSC Classification: 34A12; 34C12; 34C60; 34K45; 92D25

Introduction

Sterile insect technique (SIT) is a promising technique that has been first studied by E. Knipling
and collaborators and first experimented successfully in the early 50’s by nearly eradicating screw-
worm population in Florida. Since then, SIT has been applied on different pest and disease vectors,
like fruit flies or mosquitoes (see [11] for an overall presentation of SIT and its applications). The
classical SIT relies on the mass releases of males sterilized by ionizing radiations. The released
sterile males transfer their sterile sperms to wild females, which results in a progressive reduction
of the target population. For mosquito control in particular, new approaches stemming from SIT
have emerged, namely the RIDL technique, and the Wolbachia technique. Wolbachia is a bacterium



that infects many Arthropods, and among them some mosquito species in nature. It was discovered
in 1924 [17]. Since then, particular properties of these bacteria have been unveiled. One of of these
properties is particularly useful for vector control: the cytoplasmic incompatibility (CI) property
[32, 5]. CI can serve two different control strategies:

e Incompatible Insect Technique (IIT): the sperm of W-males (males infected with Cl-inducing
Wolbachia) is altered so that it can no longer successfully fertilize uninfected eggs. This
can result in a progressive reduction of the target population. Thus, when only W-males
are released the II'T can be seen as classical SIT. This also supposes that releases are made
regularly until extinction is achieved (when possible) or until a certain threshold is reached
(in order to reduce exposure to mosquito bites and the epidemiological risk).

e Population replacement: when males and W-females are released in a susceptible (uninfected)
population, due to CI, W-females will typically produce more offspring than uninfected fe-
males. Because Wolbachia is maternally inherited this will result in a population replacement
by Wolbachia infected mosquitoes (such replacements or invasions have been observed in nat-
ural population, see [28] for the example of Californian Culex pipiens). It has been showed
that this technique may be very interesting with Aedes aegypti, shortening their lifespan (see
for instance [31]), or more importantly, cutting down their competence for dengue virus trans-
mission [24]. However, it is also acknowledged that Wolbachia infection can have fitness costs,
so that the introgression of Wolbachia into the field can fail [31].

Based on these biological properties, classical SIT and IIT (see [7, 9, 8, 23, 18] and references
therein) or population replacement (see [13, 14, 31, 19, 12, 25, 34| and referencs therein) have been
modeled and studied theoretically in a large number of papers in order to derive results to explain
the success or not of these strategies using discrete, continuous or hybrid modeling approaches,
temporal and spatio-temporal models. Recently, the theory of monotone dynamical systems has
been applied efficiently to study SIT [!] or population replacement |30, 4] systems.

Here, we derive a monotone dynamical system to model the release and elimination process
for SIT/IIT. The analytical study of this model is complemented by a detailed parametrization to
describe real-life settings, and a thorough investigation of numerical scenarios.

The outline of the paper is as follows. First, we explain in Section 1 the biological situation we
consider and the practical questions we want to answer, namely: how to quantify the release effort
required to eliminate an Aedes population using SIT/IIT, with particular emphasis on the timing
and size of the releases. We also justify our modeling choices and give value intervals deduced from
experimental results for most biological parameters in Table 1. Then, we perform the theoretical
analysis of a simple, compartimentalized population model featuring an Allee effect and a constant
sterilizing male population in Section 2. Proposition 2.4 gives the bistable asymptotic behavior of
the system, and introduces the crucial separatrix between extinction and survival of the population.
We also provide analytical inequalities on the entrance time of a trajectory into the extinction set
(Proposition 2.6), which is extremely useful to understand what parameters are really relevant and
how they interact. We then analyze the model as a control system, after adding a release term.
Finally, Section 3 exposes numerical investigations of the various models, and applies them to a
specific case study (a pilot field trial led by one of the authors).

In general, all mathematical results are immediately interpreted biologically. To keep the expo-
sition as readable as possible, we gather all technical developments of the proofs into Appendices.



1 Modeling and biological parameter estimation

1.1 Modeling context

Our modeling effort is oriented towards an understanding of large-scale time dynamics of a mosquito
population in the Aedes genus exposed to artificial releases of sterilizing males. These males can be
either sterilized by irradiation (Sterile Insect Technique approach) or simply have a sterile crossing
with wild females due, for instance, to incompatible strains of Wolbachia bacteria (Incompatible
Insect Technique approach). In either techniques (SIT or IIT), the released males are effectively
sterilizing the wild females they mate with.

Eggs from mosquitoes of various species in the Aedes genus resist to dessication and can wait
for months before hatching. Due to rainfall-dependency of natural breeding sites availability, this
feature allows for maintaining a large quiescent egg stock through the dry season, which triggers a
boom in mosquito abundance when the rainy season resumes. For the populations we model here,
natural breeding sites are considered to be prominent, and therefore it is absolutely necessary that
our models take the egg stock into account.

We use a system biology approach to model population dynamics. In the present work we neglect
the seasonal variations and assume all biological parameters to be constant over time.

Our first compartmental model features egg, larva, adult male and adult female (fertile or
sterile) populations. Most transitions between compartments are assumed to be linear. Only three
non-linear effects are accounted for.

First, the population size is bounded due to an environmental carrying capacity for eggs, which
we model by a logistic term. Secondly, the sterilizing effect creates two sub-populations among
inseminated females. Some are inseminated by wild males and become fertile while the others
are inseminated by sterilizing males and become sterile. Hence the relative abundance (or more
precisely the relative mating power) of sterilizing males with respect to wild males must appear in
the model, and is naturally a nonlinear ratio. Many other parameters may interfere with the mating
process for Aedes mosquitoes, but this process is not currently totally understood in particular from
the male point of view [22, 27|, and we stick here to the simplest possible modeling. Thirdly, as
a result of sterilizing matings, we expect that the male population can drop down to a very low
level. We introduce an Allee effect which come into play in this near-elimination regime. This effect
reduces the insemination rate at low male density, as a consequence of difficult mate-finding. It
can also be interpreted as a quantification of the size of the mating area relative to the total size
of the domain, and compensates in some ways the intrinsic limitations of a mean-field model for
a small and dispersed population (cf. [10] and see Remark 1.1). Indeed, we model here temporal
dynamics by neglecting spatial variations and assuming homogeneous spatial distribution of the
populations. In nature, the distribution of Aedes mosquitoes is mostly heterogenous, depending
on environmental factors such as vegetation coverage, availability of breeding containers and blood
hosts. The proposed simplified homogenous model will thus be exposed to potential criticism.

1.2 Models and their basic properties

We denote by E the eggs, L the larvae, M the fertile males, F' the fertile females and Fy; the sterile
females (either inseminated by sterilizing males or not inseminated at all, due to male scarcity).
The time-varying sterilizing male population is denoted M;. We use Greek letters p for mortality
rates, v for transition rates and denote fecundity by b (viable eggs laid per female and per unit of



time) and egg carrying capacity by K. The full model reads:
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Dynamics of the full system (1) is not different from that of the following simplified, three-
populations system. We only keep egg, fertile and sterilizing male, and fertile female populations.
The value of the hatching parameter vy must be updated to take into account survivorship and
development time in the larval stage.

dE E

A R E

o ( %) (ve + ug)E,

dM

o (1 =7r)vel — upM, (2)
dF M

_ — E(l — _B(M+71Mz) F

o = TVE (1—e )M+%-MZ 1E

The following straightforward lemma means that (1) and (2) are well-suited for population
dynamics modeling since all populations, in these systems, remain positive and bounded.

Lemma 1 Let M; be a non-negative, piecewise continuous function on Ry. The solution to the
Cauchy problems associated with (1), (2) and non-negative initial data is unique, exists on Ry,
18 continuous and piecewise continuously differentiable. This solution is also forward-bounded and
remains non-negative. It is positive for all positive times if F'(0) or E(0) (or also L(0) in the case
of (1)) is positive.

In addition, these systems are monotone in the sense of the monotone systems theory (see [33]).

Lemma 2 The system (2) is monotone on the set & = {E < K} C RY for the order induced
by R‘:’_ and the restriction of system (1) to the four first coordinates (omitting Fs;, which does not
appear in any other compartment) is monotone on the set & = {E < K} C Ri for the order
induced by ]Ri.

Moreover, Es (respectively E4) is forward invariant for (2) (respectively for the restriction of (1)
to the four first coordinates), and any trajectory enters it in finite time.

Proof. We compute the Jacobian matrix of the system (2):

—% — (VE + 1E) 0 b(1 —
J= (1—-r)vg —HM u 0
_ A E _ AT _ AL i M;
TVE(l —¢€ B(MJF%MZ)) M-i-J"/yIiMi MT:aMl (5M€ POEin) + (1 —€ B(MJF%MZ)) MZ"MM@) “hr

It has non-negative extra-diagonal coefficients on &3, which proves that the system is indeed mono-
tone on this set. In addition, if E(tg) > K then let T'[to] := {t > to, Vt' € [to,t), E(t') > K} C R.



Let T [to] := sup T[tg]. For any t € T[tg] we have E(t) < —(vg + up)E(t). Hence by integration
we find that T [tg] < to + m log(K/E(ty)) < +o00, which proves Lemma 2 (the proof being
similar for the claims on (1)). 0

Remark 1.1 The Allee effect term 1 —exp(—BM) can also be interpreted in the light of [10]. This
is the probability that an emerging female finds a male to mate with in her neighborhood.

Using a "mean-field” model of ordinary differential equations here is certainly debatable, since in
the case of population extinction the individuals may eventually be very dispersed, and heterogeneity
would play a very important role. However, we think that getting a neat mathematical understanding
of the simplest system we study here is a necessary first step before moving to more complex sys-
tems. The Allee term compensates, as far as the qualitative behavior is concerned, what the model
structurally lacks. Here, we are able to perform proofs and analytical computations. This gives a
starting point for benchmarking what to expect as an output of release programs using sterilizing
males, according to the models.

