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ABSTRACT

The reconstruction of high-resolution gridded altimetry maps
from irregularly sampled along-track data remains a key chal-
lenge in ocean remote sensing science. Operational products
use optimal Interpolation (OI) techniques, which may not deal
with nonlinear dynamics at short space-time scales. Here, we
investigate an analog data assimilation scheme to improve the
reconstruction of fine-scale structures. The analog data assim-
ilation combines an ensemble Kalman model and a dataset of
exemplars issued from high-resolution numerical simulations
to perform an exemplar-based spatio-temporal interpolation
of along-track data. As a case-study, we consider a region
in the South China Sea and demonstrate the proposition ana-
log data assimilation outperforms the classical OI by about
~ 20% in terms of mean square reconstruction error.

Index Terms— Satellite Altimetry, Optimal Interpola-
tion, Analog Data Assimilation.

1. INTRODUCTION

Optimal Interpolation (or objective analysis) aims at deter-
mining the best estimation of a field using irregularly spaced
observations. Under the assumption that the field is Gaussian
and its covariance structure is known, the technique uses the
Gauss-Markov theorem to minimize the mean square error of
the estimate [1]. OI was introduced to ocean science in [2],
and is the operational tool [3, 4] for ocean altimetry mapping.
Still, OI suffers from two major limitations:

o The Gauss-Markov estimate optimality depends on the
correctness of the Gaussianity assumption and of the
time and length scales used for the space-time correla-
tion function.

e While the Gaussianity assumption is mostly relevant
for large-scale structure, this assumption does not hold
for small-scale structures, which makes OI more rele-
vant for the large-scale (low-frequency) components of
the SSH fields.

The main idea of this work consists in expressing a Sea
Level Anomaly (SLA) map as a sum of two scale compo-
nents, namely, large and fine scales. The large scale compo-
nent is reconstructed from along-track data using a classical
OI, whereas we investigate a non-parametric exemplar-based
method for the fine-scale component. The past twenty years
have witnessed an important growth of ocean satellite data
originating from satellite networks, model simulations, in situ
data, etc. This amount of available data supports the develop-
ment of machine learning and data-driven methods for ocean
remote sensing applications [5, 6, 7].

Here, we investigate such a data-driven approach, namely
analog data assimilation (AnDA) framework introduced re-
cently [8]. AnDA combines analog forecasting methods [9]
and stochastic data assimilation algorithms. In [8], we con-
sidered an application to Lorenz 63 and Lorenz 96 models,
which involve rather low-dimensional state space (<100). By
contrast, we consider here a more challenging problem as
gridded SSH field involves significantly higher-dimensional
state space, typically above 10°. Our key contribution lies
both in considering a more complex application and in deal-
ing with the SLA mapping problem using AnDA within a
multiscale approach. Hereinafter, the method we introduce
is called Multiscale Analog Data Assimilation (MS-AnDA).

This paper is organized as follows. Section 2 describes the
considered data. Section 3 presents the multiscale analog data
assimilation method. Numerical experiments are reported in
Section 4 and we finally comment our findings and state our
future work in Section 5.

2. DATA PREPARATION

For evaluation purposes, we consider an Observation Sys-
tem Simulation Experiment (OSSE). Using numerical simu-
lations, we create along-track data using the real along-track
sampling patterns in 2014 with four altimeters. We describe
below the data preparation setup.



2.1. Model simulation data

We consider a 50 years 3-daily SSH time series from 1962
to 2012 from the Ocean General Circulation Model (OGCM)
for the Earth Simulator (OFES [10, 11]). The coverage of the
model is 75°S-75°N with a horizontal resolution of 1/10°.
Our region of interest is in the South China Sea (105°E to
117°E, 5°N to 25°N).

We use these numerical simulations to run an OSSE,
which relies on the sampling of pseudo along-track data as
described in the next section.

2.2. Along track data

Along track data represent the direct measurements of SSH
from each satellite on its orbit around the globe. In this
work, we use 2014 along-track data positions from 4 satel-
lites (Jason2, Cryosat2, Saral/AltiKa, HY-2A) distributed
by Copernicus Marine and Environment Monitoring Service
(CMEMS) http://marine.copernicus.eu. We use
the resulting along-track position dataset to generate pseudo
along-track data from OGCM numerical simulations.

3. MULTISCALE ANALOG DATA ASSIMILATION

Let us denote by X the gridded (interpolated) SSH field. As
stated in the introduction we represent the SSH field using a
two-scale representation. Formally, we express our model as
follows:

X=X+dX; +¢ €))

where X refers to the large-scale component, dX to the fine-
scale component and & to the unresolved scales.