1.3 Parameter estimation from experimental data

Symbol Name Value interval Source
Tviable ~ Proportion of viable eggs 95 — 99% Field collection, [21, p. 121]
Neggs ~ Number of eggs laid per laying 55 — 75 [29]
Tgono ~ Duration of gonotrophic cycle 4 — 7 days [20, 35, 29]

TE Egg half-life 15 — 30 days  Estimation (to be determined)
TL Time from hatching to emergence 8 — 11 days Lab data, [21, p. 104]
rL Survivorship from larva first instar to pupa 67 — 69% Lab data, [21, p. 106]
r Sex ratio (male:female) 49% Production data (ILM)
™ Adult male half-life 5 — 9 days Lab data, [21, p. 50]
o Adult female half-life 15 — 21 days Lab data, [21, p. 50]
i Mating competitiveness of sterilizing males 1 Lab [21, pp. 51-53], field [20]

Table 1: Parameter values for some populations of Aedes polynesiensis in French Polynesia at a
temperature of 27°C.

For numerical simulations, we use experimental (lab and field) values of the biological parameters
in (1)-(2). We consider specifically a population of Aedes polynesiensis in French Polynesia which
has been studied in [20, 35, 29], and more recently in [6, 15, 16, 21].

Values of most parameters are given in Table 2, and are deduced from experimental data gathered
in Table 1. Some data come from unpublished results obtained at Institut Louis Malardé during
the rearing of Aedes polynesiensis for a pilot IIT program. They are labelled as “Production data
(ILM)”. Note that we do not give values for 5 and Vg because they are very hard to estimate.
Ongoing experiments of one of the author may help approximating them in the future for this Aedes
polynesiensis population. Finally when it exists, we use the knowledge about population size (male
and female) granted by mark-release-recapture experiments to adjust the environmental carrying
capacity K for population and season.



Symbol Name Formula Value interval
via eNe S
b Effective fecundity T'viable Veggs 7.46 — 14.85
Tgono
1753 Larva death rate M 0.034 — 0.05
TL
vy, Larva to adult transition rate i 0.09 — 0.125
TL
Z—E Larval coefficient for effective hatching rate o 0.64 —0.79
VE VIL + 2” L
up  Ege death rate 108(2) 023 — 0.046
TR
log(2
s Adult male death rate 08(2) 0.077 — 0.139
A
log(2
ur Adult female death rate 6(2) (033 - 0.046
T

Table 2: Conversion of the biological parameter from Table 1 into mathematical parameters for
systems (1) and (2)

2 Theoretical study of the simplified model

For later use, we introduce the usual relations <, < and < on R? (where d > 1) as the coordinate-
wise partial orders on R? induced by the cone ]Ri. More precisely, for z,y € R?,

e 1 <y if and only if for all 1 <i <d, z; < y;,
e r <yif and only if z <y and x # v,

e v < yif and only if for all 1 <i <d, z; < y;.

2.1 Constant incompatible male density

First we study system (2) with constant incompatible male density M;(t) = M.
We introduce the three scalars

brvg war A
N =, )\ = = =
pr(VE + p1E) (1—-rywpK v B

and define the function f : R%r — R, with the two parameters A and v:

fla,) = o1 = pa)(1 — V) - L(a +y) )

The two aggregated numbers, A/ and v essentially contain all the information about system (2):
N is the classical basic offspring number, v is the ratio between the typical male population size at
which the Allee effect comes into play and the male population size at wild equilibrium, as prescribed
by the egg carrying capacity.

The ODE system (2) has simple dynamical properties because it is monotone and we can count
its steady states and even know their local stability. Let M; > 0. It is straightforward to show
that system (2) always admits a trivial steady-state (0,0, 0) and eventually one (at least) non-trivial
steady state (E*, M* F*) € Ri solution of

b E 1137

= Fl-%) E= e

M
M M, F=_LtEQ-—e PMivM)y___ T
(1 - T)VE' HFE ( )M ~+ i M;



Using the first two equation into the third one yields

ur(Ve + pE) Mt —B(M+; M;)
— (M Z'MZ' =M(1l-—""F"—M)(1 - %Z,
brvg (M 7 ;) ( (1 —ryvpK JL—e )
from which we deduce
E* = K\M*,
F*_K(VE“‘ME) AM*
B b 1—AM*’

f(BM*,~7i3M;) = 0.

Hence for a given value M; > 0, the number of steady states of (2) is equal to the number of
positive solutions M* to f(BM*, B~;M;) = 0, plus 1. The trivial steady state (0,0, 0) is also locally
asymptotically stable (LAS). The following lemma give us additional informations about the positive
steady state(s):

Lemma 3 Assume N > 4. Let 6y € (0,1) be the unique solution to 1 — 6y = —% log(0y), and

crit ,__ 1 — - i - @k)g(e)
T B egﬁ},{u< log(®) = 5,1 v1-9))

If M > 0 then (2) has:

e 0 positive steady state if M; > Mimf,
e 2 positive steady states E_ < E if M; € |0, Micrit),
e 1 positive steady state E if M; = M.

In addition, E_ is unstable and E_ is locally asymptotically stable. If Mf”t < 0 then (2) has no
positive steady state, and if MF™ = 0 then there exists a unique positive steady state. In particular,
if N <1 then Mf™ < 0.

On the contrary, if N < 41 then there is no positive steady state.

Proof. Let us give a quick overview of the remainder of the proof, which is detailed in Appendix
A page 23. We are going to study in details the solutions (z,y) to f(z,y) = 0. First, we prove that
x < 1/1¢. Then, we check that for any y > 0,  — f(z,y) is either concave or convex-concave. In
addition, it is straightforward that f(0,y) < 0 and lim,_, 1 f(z,y) = —00, so that for any y > 0,
we conclude that there are either 0, 1 or 2 real numbers x > 0 such that f(x,y) = 0.

Then, we introduce £ = 4¢)/N. In fact, in order to determine (z,y) € R? such that f(z,y) =0
we can introduce § = e~(**¥) and then check easily that y = h(6), where

7
ha(6) = —log(0) — i 4 ﬁ 1+glfg_(9).

()
Let 0p(§) be the unique solution in (0,1) to 1 — 0y(§) = —&log(Hp(€)), and

log(@))

o) (6)

. 1
TN = —log(f) — —(1—1/1+
R AL

Collecting the previous facts, and studying the function hy (see Appendix A.2, page 24), we can

prove that the next point of Lemma 3 holds with the threshold Mt = %acm (&,N).



We remark that if A" < 1 then it is easily checked that Mt < 0, using the fact that if o € (0,1)
then v1 —a < (1 —«)/2. If 6 € (6p,1) then %(l(l)f(j)) < 1, and therefore

1 41 log (0 1 1
_log(H)—@(l— 1+Ww fg_(e)) §—log(9)(1—ﬁ) 1 < 0.

In the final part of the proof, we show that 0 is always locally stable and then treat separately
the cases M; = 0 and M; > 0, showing that, when they exist, the greater positive steady state is
locally stable while the smaller one is unstable.

O

Remark 2.1 In Lemma 3, the condition to have at least onﬁ/aositive equilibrium, N > 44, is very
4

interesting and particularly makes sense when rewritten as Y > B Indeed 3 can be seen as the

theoretical male progeny at next generation, starting from wild equilibrium. If this amount is large
enough (larger than some constant times the population size at which the Allee effect comes into
play) then the population can maintain. In any case, if this condition is not satisfied, then the
population collapses. For the population to maintain: either the fitness is good and thus N is very
large, or the probability of one female to mate is high and thus 1/8 is small. However, whatever
the values taken by N and 3, if, for any reason, the male population at equilibrium decays, the
population can be controlled and possibly collapses.

Remark 2.2 If 8 is not too small, then the “wild” steady state is approximately given by M*(M; =

0) ~ (1 — ﬁ) and the critical sterilizing level is approzimately M™ ~ § = %(1 — /%‘)2 (see

the definition in Appendiz A, in particular we know that M < 7). As a consequence, the target
minimal constant density of sterilizing males compared to wild males in order to get unconditional
extinction (i.e. to make (0,0,0) globally asymptotically stable, see Proposition 2.3, page 9) is well
approzimated by the simple formula

. Micm’t N N_ 1
P M*(M; =0) 4y

With the values from Tables 1 and 2, for v; = 1 (this means that introduced male are as competitive
as wild ones for mating with wild females), we find

—0.25
4-0.046 - (vg + 0.046) 74-0.033 - (vg + 0.023)

7.46 - 0.46 - 14.85 - 0.48 -
" ( Ve 2 —0.25)

For instance, if vy = 0.01 then this interval is (3.5,22,7), if vg = 0.05 then this interval is
(10.6,51.7) and if vg = 0.1 then this interval is (14.1,61.4). As vg goes to +oo, the interval
goes to (20.7,75.7). This example agrees with standard SIT Protocol that indicates to release at least
10 times more sterile males than wild males, recalling that here we deal with a highly reproductive

species (with the above values, the lowest estimated basic reproduction number is 14.9, obtained for
vp = 0.01).

Asymptotic dynamics are easily deduced from the characterization of steady states and local
behavior of the system (Lemma 3), because of the monotonicity (see [33]).



Proposition 2.3 If (2) has only the steady state (0,0,0) then it is globally asymptotically stable.
If there are two other steady states E_ < E then almost every orbit converges to E or (0,0,0).

Let Ky :=(0,0,0),E,]. The compact set K is globally attractive and positively invariant. The

basin of attraction of (0,0,0) contains [0,E_) and the basin of attraction of EL contains (E_, 00).

Now that we have established that the system is typically bistable, the main object to investigate
is the separatrix between the two basins of attraction. This is the aim of the next proposition.

Proposition 2.4 Assume M™ > 0 and M; € [0, Mf™).

Then there exists a separatriz ¥ C RY, which is a sub-manifold of dimension 2, such that for all
X#Y eX, X LY andY £ X, and for all X €3, Xo > X implies that X(t) converges to E4,
and Xg < X implies that X ( Q converges to 0. In particular, E_ € 2.

Let ¥y = {X €cR3,3IX € &, X > X} and ¥_ : {X € Rg,EIX e XX < X} Then
Ri =X_UXUXy, Xy is the basin of attraction of By and %_ is the basin of attraction of 0.

In addition, there exists Eyp, Fpr > 0 such that

S_c{XeR), X <Ewy, X3<Fu}.

Remark 2.5 In order to reach extinction, the last point of Proposition 2.4 states that both egg
and fertile female populations must stand simultaneously below given thresholds. This obvious fact
receives here a mathematical quantification. With simple words: no matter how low the fertile female
population F' has dropped, if there remains at least Eyr eggs then the wild population will recover.

Proof. [Proposition 2.4] We state a preliminary fact: For all v* € {v € R3, Vi,v; > 0, >, v; =
1} =: 82, there exists a unique py(v°) such that the solution to (2) with initial data pv® converges
to 0 if p < po(v°) and to E if p > po(v0).

This fact comes from the strict monotonicity of the system, and from the estimate pg(v°) <
max; (EO) < 400, combined with Proposmon 2.3.

Then we claim that ¥ = {po(v%)0?, ©° € §2}. The direct inclusion is a corollary of the previous
fact. The converse follows from the fact that ¥4, being the basins of attraction of attracting points,
are open sets.

The remainder of the proof consists of a simple computation showing that if F{y or Ey is large
enough then for some t > 0 we have (E, M, F')(t) > E_. In details, we can prove that if Fj is large
enough then for any Ey, My and € > 0, we can get E(s) > (1—e€) K for s € (to(€, Eg, Fo), t1(€, Eo, Fp)),
where t( is decreasing in Fjy and ¢; is increasing in Fy and unbounded as Fj goes to +oc. Then, if £ >
(1—¢€)K for e small enough on a large enough time-interval, we deduce M (t) > (1 —€)?(1 — T)%K
for some ¢t > 0. Upon choosing € small enough and Fj large enough we finally get (E, M, F')(t) > E_.
The scheme is similar when taking Fy large enough. 0

At this stage, we know that starting from the positive equilibrium, and assuming that the
population of sterile males M; is greater than Micrit, the solution will reach the basin of attraction
of the trivial equilibrium in a finite time, 7(M;). We obtain now quantitative estimates on the
duration of this transitory regime. Rigorously, we define

T(M;) :==inf {t >0, (E,M,F)(t) € $_(M; = 0),
where (E, M, F)(0) = E;(M; = 0) and (E, M, F) satisfies (2)}. (7)

We obtain simple upper and lower bounds for 7(M;) in terms of various parameters:



Proposition 2.6 Let M; > Mf™ and Z = Z(v)) be the unique real number in (0, o) such that

20
iy (G

S vy 4

and Zy:=1+1 —yZ. Then

(M) > Llog (1+N2(1 Ak _ N(l_l/’Z)).

ir V273 077, ®)

M*
Let o = sgn(ve + pe — pr), 0g = pu/(VE + pg) and oF = uy/pr. If € = m <1/N, let

INogope
g(e) == \/1+7EF2.

(oF —0R)

Assume that op,op > 1,

g(e)o(op —op) <max (2N — 1)op + o, (205 — 1)op), (op —1)(op —1) > eN.

20E 1 (N—l((N—l)JF+1—€N
pr(op +og — gle)o(or — og)) Y Mor—1)(op —1) —eN
opor(g(e)o(or —op) + 2N —1)op + og)
(20p0F — (0p + 0r) + 0(or — 0g)g(e))g(e)o(or — oF)

) ©

Proof. The proof relies on explicit computation of sub- and super-solutions, detailed in Ap-
pendix B. 0

Remark 2.7 The dependency in 1 of Proposition 2.6°s upper estimate on T is approzimately equal
to m One order of magnitude of 1 (the ratio between the wild population size and the
Allee population size) therefore typically corresponds to the mazimum of one adult female and one

eqq lifespan in terms of release duration needed to get extinction.

Remark 2.8 At this stage, we obtain an analytic upper bound only in the case of massive releases
(e small enough). A more refined upper bound could theoretically be obtained, see the derivation in
Appendiz B, in particular Lemma 12.

2.2 Adding a control by means of releases

In a slightly more realistic model, the level of sterilizing male population should vary with time,
depending on the releases ¢ — u(t) > 0 and on a fixed death rate ;. This model reads

dE E
— =b0F(1——=)— E

dmM
— =1 —r)vgE — up M,

dt (10)
M _ u(t) — pi M;

dt - /’[/Z (2

dr M
il E(l — e PMAyiMiy___ 7 @

o = TvE (1—e )MJF,YiMi i
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In (10), the number of sterilizing males released between times ¢; and to > ¢ is simply equal to
2 u(t)dt.

First, if the release is constant, say u(t) = ug, then M;(t) = e #t M + %(1 —e#it). The special
case MY = 4 leads back to system (2), with M; = MY?. For general M? > 0, we notice that M;(t)
converges to % as t goes to +o0.

Proposition 2.9 Assume u(t) = ug.

If ug > ,uiMf”t (defined in Lemma 3) then 0 is globally asymptotically stable.

If ug < piME™ then there exists open sets %_(ug), X4 (ug) C Ri, respectively the basins of
attraction of 0 and Ey (defined for (2) with M; = %), separated by a set Y(ug) which enjoys the
same properties as those of 3(0), listed in Proposition 2.4.

(We do not treat the case ug = p; M.

Proof. Since system (10) is monotone with respect to the control u (with sign pattern (—, —, —, +)),
we can use Lemma 3 and Proposition 2.4 with sub- and super-solution to get this result in a straight-
forward way. 0

From now on we will restrict ourselves to (possibly truncated) time-periodic controls, which
means that we assume that there exists N, € Z; U {400} (the number of release periods), a period
T > 0 and a function ug : [0,7] — Ry such that

(11)

t) up(t = nT) i nT <t<(n+1)T for some N, >n € Z,
u =
0 otherwise.

We use the notation u = [T, ug, N;] to describe this control w.
As before, we can compute in case (11)

¢
M;(t) = e_‘”tMiO +/ u(t')e_’”(t_t/)dt’
0
i IANDT

L 1 (T L t »
— ¢ Hit (ME + T 1 / ug(t") et dt’ + / t u(t')etit dt’)
0 T(|L]AN;)

(Here, for a,b € Z, we let a A b = min(a, b)).
If N, = 400, for any ug # 0 there exists a unique periodic solution M;, uniquely defined by its
initial value

T
O,per 1 / it gl
M = o [ oty i,

and which we denote by M} [ug).

Lemma 4 Solutions to (10) with u = [T, ug, +00| are such that M; converges to M [ug)], and the
other compartments converge to a solution of

dE E
dmM
- = (1 —=r)wgE — upyM, (12)
dF per M
B E(1 — ¢ BM+7i M [uo]) — unF
| G T rebe T Vi

11



Convergence takes place in the sense that the L norm on (t,+00) of the difference converges to 0
as t goes to +0o0.

Proof. Convergence of M; is direct from the previous formula. Then, as for Proposition 2.9 the
monotonicity of the system implies the convergence. 0O

Let M ;[ug] := max M} [ug] and M, [ug] := min M [ug).

Proposition 2.10 If M,[ug] > MF™ then 0 is globally asymptotically stable for (12).

On the contrary, if M;[ug] < M then (12) has at least one positive periodic orbit. In this case
the basin of attraction of O contains the interval (O,E_(Mi =M, [uo])), and any wnitial data above
E, (M; = M,[ug]) converges to X'* [ug).

Proof. System (12) is a periodic monotone dynamical system. It admits a unique non-negative
solution X = (E, M, F). In fact, we consider the constant sterile population model

dE,, En,
Y me 1——]- Ema
at < K ) (ve + pr)
M,,
dw = (1 - 7G)VE-Em - /’LMMWH (13)
dF, M,
mo_ —m (1 — e BMntviMuw\p R

such that, using a comparison principle, the solution X, = (E,,, M,,, F,) verifies X,, > X for all
time ¢ > 0. Thus if X,, converges to 0, so will X. The behavior of system (13) follows from the
results obtained in the previous section. A sufficient condition to have 0 globally asymptotically
stable in (12) is therefore given by MY > Mt

The remainder of the claim is better seen at the level of the discrete dynamical system defined
by (12). Periodic orbits are in one-to-one correspondence with the fixed points of the monotone
mapping P[ug] : ]R:j’r — R‘:’_ defined as the Poincaré application of (12) (mapping an initial data to
the solution at time t = T'). Now, if X* := (E*, M*, F*) is the biggest (i.e. stable) steady state of
(2) at level M; = M;[ug] < Mft, then for any (E, M, F) > (E*, M*,F*) and M! < M;, writing
the right-hand side as ¥ = (WU, Uy, ¥3) we have

Uy (E*, M, F,M]) >0,
Uy (E, M*, F, M) > 0,

Uy(E, M, F*, M) > 0.

In other words, the interval (X* 400) is a positively invariant set. Therefore, ®[uo](X*) > X*.
Thus the sequence (q)[uo]k(X *)) . 18 increasing and bounded in R3: it must converge to some
X* > X*. The same reasoning (with reversed inequalities) applies with the sequence starting at
the stable equilibrium associated with M; = M;[ug]: it must decrease, and thus converge to some
X >x

By our proof we have shown that the open interval (E+(M, = M,;[uo)), +oo) belongs to the
basin of attraction of X -, and we can also assert that (E—(M; = M;[uo)), E4(M; = M;[ug)))
belongs to the basin of attraction of XP®, while as usual (0, E_(M; = M;[uo])) is in the basin of
attraction of 0. 0

By a direct application of the previous results

12



Lemma 5 If M;[ug] > MF™ then the control u = [T,ug,n] (with n € Z,) leads to extinction (i.e.
the solution with initial data B goes to 0 as t goes to +00) as soon as

(M ;[uo)) ‘
T

n > T (14)

A special case of (10)-(12) is obtained by choosing uy = ufj = %1[076} for some A > 0 and letting
€ go to 0. Then there exists a unique limit as € goes to 0, which is given by the following impulsive
differential system derived from (10):

(fi_f =bF(1 - %) — (ve+pE)E,

dm
dt
dM;
dt

M;(nTT) = M;(nT) + A for n € Z; with 0 <n < N,

=1 —-rvgE — upM,

= —piM;, (15)

dr
dt

M
M +~iM;

= rvgE(1 — e—ﬁ(M-l—%Mi)) ppF.

In (15), M; converges to the periodic solution

| —pilt—%7)
MIP(t) = Tim MPug) = 26T

v e—0 1 — e—wT
.. imp . Ae T S7imp A . ..
We can compute explicitly M, = ST and M, = = T respectively the minimum and

the maximum of Miimp. We also define the following periodic monotone system as a special case

of (12):

dE E

= =P - 5) = (Vs +up)E,

dM

o (1 —rvpE — puM, (16)
dF im M

— = rugE(1 — e AWM+, p))iimp — ppF.

dt M—F’)/ZMZ

The right-hand side of system (15) is locally Lipschitz continuous on R3. Thus, using a classic
existence theorem (Theorem 1.1, p. 3 in [3] ), there exists T, > 0 and a unique solution defined
from (0,7,.) — R3. Using standard arguments, it is straightforward to show that the positive orthant
R? is an invariant region for system (15).

We estimate the (minimum) size of the releases A and periodicity 7', such that the wild popu-
lation goes to extinction.

1—
Proposition 2.11 Let S := %(1 — /%[)21( If
1 A
T < " log (1 + g) (17)

then 0 is globally asymptotically stable in (16). Condition (17) is equivalent to A > S(etT —1).

13



Proof. We know (see Appendix A and Remark 2.2) that Mt < %ﬁﬁ (1- /%‘)2 Hence the following
is a sufficient condition for global asymptotic stability of 0:

~ N 1\? (1-rvgN 1)?
imp L _ T T)VEN L
A= ANy <1 N ) Apnryi <1 N ) i

That is

—HiT _ 2
Ae S (1—r)vpN L 1 K.
1 —emi7 Apnri N

and the result is proved. 0

Remark 2.12 As a continuation of Remark 2.2, we note that Proposition 2.11 gives a very simple
estimate for the target ratio of sterilizing males per release over initial wild male population as a
function of the period between impulsive releases in the form

o(T) - A

B N -1
" M*(M; = 0) '

4y

o~ (e’”T - 1)

We can specify Lemma 5 for impulses and combine it with Proposition 2.6 to get a sufficient
condition for extinction in the impulsive cases:

Proposition 2.13 The impulsive control of amplitude A > 0 and period T > 0 satisfying A >
S(e”iT — 1) leads to extinction in n impulses if

T(_l:mp) mp Ae—ﬂiT
n 2 TZ, where Mz == 1_67_” (18)

3 Numerical study

3.1 Numerical method and parametrization

In order to preserve positivity of solutions and comparison principle, we use a nonstandard finite-
differences (NSFD) scheme to integrate the differential systems (see for instance [2| for an overview).
For system (10), it reads

e =0 - B — e+ B,

an:(lA_t)j\Ln = (1 - r)vpE"™ — uyrM™, "
W = —pa M +u”,

Frtl _ g JViae!

_ _ o B(MF M) n
(I)(At) o 741/E]\4n—|—1 +Min+1 (1 € )E prE”,

1—e— QAL

where At is the time discretization parameter, ®(At) = , Q = max{pu, pr, Ve + pE, i}
and X" (respectively u™) is the approximation of X (nAt) (respectively u(nAt)) for n € N.

14



Parameter 15} b r UE Vg wE | par | Vi | M At
Value 1004 —1[101049 ] 0.03]0.001—-0.25]004]01]1]0.12] 0.1

Table 3: Numerical values fixed for the simulations.

We fix the value of some parameters using the values from Tables 1 and 2 (see Table 3). Then,
in order to get results relevant for an island of 74 ha with an estimated male population of about
69 ha™!, we let vz and § vary, and fix K such that

M} =69 -74 = 5106,

that is

5106 - pas
(1= rve(l = =)
Recall that for the choice from Table 3, page 15, we have

VE
=1175————.
N ve + 0.03

Remark 3.1 Thus according to the values taken by vy in Table 3, page 15, we have the following
bounds for N :
29 < N < 105.

N—(1—e M3 _
= (1_7{;?’/11361( = (/\/J\/e[iﬁ ), ranges from 1.4 -107% to 2,

The other aggregated value of interest, 1

approximately.

All computations were performed using Python programming language (version 3.6.2). The
most costly operation was the separatrix approximation, which needed to be done once for each set
of parameter values. We first compute points close to the separatrix (see details in Section 3.3),
starting from a regular triangular mesh with 40 points on each side, then we reduce the points if
any comparable pairs appeared. From these (at most 861) scattered points we build recursively
a comparison tree by selecting the point P which minimizes the distance to all other points, and
distributing the remaining points into six subtrees, corresponding to each affine orthant whose
vertex is P. Each tree was saved using pickle module, and loaded when necessary. This was done
to reduce the number of operations for checking if a point is below the separatrix, as this needs
to be done several times along each computed trajectory. Indeed, using the fact that two points
on the separatrix cannot be related by the partial order, one only needs to investigate 3 of the 6
remaining orthants to determine if the candidate point is below any of the scattered points or not.
For any given input of released sterilizing males, the computation of a trajectory ended either when
the maximal number of iterations was reached (here, we fixed that value at 3 - 10°) or when it was
found below the separatrix, using the comparison tree. Trial CPU times (on a laptop computer
with Intel® Core™ i5-2410M CPU @ 2.30GHz x 4 processor) for all these operations are given in
Table 4.

Operation Points | Reduction | Tree building Save Load | Full trajectory | Stopped trajectory
CPU time (s) | 267 12 6.8 1.8-1073 | 1-1073 17 0.25

Table 4: CPU times for the numerical simulations
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3.2 Equilibria and effort ratio

We first compute the position of equilibria for a range of values of 8 and vg. This enables us to
compute the effort ratio p*, defined in Remark 2.2 as the ratio between the wild steady state male
population M*(M; = 0) and the critical constant value of sterilizing males Mf’rit necessary in order
to make 0 globally asymptotically stable. Values are shown in Table 5.

vg | 0.005 | 0.010 | 0.020 | 0.030 | 0.050 | 0.100 | 0.150 | 0.200 | 0.250
p* 16 30 48 60 76 93 101 106 108

Table 5: Effort ratio p* = Mt /M*(M; = 0) for various values of vg. For this range of parameters,
p* is practically independent on 3 € [1074,1].

We note that p* depends practically only on vg, because the Allee (with parameter () does
not apply at high population levels. In fact the ratio (and thus the control effort) increases with
increasing values of vg, that favor the maintenance of the wild population (the larger the value of
v, the larger the value of A/ and the shorter the period in the eggs compartment).

3.3 Computation of the basin of attraction of 0 for (2)

We start from a regular triangular mesh of the triangle {(E, M, F) € R3, E+ M + F = 1}, with
40 points on each side. Given e > 0, for each vertex V of this mesh we compute A € (0, 4+00) such
that AV € ¥_ and (14 ¢)AV € X4. The points AV (which are numerically at distance at most € of

the separatrix X) are then plotted.

Fertile females

sojeway AR

Figure 1: Two viewpoints of scattered points lying around the separatrix (¢ = 1072) for vg = 0.1
and 8 = 10"%. In this case, 5 females or 900 eggs are enough to prevent population elimination.

Figure 1 is typically the kind of figure that we can draw for each set of parameters. Depending
on the parameters values, the basin of attraction of 0 can be tiny, or not. Its shape emphasizes the
important role of eggs and, even, males abundance in the maintenance of the wild population. In
fact, even if almost all females have disappeared, the control must go on in order to further reduce
the stock of eggs before eventually reaching the separatrix.
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3.4 Constant releases and entrance time into basin

For the same set of parameters as before, we compute the entrance time into the basin of 0.

First, we use Proposition 2.6 to get in Table 6 an underestimation of the entrance time, whatever
the releasing effort could be, these entrance times represent the minimal time under which the SIT
control cannot be successful (in fact, this under-estimation corresponds to the situation where
M; = 400, that is an infinite releasing effort).

ve\p | 1074 [ 1073 [ 1072 | 107t | 10° || 107* [ 103 | 1072 | 10! | 10° || 107* | 1073 | 1072 | 10! | 10°
0.005 | 63 | 151 | 204 | 253 | 303 || 323 | 445 | 571 | 697 | 824 || 258 | 351 | 448 | 545 | 642
0.010 | 93 | 180 | 232 | 281 [ 331|361 | 475 | 592 | 708 | 825 || 286 | 374 | 464 | 553 | 643
0.020 | 118 | 203 | 256 | 304 | 354 || 381 | 485 | 590 | 695 | 800 || 301 | 381 | 462 | 544 | 625
0.030 | 130 | 215 | 267 | 315 | 365 || 391 | 488 | 587 | 685 | 783 || 307 | 383 | 461 | 538 | 615
0.050 | 141 | 226 | 278 | 327 [ 377 || 440 | 530 | 621 | 713 | 804 || 332 | 404 | 477 | 550 | 623
0.100 | 152 | 236 | 289 | 337 [ 387 || N/JA | NJA [ N/A | N/A [ N/A || N/A | N/A | N/A | N/A | N/A
0.150 | 156 | 240 | 293 | 341 [391 |[ N/A [ N/A [ N/A [ N/A [ N/A|[N/A[N/A[N/A|[N/A[N/A
0.200 | 158 | 242 | 295 | 343 [ 393 || N/JA | N/A | N/A | N/A [ N/A || N/A [ N/A [ N/A | N/A | N/A
0.250 | 160 | 244 | 296 | 344 | 395 || N/JA | N/A | N/A | N/A [ N/A || N/A [ N/A [ N/A | N/A | N/A

Table 6: Left: under-estimation of the entrance time into the basin of 0 from the analytic formula (8).
Middle and right: over-estimation of the entrance time into the basin of 0 from formula (9) with

MiT%Vlfr“’ when applicable, for ¢ = 8 (middle) and ¢ = 4 (right).

E =

Then we compute numerically the entrance time for a range of releasing efforts. In details,
computations were performed for M; = (berit with ¢ € {1.2,1.4,1.6,1.8,2,4,8}. Results are
shown in Table 7 for ¢ = 1.2, ¢ =2 and ¢ = 8.

ve\B 1072103 107271071 [10° [ 107210731072 107" [10° |[107* [ 1073 [ 1072 [ 107" | 107
0.005 | 168 | 286 | 363 | 435 | 504 || 148 | 262 | 338 | 409 | 478 || 128 | 237 | 311 | 380 | 449
0.010 | 200 | 305 | 376 | 441 [ 505 || 180 | 283 | 352 | 417 [ 480 || 160 | 258 | 326 | 391 | 454
0.020 | 219 | 313 | 377 | 437 | 495 || 199 | 292 | 355 | 415 | 473 || 180 | 270 | 333 | 392 | 450
0.030 | 225 | 314 | 375 | 434 | 492 || 207 | 295 | 355 | 413 | 471 || 188 | 274 | 334 | 392 | 450
0.050 | 228 | 314 | 373 | 431 | 488 || 212 | 297 | 355 | 413 [ 470 || 194 | 278 | 336 | 394 | 452
0.100 | 231 [ 314 | 372 | 430 | 488 | 215 | 298 | 356 | 414 | 472 |[ 200 | 282 | 340 | 398 | 456
0.150 | 232 | 315 | 373 | 431 | 489 || 217 | 300 | 358 | 416 | 474 || 202 | 285 | 343 | 401 | 459
0.200 | 233 | 316 | 375 | 433 | 491 || 219 | 302 | 360 | 418 | 476 || 205 | 287 | 345 | 403 | 462
0.250 | 234 | 318 | 376 | 434 [ 493 || 220 | 303 | 362 | 420 | 478 || 206 | 289 | 347 | 406 | 464

Table 7: Entrance time into the basin of 0 (in days) for various values of (vg, 3), with M; = 1.2t
(left), M; = 2M&t (middle) and M; = 8Mf® (right).

We notice that the entrance times corresponding to the biggest effort ratio are of the same order
of magnitude as the analytic under-estimation from formula (8).

Another interesting output of Table 7 is that the release effort ratio is not so important in terms
of duration of the control: depending on the values taken by vg and [, the lowest ratio needs
between 4 to 7 more weeks to reach the basin, than the largest ratio. Contrary to what could have
been expected, there is no linear relationship. This can be explained by the fact that a female
mates only once. Thus if males are in abundance, all females have mated, and then many released
males become useless with regards to sterilization. Of course, this has to be mitigated taking into
account that our model implicitly assumes a homogeneous distribution, while in real, environmental
parameters (like vegetation, climate, etc.) have to be taken into account [8]. Last but not least,
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ve\B 11074103 10721071 ] 10° |[107* [ 1031072 | 107" 100 1077 71073 [ 1072 | 1071 100

0.005 | 399 | 680 | 863 | 1034 | 1199 || 587 | 1036 | 1338 | 1619 | 1893 || 2024 | 3749 | 4920 | 6027 | 7115
0.010 | 854 | 1302 | 1603 | 1880 | 2154 || 1283 | 2009 | 2499 | 2962 | 3416 || 4548 | 7343 | 9257 | 11112 | 12912
0.020 | 1513 | 2166 | 2603 | 3022 | 3423 || 2296 | 3367 | 4092 | 4782 | 5452 || 8317 | 12451 | 15331 | 18040 | 20736
0.030 | 1950 | 2726 | 3253 | 3761 | 4264 || 2989 | 4260 | 5132 | 5976 | 6815 || 10862 | 15871 | 19319 | 22691 | 26040
0.050 | 2482 | 3421 | 4059 | 4686 | 5315 || 3837 | 5381 | 6434 | 7483 | 8529 || 14058 | 20188 | 24395 | 28588 | 32774
0.100 | 3100 | 4218 | 5000 | 5777 | 6553 || 4817 | 6675 | 7975 | 9268 | 10563 || 17891 | 25266 | 30457 | 35640 | 40813
0.150 | 3383 | 4581 | 5434 | 6278 | 7122 || 5274 | 7268 | 8688 | 10095 | 11502 || 19651 | 27618 | 33285 | 38913 | 44541
0.200 | 3545 | 4806 | 5694 | 6578 | 7461 || 5549 | 7638 | 9117 | 10588 | 12060 || 20757 | 29073 | 34979 | 40865 | 46750
0.250 | 3649 | 4956 | 5869 | 6779 | 7689 || 5717 | 7884 | 9405 | 10922 | 12438 || 21443 | 30036 | 36123 | 42188 | 48254

Table 8: Total effort ratio to get into the basin of 0 for various values of (vg, ), with M; = 1.2MZ-Crit
(left), M; = 2M&t (middle) and M; = 8MF® (right). The total effort ratio in this case is defined
as M; /M3 multiplied by p; times the entrance time, and corresponds to the number of males that
should be released at a constant level, divided by the initial male population.

Table 8, page 18, clearly emphasizes that a large effort ratio, i.e. ¢ = 8, means the use (and then
the production) of a large number of sterile males with a really small time-saving compared to
the case ¢ = 2. For instance with vz = 0.05 and f = 1072, the total effort ratio for ¢ = 8 is
approximately 6 times larger than for ¢ = 2 (24395 against 4059), with a time-saving of 37 days,
that is approximately one tenth of the total protocol duration (336 days against 373).

In other words, releasing a large number of sterile males is not necessarily a good strategy, from
the economical point of view, but also from the control point of view.

In the next subsection, We consider a more realistic scenario, where sterile males are released
periodically and instantaneously (system (16)).

3.5 Periodic releases

In the case of periodic releases by pulses u = [T, Ady, 00|, for a given couple (vg, 3) we compute the
first time ¢ > 0 such that (E, M, F')(t) is below one point of the previously computed separatrix.
We performed the computations with 7' € {1,2,3,4,5,6,7,8,9,10}, choosing

&(1 —r)\vpN 1

A=K 1—-—=
4,uM ( N

) (e T~ 1)
for ¢ € {1.2,1.4,1.6,1.8,2,4, 8}.

For all combinations of (vg, ), we indicate in Table 9 the maximal and minimal (with respect
to (T, ¢)) total effort ratio pior defined as the number of released mosquitoes at the time when the
basin of 0 is reached, divided by the initial male population that is:

Ptot +— ntotA/M_T-a Ntot = mln{ Lt/TJ, (E,M, F)(t) S E_}

These extremal values are obtained for a period T and with an entrance time ¢, that are shown
in parentheses. We also indicate in Table 10 the maximal and minimal entrance times, obtained
for a period T and an effort ratio pot that are shown in parentheses. Note that consistently, the
minimal entrance time is always obtained for ¢ = 8 and corresponds to the maximal effort ratio.
Maximal entrance time is obtained for 7" = 1 (minimal tested period) and the minimal entrance
time is obtained for 7" = 10 (maximal tested period). However, the minimal effort ratio is sometimes
obtained with 7" = 2.

Comparing Tables 8 and 9 shows that in general, a periodic control achieves the target of bringing
the population into ¥_ at a smaller cost than the constant control (in terms of total number of
released mosquitoes, counted with respect to the wild population).
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vp\f3 101 1077 1072 107! 100 101 1073 1072 1071 100

0.005 | 282 (2,287) | 384 (2.491) | 448 (1,608) | 502 (1,682) | 554 (1,752) || 1095 (10,135) | 1838 (10,248) 0 (10,323) | 2986 (10,393) | 3522 (10,462)
0.010 | 547 (1, 344) 698 (2,497) | 796 (1,602) | 884 (1,669) | 969 (2,805) |[ 2317 (10,168) | 3575 (10,268) 4336 (10,337) | 5499 (10,402) | 6323 (10,466)
0.020 | 900 (1,357) | 1112 (1,519) | 1253 (1,585) | 1386 (1,647) | 1504 (2,771) || 4139 (10,188) | 6015 (10,280) | 7573 (10,343) | 8909 (10,402) | 10246 (10,460)
0.030 | 1125 (3, 565) 1371 (1,510) | 1538 (1,572) | 1696 (2,693) | 1839 (2,752) || 5448 (10,196) | 7829 (10,283) | 9506 (10,343) | 11183 (10,402) | 12581 (10, 460)
0.050 1383 (2,379) | 1669 (1,496) | 1875 (1,556) | 2066 (2,672) | 2238 (2,730) || 7155 (10,201) | 9818 (10,286) | 11921 (10,344) | 14025 (10,402) | 15778 (10,460)
0.100 | 1655 (2,370) | 1997 (1,480) | 2238 (1,539) | 2458 (2,650) | 2678 (2,708) || 8794 (10,206) | 12114 (10,289) | 14709 (10,347) | 17305 (10,405) | 19900 (10,463)
0.150 177z (1,388) | 2134 (1,473) | 2394 (2,583) | 2632 (2,641) | 2871 (2,699) || 9522 (10,209) | 13603 (10,291) | 15948 (10,350) | 18762 (10,408) | 21576 (10,466)
0.200 | 1834 (1,384) | 2213 (1,470) 2482 (2,578) | 2731 (2,636) | 2979 (1,738) || 10431 (10,211) | 14201 (10,293) | 17138 (10,352) | 19586 (10,410) | 22524 (10,468)
0.250 | 1873 (1,382) | 2263 (1,468) | 2531 (2,575) | 2787 (2,633) | 3043 (2,692) || 10709 (10,212) | 14584 (10,295) | 17601 (10,353) | 20618 (10,412) | 23133 (10,470)

Table 9: Minimal (left) and maximal (right) total effort ratio to get into the basin of 0 (in days)
for various values of (vg, ), the minimum and maximum being taken with respect to (T, ¢), with
a period and an entrance time shown in parentheses. The total effort ratio is defined as the total
number of released male mosquitoes divided by the initial (wild) male mosquito population.

vp\B 1071 1073 1072 10T 100 10717 1073 1072 107! 100

0.005 | 135 (10,1095) | 248 (10,1838) | 323 (10,2450) | 393 (10,2986) | 462 (10,3522) || 456 (1,317) | 667 (1,420) | 752 (1,474) | 826 (1,521) | 896 (1,565)
0.010 | 168 (10,2317) | 268 (10,3575) | 337 (10,4536) | 402 (10 5499) | 466 (10,6323) || 528 (1,629) | 661 (1,749) | 735 (1,833) | 803 (1,909) | 868 (1,982)
0.020 | 188 (10,4139) | 280 (10,6015) | 343 (10,7573) | 402 (10,8909) | 460 (10,10246) || 534 (1,1012) | 642 (1,1179) | 708 (1,1300) | 771 (1,1414) | 830 (1,1522)
0.030 | 196 (10,5448) | 283 (10,7829) | 343 (10,9506) | 402 (10,11183) | 460 (10,12581) || 527 (1,1246) | 627 (1,1445) | 690 (1,1588) | 749 (1,1724) | 807 (1, 1860)
0.050 | 201 (10,7155) | 286 (10,9818) | 344 (10,11921) | 402 (10,14025) | 460 (10,15778) || 514 (1,1513) | 605 (1,1749) | 666 (1,1925) | 724 (1,2090) | 782 (1,2257)
0.100 | 206 (10,8794) | 289 (10,12114) | 347 (10,14709) | 405 (10,17305) | 463 (10,19900) || 494 (1,1787) | 581 (1,2072) | 640 (1,2279) | 698 (1,2485) | 755 (1,2692)
0.150 | 209 (10,9522) | 291 (10,13603) | 350 (10,15948) | 408 (10,18762) | 466 (10,21576) || 483 (1,1896) | 569 (1,2200) | 628 (1,2428) | 686 (1,2652) | 744 (1,2877)
0.200 | 211 (10,10431) | 293 (10,14201) | 352 (10,17138) | 410 (10,19586) | 468 (10,22524) || 477 (1,1953) | 563 (1,2272) | 622 (1,2510) | 680 (1,2745) | 738 (1,2979)
0.250 | 212 (10,10709) | 295 (10,14584) | 353 (10,17601) | 412 (10,20618) | 470 (10,23133) || 473 (1,1988) | 559 (1,2317) | 618 (1,2562) | 676 (1,2802) | 734 (1,3043)

Table 10: Minimal (left) and maximal (right) entrance time into the basin of 0 (in days) for various
values of (vg, 3), the minimum and maximum being taken with respect to (T, ¢), with a period and
a total effort ratio shown in parentheses.

3.6 Case study: Onetahi motu

ve\B 1077103 1072 [ 107" | 10° |[wp\B [ 1077 ] 102 [ 10721077 | 10° |[ ve\B [ 1077 [ 1073 ] 1072 [ 10~T | 107
0.001 | 39 | 200 | 295 | 376 | 453 || 0.001 | 34 | 181 | 272 | 352 | 430 |[ 0.001 | 30 | 171 | 261 | 341 | 418
0.002 | 142 | 310 | 402 | 480 | 555 || 0.002 | 111 | 262 | 350 | 428 | 503 |[ 0.002 | 97 | 241 | 327 | 404 | 480
0.005 | 877 | 1094 | 1178 | 1252 | 1323 || 0.005 | 350 | 471 | 554 | 627 | 697 || 0.005 | 260 | 381 | 462 | 535 | 605
0.008 | N/A | N/A | N/A | N/A [ N/A [[ 0.008 | 1167 | 1091 | 1168 | 1238 | 1305 |[ 0.008 | 443 | 541 | 618 | 687 | 754
0.010 | N/A | N/A | N/A | N/A | N/A |[ 0.010 | N/A | N/JA | N/A [ N/A | N/A || 0.010 | 676 | 728 | 802 | 870 | 935
0.015 | N/A | N/A [ N/A | N/A [ N/A |[0.015 | N/A [ N/A | N/A [ N/A | N/A || 0.015 | N/JA [ N/A [ N/A | N/A [ N/A

Table 11: Entrance time into the basin of 0 (in days) for various values of (vg,3) with constant
weekly (7" = 7 days) releases at p = 4 (left), p = 6 (center) or p = 8 (right).

We now parametrize explicitly our model to the case of Onetahi motu in Tetiaroa atoll (French
Polynesia), where weekly (7" = 7 days) releases have been performed over a year. Male population
was estimated at 69 - 74 ~ 5000 individuals, and the initial effort ratio p := A/M} was estimated
at 8.

For p € {4,6,8}, entrance times (in days) are shown in Table 11 and final total female ratio
in Table 12. This last quantity is important for practical purposes to help answering the question:
when is it time to stop the releases? The trap counts during the experiment are to be compared
with the initial trap counts (before the releases), and roughly, the process can be stopped once the
ratio between the counts goes below the values in Table 12. Interestingly, 8 determines the order
of magnitude of this final ratio.

Table 11 provides us interesting information on the entrance time versus the transition rate vg
and the mating parameter 3. If the effort ratio p is not large enough, the SIT treatment can fail,
and even if it is large enough (say p = 8) the time to reach the basin of 0 can be very large.

In the 3-dimensional state space (F, M, F') we draw the full trajectory for the same sample value
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ve\B | 107% 1073 102 1071 10°
0.001 | 0.943252 | 0.147678 | 0.020134 | 0.002495 | 0.000283
0.002 | 0.567382 | 0.071552 | 0.009875 | 0.001247 | 0.000141
0.005 | 0.205116 | 0.031070 | 0.004439 | 0.000568 | 0.000069
0.008 | 0.133889 | 0.021388 | 0.003170 | 0.000425 | 0.000052
0.010 | 0.111803 | 0.018284 | 0.002779 | 0.000380 | 0.000047
0.015 [ N/A N/A N/A N/A N/A

Table 12: Final total female ratio % at time ¢ when the trajectory enter into the basin of 0
st

for various values of (vg, ) with constant weekly (7' = 7 days) releases at p = 8.

12000
10000
8000
6000
4000
2000

Fertile females

Fertile females

Figure 2: Trajectory t + (E(t), M(t), F(t)) for vg = 0.008 and 8 = 1073 (left) and a zoom in the
last 30 days of treatment displaying also the separatrix as dots (right).

(vg = 0.008, 3 =103, p = 8) along with a zoom in the last 30 days of treatment showing also the
separatrix between the basins of E; and 0 as dots in Figure 2. According to Table 11, page 19, the
entrance time is 541, which justifies that the control should last for more than one year. Our system
being monotone, the trajectory is monotone decreasing (see Figure 2 (left), page 20). However, the
rate of the decrease is relatively large at the beginning of the treatment, and then becomes small
and, almost, constant. We also show time dynamics of four relevant normalized quantities, for the

same sample value (vg = 0.008, 8 = 1073, p = 8) in Figure 3.

4 Conclusion

In this paper we have derived a minimalistic model to control mosquito population by Sterile In-
sect Technique, using either irradiation or the cytoplasmic incompatibility of Wolbachia to release
sterilizing males. We particularly focus on the chance of collapsing the wild population, provided
that the selected area allows elimination. Thus contrary to previous SI'T and II'T models, the trivial
equilibrium, 0 is always Locally Asymptotically Stable, at least. We consider different type of re-
leases (constant, continuous, or periodic and instantaneous) and show necessary conditions to reach
elimination, in each case. We also derived the minimal time under which elimination cannot occur,
(i.e. entrance into the basin of attraction of 0 is impossible), whatever the control effort. Obviously,
the knowledge on the mosquito parameters are very important, particularly the duration of the egg
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Figure 3: Time dynamics of different ratio for vz = 0.008 and 3 = 1073,

1
compartment, P—— and the mating parameter, 5. Surprisingly, mosquito entomologists have
ME T VE
not yet really focused their experiments on 3 or the probability of meeting/mating between one

male and one female according to the size of the domains. Our model illustrates the importance
of this parameter (and others) in the duration of the SIT control. In general, SIT entomologists
recommend to release a minimum of ten times more sterile males than (estimated) wild males:
this can be necessary if the competitiveness of the sterile male is weak compared to the wild ones
(this can be the case with irradiation SIT approach). Our approach may help standardizing and
quantifying this estimated ratio.

Finally, we focus on a real case scenario, the Onetahi motu, where a Wolbachia experiment
has been conducted by Bossin and collaborators, driving the local mosquito, Aedes polynesiensis,
to nearly elimination. Our preliminary results show some good agreement with field observation
(mainly trapping).

Our results also show the importance of eggs in the survival of the wild population. If the egg
stock is sufficiently large, and depending on weather parameters, the wild population can re-emerge
after the control has stopped. That is why, according to our model and numerical results, it is
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recommended to pursue the release of sterilizing males even after wild mosquito females are no
longer collected in monitoring traps.

Last but not least, we hope that our theoretical results will be helpful to improve future SIT
experiments and particularly to take into account the long term dynamics of eggs.
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tially) supported by the DST/NRF SARChI Chair M3B2 grant 82770. YD and MS also acknowledge
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A Proof of Lemma 3

A.1 Study of f

We first study function f defined in (4). For any y > 0, if z > — then f(:z: y) < —%(m + y) so in
particular f(z,y) < 0. Therefore all steady states must satisfy 5M < 111 Likewise,

1
y20’0§$<i — (1 —z)(1—e @) < 1.

Hence for all z < % we find f(z,y) < (1— /iv‘)x — ﬁy As a consequence, if NV <1 then f(z,y) <0
for all (z,y) € R2\{0}, and system (2) has no positive steady state. From now on we assume that

N> 1.
We also compute directly f(0,y) = —%y < 0 and limg_, 4 f(z,y) = —o0.

Remark A.1 For all z € (0,1/%), we notice that
Fl,y) < Qyla) =~y + (1 - 1 )e —
' Y N N
The discriminant of the second-order polynomial Q) is
Ay =(1-

Let y := 4¢(1 - ) If y >y then A, <0, hence f < 0. At this stage we know that if Bv;M; >y
then there is no posztwe steady state.

The quantity y is used in Remark 2.2 to obtain a first-order approximation of the target release
ration.

We now compute the derivatives of f:

O f = (1 —2¢z)(1 — e_(xﬂ’)) — /%/, +ax(1— ¢:E)e_(””+y)

2, f = —2p(1 — e ) 4 =@ (2 — (49 + 1)z + ya?)
Opef = e~V (— 60 =3+ (60 + D —pa?) = e~V Qy(a)
1

0 f —.Z'(l _wx) (r4y) N7
02,f = —x(1 —yx)e TV < 0 for x € (0,1/4).

Obviously, axf(x, y) <0if z > i and 0, f(0,y) =1—e"¥ — ﬁ, which is positive if and only if
—log(1 — 1) = log(1 + ).
In order to know the variations of 93, f we study the second-order polynomial

Qs(z) = =61 — 38 + 2 (6¢) + 1) — Ypa®.

Its discriminant is

A3 = (69 + 1)% — 49(6¢ + 3) = 1 4 12¢%,

3 [ is negative-positive-negative. More precisely, Q3 is positive on

(6w+ 1—1+1202 6 +1+ 1+ 12¢2)
20 : 20 '

which is positive. Therefore 9

(w—,wy) ==
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To go one step further, we need to know the signs of 92, f(wy,y) and 92, f(0,y). We write
2, f(2,y) > 0 <= (24 2) — (4p + Dz + ga?) > 20

ence 0,y) > 0 if and only if ¥y < log(1 + =). Similarly, wy,y) < 0if and only 1
Hence 02, f f and only if y < 1 £). Similarly, 02, f f and only if

1 1 1
y>log(1+$—(2+ﬁ)w++§wi) —wy.
This is always true:
Lemma 6 For all ¢y > 0,
1 1 1
log(1+$ —(24‘@)104_4‘5’[0_2’_) — W4 < 0.

Proof. To prove it, we introduce v = ﬁ so that we are left with

log (7437 +7+ (4 +71)V3+72) —B+v+V3+12) <.

To check this we introduce

g(x) :==log(7T+ 3z +2° + 4+ 2)V3+22) — (3+ 2+ V3 +22),

and we want to prove that g is negative. We compute that the sign of ¢'(x) is equal to that of

—(4+2)3+2) - 22— V3 + 228+ 22 +27%) <0.
It remains to check that g(0) = log(7 + 4v/3) — (3 + /3) < 0, which is true since

STV S et S 2t S 718> T4V,

where we used e > 2 and 1 < /3 < 2. 0
Thus we obtain that z + 92, f(x,y) is either positive-negative (if y < log(1+ %)) or always negative
(otherwise).

The conclusion of all these computations is that in both cases (f is either convex-concave or
simply concave), for any y, f(0,y) < 0, f(+00,y) = —oc so that all in all there are either 0, 1 or 2
solutions to f(z,y) = 0, depending merely on the sign of the maximum of z — f(z,y).

A.2 Study of functions h

We move on to the next step of the proof, studying the functions hy defined in (5). Recall that
solving f(x,y) = 0 (for z,y > 0) is equivalent to picking § = e~@+¥) € (0,1) and y = h ().

First, to check that Ay and h_ are well-defined we need to check that 1 4 ¢ % > 0 for some
0 € (0,1). It is easily checked that this is the case on (6y(§),1), and () is well-defined as soon as
£E< 1.

Hence if £ > 1 then there is no nonzero steady state. Assume therefore that & < 1. Then there
exists a unique 6p(§) € (0,1) such that 1 — 6 — £ log(#) has the same sign as 6 — 6y on (0, 1), that
is, 1 — 0y = %" log(6y).

We can check that h_ is decreasing, h— < hy on (6, 1],

hi(fo) = —i — log(fo),
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and

he() <he(1) = 5o (=14 V1-¢) <.
Indeed (recall that N = 44)),
L log(6)
+
h 0) = _% _ % 6(1-6) 1-6)2 <0,
1+ glig_(Z)
since o
og
1-0 < 0

Let yrit .= maxge(gy(¢)1] h+(0). Ify = yt then there is exactly one solution to f(z,y) = 0.
For any y € [0,4), there are at least two solutions. By the previous computations we know
that there are at most two solutions. So in this case there are exactly two solutions. To describe
them one should consider I := [0,h_(0¢(§))], if h—(00(E)) > 0 (I = 0 otherwise), and Iy =
(max(6y(£),0),y"). If y € I; then there is a solution of the form h_(#_) and one of the form
hi(0-). If y € Iy then both solutions are of the form hy(f), for two values of § whose range
contains the argument of y*. And for y > y there is no solution.

At this stage we proved that if ¢ > 1 then there is no positive steady state; if & < 1 then if
Yyt > 0 then there are two positive steady states for By, M; € [0, 5y, 1 for By;M; = yit and 0
for Bry; M; > yit. If 41t = 0 then there is a unique positive steady state and if y* < 0 then there
is no positive steady state for any M; > 0.

A.3 Stability

Finally, in order to compute the linearized stability of the steady states, we decompose J = My+ Ny,
where My is non-negative and Ny is diagonal non-positive. Then J (being Metzler, since £ < K at
steady states) is stable if and only if p(—Ny ' Mp) < 1. We compute

2L (vp+pp) O 0

Ny = 0 —HUM 0
0 0 —lF
and
0 0 b(1 —
M,y = (1 —r)vg 0 0
J\/KE%& (1 — e~ BMAriMi)) Aﬂ_ﬁlfi& (BMQ—B(MﬂiMi) + M’L_%Ml (1— e—B(M+%Mi))) 0

so that for some X7, X5 € R (which we compute below at steady states) we have

b(1-£)
1 OV
_NO_ MO = (1;7;\/3VE 0 0
X1 Xo 0
HUF HUF

At the steady state (0,0,0), we have directly unconditional stability as

—(vE + ug) 0 b
J=| A-rjvg —um 0 |,
0 0  —pr
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whose eigenvalues are —(vg + pg), —puar and —pp.
At a non-zero steady state we recall that

)
b (ve + MEE) 7
- K
E = \KM,
i T M F pr(vg+pe) 1
1— B(M""Y’LMZ) R — I
rvp(l—e 0L M E b 1= AM’
e BMA~yiM;) _ 1 1 M + ~i;
NOA D) M
so that
TVE
Xi=—"—
YT NI =AM

_ rvpAKM (ﬁ (1- M + ~v; M; ) vi M; 1 >
2T Mt M, NMA=AM) " M NI=IM)/)

The characteristic polynomial of —N; LMy s

_ 2 —
ey = s ML (s | oy
vE + pE [ pr
which is equal to
M M + i M; ViM; z
_ .3 _ 2(_ = _
P(z) = =2"+ N(1-AM) (MJF%MZ, (BM(1 NM( —AM)) MN(1 —AM))+N(1 —AM))’

and we rewrite it as

M?%(1— AM) ¥ M;
_ 3 _ o (3 1
P(z) = —2% + (1 — AM) <5N—M+%-Mi M+t —I—z)

We find P(0) > 0 (since X3 > 0) and
P'(2) = =322 4+ (1 — AM),

so that J is stable if and only if P(1) < 0. (P is increasing and then decreasing on (0,+00)). This
condition reads

(1—AM)<1+%+BM(—1+NML 1—)\M))><1. (20)

M + v M; + v M; (
Let us treat first the case when M; = 0. The stability condition rewrites
(1=AM)(1+BM(-1+N(1-AM))) <1,
that is, for a nonzero steady state,
“A+B(-1+NA = AM)) = ABM(-1+N(1—-AM)) <0.

If Mfrit > 0, we know that there are exactly two steady states between 0 and 1/\ for M; = 0,
which we denote by 0 < M_ < My < 1/A\. Let ¢(z) =1 — ﬁ — Az + e P*(\x —1). We have
¢(Mi) =0 and :F(Zﬁ/(M:t)) > 0.
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In particular, ¢/(My) > 0 so

Multiplying this inequality by )\B((l — AM)N — 1) yields exactly the stability of M, since (1 —
AM)N > 1. Indeed,

1o AMy) = —
N( :|:) oBM: _

By a similar computation one can show that the smaller steady state M_ is unstable.
We move now to the general case M; > 0, assume M; < Mfrit and write that 9, f < 0 (which
was proved to hold at the bigger steady state) is equivalent to
1
(1= 2AM)(1 — e PMHF3My L g1 — M )e P < v

Using as before the fact that M is a steady state allows us to rewrite this last inequality as

1 M—F’YiMi M—F’YZ’MZ' 1

Multiplying this inequality by N (1 — AM )ﬁ yields

1—-\M M
1—2\M 1—\M M2P— M 1-\M)———
that is M 1 — M

whence the stability of the bigger steady state, since we recover (20). Likewise, at the smaller steady
state we have d,f > 0, and the reverse inequality holds. This concludes the proof.

B Basin entrance time approximation

B.1 Bounds on the wild equilibria

For M; = 0, under the assumptions of Lemma 3 such that there are two positive steady states
E_ < E; for (2), we get explicit bounds on these states. In particular, we assume N > 4.
We recall that the positive equilibria can be expressed as an increasing function of their second
coordinate M € (0,1/\):
K\M
E(M) := M ,

veptipp _ AM
b (1-A\M)

and E(M) is an equilibrium if and only if f(8M) = 0, where

fle) = (L)1 = ) = 1 (21)
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Lemma 7 The function f (defined in (21)) is concave on [0,1/v]. It reaches its mazimum value
on this interval at Z () € (0, ﬁ), where we define

_Z(w) _ "tb F — 1+¢—¢Z(1/1) 29
’ tro-ezw) T A ezm)p )
Then f on [0,1/v] has no zero if N < F(v), exactly 1 zero if N = F(v) and exactly 2 zeros if
N > F().
In addition, Z and F have the following asymptotics:
1 1
Z(l/}) ~ap—+0o ﬂ7 Z(l/}) ~h—0 log (E)j F(l/}) ~ohp—+00 4, F m 1.

Proof. We compute

fla)=e s (1t —vz) — b, f'z)=e (o —1-29),

hence f” < 0 on [0,1/9]. Since f(0) = f(1/¢¥) = —=1/N < 0, f reaches a unique maximum at the
(necessarily unique) point Z () € (0,1/4) such that f'(Z (1)) = 0. The claim that Z (1)) < 1/(2¢)
follows from the inequality e* > 1 + x, which implies that

1 1 1

—f(—)=eY?14+—)-1<0.
Moreover, the sign of f(Z(1)) is exactly that of N'— F(¢). The equivalents and limit follow from
straightforward computations. 0O

Remark B.1 We notice that Z is related to a well-known special function: let us introduce the
(principal branch of the) special Lambert W function, that is:

W)=z 2>—-1 <= ze* =y.
Since if y > 1 then z > 0, we obtain
Z() =log (W (e /%)),
Assume N > F(¢) (defined in (22)), and denote by z_ < x4 the two positive zeros of f.

Lemma 8 We have x_ > 1/N.

1 1 * 1 «
N<x_<$(1_%) <Z(¢)<$(1_%) < a4,
where ¥ WZW)(1+ 9§ — vZ())
e (0 MR (WY 7 75,
If in addition N > 2 then x4 < i(l - /—%,‘)
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Proof. The first inequality is obtained by using the inequalities 1 —e™® < z and 1 —+/1 —x > x/2
for € (0,1). The first one implies that f(z) < x(1 — ¢z) — 1/N, which is a second order
polynomial equal to f at 0 and at 1/, with roots located at (1 + /1 - 4¢/N)/(21,Z)) (recall that

we have N> 44)). Hence z_ > (1 — /1 —49/N)/(2¢) > 1/N by the second inequality.
The upper bound on x, comes from the fact that if N’ > 2 then by Lemma 7

1,1 1
1—=)—>—>Z().
Finally to get the two other bounds, we introduce
1 _1_=~
Hw) = £ (51 ) = k(1 - e 80 1,

By Lemma 7, it is concave on [0,N], equal to —1 at 0 and N and reaches its maximum at & :=
N1 —=9Z(1)). To get ki and k*, we simply use the fact that the graph of H is above the segments
from (0, —1) to (k, H()) on the first hand, and from (%, H(&)) to (N, 0) on the other hand, so that

we define
H(R)+1

3

HF) +1
N-%

and the expressions of k, < k < k* follow from a straightforward computation.

-1+ ke =0=—=1— (k"= N)

O

Back to the steady states of (2), we deduce from Lemma 8 the following bounds, assuming

N >2:

= NP K* K =
E =| w5 |<BE.<(-7)| 5 |=E (23)
VE+LE AK N vetpe KN
b B b R
K K 1 K ~
E, = (1-2 1 <E, < (1-— 1 —F 24
B N ) —”E?QM <Bi < ( N ) KN (Ws-tis) " (24
Rx

B.2 Results

A lower bound. First, we give a lower bound on the entrance times. We consider the fact that
for a solution to (2) with initial data given by E., thanks to the overestimation in (24),

F(t) > F e #rt = Fy(t).

This implies

t , / bE - ! -
e Mt o= WETnE)(I—t) o= T (THF =T gyt B (4,

2o _ ~ ~
E(t) > o~ (vEtup)t——(1-e #Ft)E+ + bE+/O
and .
M(t) > e MM, + (1 —r)ug / e~ (=B (¢t =: M, ().
0

~

Using the underestimation of E_ from (23), we define th := min{t > 0, Zb(t) < Z_ }for Z €
(B, M, F).
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Lemma 9 We have the following lower bound: T(M;) > min (¢tF,tM F).

Explicitly we find, with Z = Z(¢)) and Zp =1+ ¢ — ¢ Z:

1 N = k), 1 N2(1 =922 NA—Z)
[L_Flog(/{*(/\/—/i*)_u_plog(1+ W27 927 )

F
tb:

However it must be expected that min(tf , tlf‘/‘[ ) > tI", and we can give explicit approximations of tf
and tM.
b

A first upper bound. We compare the solution of (2) with the solution of the linear system

dze =bF, — (ve + pE)Ee,
B = (L= B, — My, (25)
% = rvpe(M;)Ee — prke,

where €(M;) = max;>q #@M < 1, typically e(M;) = ﬁl\/h The following property follows from

the fact that (2) is cooperative:

Lemma 10 Solutions of (2) and (25) with initial data such that (EY, M°, FY) < (E°, MY, F?)
satisfy:
Vit >0, (E(t), M(t),F(t) < (Ee(t), Mc(t), Fe(t)).

We use the under-estimation of E_ given by (23), to define, for X = (X*); = (E,M,F) and
Z’ e {17 27 3}7 .
tX = inf{t > 0, Xi(t) < [E_]i}.

min =

Lemma 11 For any solution X, to (25) satisfying the assumption of Lemma 10, we have the upper
bound on the entrance time: 7(M;) < max (t&; tM ¢F. .

min’ “min’ “min

Analytic computations are made in Section B.3.

An second upper bound in two steps. Let p* := M;/M , be the under-estimated effort ratio.
When using the above one-step approach, we conclude with a finite upper bound for 7(M;) if and

only if ﬁJr/(M, +ﬁ+) < 1/N, that is

p* >N —1. (26)
Expanding upon the same idea as for the lower bound, we let € = M, /(M + M;) so

F(t)<Fie "'+ E.rvge(l — e "' = Ty
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Then, we construct the explicit solution (E, M) = (Ey, M}) to
E=0bF; — (vp+pe+ 22)E, E@0)=E,,

—~

M=(1-rvgE—uuM, M(QO)=M,.

In details:

~ ~

Fy(t) = Eqrvge + e M (Fy —rvgeEy),

~ _ E+TVE€ _%+7TVE6E+ - = -~
Eﬁ(t) —e (I/E+/JE+ K )t Kup (1 e HF )<E++f0t (bE+7’VE€

~ o~ % TURE % “+rv eﬁ /
. ;) = = vE+ + +"VEC T+ Ef74 (1 _e—mpt
+be HFU(F | — T’I/EEE+))€( ETHE ) Kip )dt’ ,

My(t) = e "M 4 + (1 —r)vg [y e TV Ey(t')at'.

We use this super-solution on [0,#g] (for some typ > 0 to be determined), and then glue the
solution on [tg, +00) of

~

E=0bF — (I/E +up)E, E(to) = Eﬂ(to),

—~

M = (1—T)VEE—MMM, M(t()) :Mﬁ(t()),

~

F =rvgeoE — pupF, F(tyg) = Fy(to),

with eg = My(to)/(My(to) + M;) < e.
For Z € {E, M, F} we let

t7 (to) := min{t > to, Z; < Z_}.
Then as before:

Lemma 12 For all tg > 0, 7(M;) < ty(to) := max(tf (to), t}" (to), t} (to))-

By using Lemma 12, we can theoretically obtain a finite upper bound for 7(M;) (upon choosing a
suitable () as soon as ey < 1/N for ty large enough, that is if and only if

* * l”’
p*((p +1)ﬁ+N—1)>N—1. (27)

Condition (27) is weaker than (26) (and in general, much weaker). It holds if and only if

e —WN =140+ VN —1+¢)2+46N —1)
P> %

kM
(1—r)yvg’

L di= K =

which is true for instance if p* > /(N —1)/¢. However, we do not develop any further these

analytic computations in the present paper.
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B.3 Analytic computations

Applying Lemma 11, in order to express analytically the solution X, := (Ee, M., F,) of (25), we
only need to diagonalize the matrix

R, — <—(VE+ME) b > _

Tvpe —HF

R, has negative trace, and positive determinant if and only if Nl- > €. Hence if Ne(M;) < 1 then 0O
is globally asymptotically stable for (25).
In this case its eigenvalues are real, negative and equal to ki associated respectively with

. 1
eigenvectors < > , where
T

= —(vE +pp + pp) £/ (vE + pe — pr)? + 4brvge
= : 7

vE + pe — pp £/ (Ve + pp — pr)? + dbrvge
2b '

Ty 1=

Then we deduce that for some real numbers (r®,s%) € R?,

E.(t) = r?re”“*t + 70 er-t,

Fo(t) = s%emt! 4+ 5%t
t
M, (t) = e *MIMO + (1 — T‘)I/E/O e~ Ha (1) (rhet +r2em 1) at.

In details, we find

xT_

X
rd = E? — FO, I * B+ F°
T — Ty T — Ty T — Ty T — Ty
[ Y X —X4T_ xXr_
s = 1T g0 T F0 0 = B0 4 FY.
r— — Ty T — Ty T — Ty T — Ty

Assuming k4 # —pup and k- # —ppy (which must hold generically since these are biological
parameters), we get

efi+l _ o=kt efi—-t _ g=humt
M,(t) = e "M MO + (1 — r)vg (7‘9r +70
MM+ Ky MM+ K

Assuming N > 2, we use the overestimation (24) of E| as an initial data (E?, M0, F?), and
with the notations

B 4brvge B B
g(E)— \/1+ (VE'_‘_,UE_/JF)27 U_Sgn(VE+/’LE MF)a
we deduce
0o K 1 CN = 1) (vE + pup) + pr
=—(1—-——)(1x
=T ( /\/)< 9(&)|ve + up — pr) >
o _ Klvg+ps—prl,, 1 (2N = 1)(vg + pp) + pr
sy = 109(E) (1 N) (0 + g(s)) (g(e) + Bya— )
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If 7% < 0 the we can use the simple upper bound F,(t) < 7‘9re"‘+t. This condition reads

9(@)|ve + pp — prl < 2N = 1)(ve + pE) + pr.

In this case, we know that E.(t) < [E ]1 if 79 ert+t < AN%, that is if

min

E 2 ((N—l) (1+ (2N — 1)(VE+ME)+MF)>

t>t = lo
- ve + pue + pr — g(€)|lve + e — pr| s 29 9(e)|lve + pE — pr| o8)
28

Then, under the same condition we have s > 0. By using the fact that 33_ +s0 =F,, we
deduce that Fe(t) < [E_]g if Foef+t < E_, that is if

(29)

min *

2 -1
vE + pe + pur — g(€)|ve + pp — prl (0
E

In addition, we have ./, > tfﬁn if and only if

N =1)(ve + pp) + pr > N = 1Dg(e)|lve + pe — prl.

Remark B.2 For small €, the previous estimations roughly show that
1 N?
. log (—).
min(ve + pE, fir) (0

Finally, we need to compute the condition M, (t) < NI'B Let o := uy/(ve + pg) and op :=
wnr/pr. We rewrite M, (t) as

tmin sl

M(t) = 5 (1= 1) (ae ™ apes! +a_e),
with
o N —=1op+1—eN o, = P o
(op —1)(0g — 1) —eN”’ e
where
1 2N —1+og/oF AINoporpe
gl g9(€)a(l - UE//UF))’ oo = \/1 T r—on?
and

LA _ 20poF
war + Rt 20p0p — (0p +0rp) £o(or —op)g(e)

The condition we need to compute is therefore

ae MMt 4o et g et <

N1
We assume that the male half-life is shorter than that of the females and of the eggs, so that
or,op > 1. Under the stronger assumptions that r— < 0 < r; and

eN < 1, (O’F—l)(O'E—l)>EN,

we obtain that a > 0. We simply treat two subcases: first if pups + £+ < 0 (small pps) then we
obtain ay < 0 < a— and thus

tM = 1 log ((/\/— 1)

a+a_>
127 '

(8
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Second, if ppr + k- > 0 (large pps) then we obtain a— < 0 < a and thus

tM = ! log((N—l)

o+ a+>
min —Ky :

(8

M >tE

In the last case (when p)/ is large), we can check that ¢, > t. is equivalent to

()é+04+>?3_,

which holds since a > 0 and oy > 9.

max (t

In this case we obtain

min’ “min’ Ymin min

B 4F M) =M
208 ) (/\/—1( N —=1Dop+1—cN
pr(op +op —gle)o(op — o)) v Mop—1)(og —1) —eN
opor(g(€)o(op —og) + (2N —1)op + op) ))
(20p0F — (05 + or) + o(op —op)g(e))g(e)o(or — oF)
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