From along-track data, we first reconstruct X using the
classical optimal interpolation algorithm. The MS-AnDA is
then applied to the detail field dX; as explained in the next
paragraph.

The MS-AnDA algorithm is an extension of the analog
data assimilation (AnDA) algorithm. AnDA is a data-driven
data assimilation scheme i.e. the dynamical model is learned
from data, contrarily to classical data assimilation where a
physical model of the dynamics in needed. The particularity
of the MS-AnDA lies in the combination of a patch-based and
EOF-based representation (EOF: Empirical Orthogonal func-
tions, also known as Principal Component Analysis), which
makes the algorithm more suited to high dimensional prob-
lems as in this study.

Given the Ol-interpolated large-scale component X of
Eq.1, we consider a patch-based representation of residual
field X — X, referred to as dX. Let us denote by Ps the
P x P patch centered at site . The reconstruction of field
dX = X — X resorts to the following model:

A(dX(Pi,t— 1)) +7}('Pi,t),V’L' ?)
H(X (P, 1)) + e(Py, t)

dX(P;,t) =
{ Y (P;,t)

where Z(P;,t) refers to the P x P patch centered in 4 for
field Z at time t. Following AnDA scheme [8], A is an ana-
log dynamical model [9]. It retrieves exemplars in a reference
catalog similar to the current state at time ¢ — 1 to sample
forecasts at time ¢. Y is the observation field, i.e. along-track
data. H is the observation operator which accounts for the
irregular sampling of the along-track data. 7 and e are inde-
pendent Gaussian centered noises that represents uncertainty
in the model and observation equations.

The key component of the AnDA is the selected analog
forecasting strategy. We use here an incremental forecast-
ing strategy as follows. Let us suppose we want to fore-
cast state dX(P;,t — 1), to simplify reading, let denote
it by dX; ;. We first find the K nearest neighbors (or
analogs) of dX;_, in our database. We note these analogs
by ax(dX]_)kep.. k], and their coressponding forecasts
(successors) by sy (dX;_)re1..x]- Forecasting dX;_; re-
sorts to adding to dX; ; a weighted mean of the K incre-
ments 73 i.e. differences between analogs and successors
6(dX}_1) = sk(dX}_1) — ar(dX]_;). If we note by w the
weights, A and 7 from the model equation in Eq.2 are then
expressed as follows:

A(dXi_y) dX] )+ i wi(dX]_y)Te(dX]_y)

= Z?:l wi (dX{_1)(dX]_y + 7 (dX]_y))

7n(t) is a Gaussian centered noise of covariance matrix X7 =
covy, ((dX{_; + 7(dX}_1)) ke, k])» Where cov,, stands for
weighted covariance. The weight wy, associated to the suc-
cessor sy, depends on the distance between the state dX;_;
and its analog ag. In this work, a Gaussian kernel is used as
follows:

dX!_, — agl?
Xy — el 5

wi < exp(
o

Given that state, the analogs and successors are all patch
images of size P x P, the search of nearest neighbors is
more likely to fail, and the computational complexity of the
problem overall is high. Here comes the EOF decomposition,
to reduce the dimensionality of the problem from a P x P
dimension to few Ngop dimensions, here Ngor = 10.
The mathematical resolution of Eq.(2) for every region
patch is then performed using a data-driven ensemble-based
data assimilation algorithm, namely the Analog Ensemble
Kalman Smoother (AnEnKS). The AnEnKS represents a ver-
sion of the classical Ensemble Kalman Filter and Smoother
(EnKF/EnKS) adapted to analog based data assimilation. The
reader is invited to see [8] for more details. As stated early
in the paragraph, we consider overlapping regions patches,
however, to reduce the computational complexity we do not
consider all possible positions, a stride of str = 15 is used
to move from one patch to the other either horizontally or
vertically.



4. NUMERICAL EXPERIMENTS

All implementations were run under Matlab. We use optimal
interpolation code from [12], and the Analog Data Assimi-
lation toolbox [8] (Python Library can be found at https:
//github.com/ptandeo/AnDA and the Matlab toolbox
can be obtained by sending an email to the corresponding au-
thor).

Model simulation data is split as follows. The first 49
years of the time series are used for training, that is to say
to build a catalog of analogs and successors. We apply the
proposed approach to 2012 data. The true SSH field from
the numerical simulation provides a ground truth to evaluate
the relevance of the spatio-temporal interpolation in terms of
root mean square error. In our experiments, we compare three
schemes: (i) a OI interpolation using a Gaussian covariance
model with 10-day and 100km correlation lengths, (ii) the di-
rect application of the AnDA using a 10-component EOF de-
composition of the whole SSH field i.e. no patch-based repre-
sentation (OI+MS-AnDA,,, p), (iii) the proposed patch-based
MS-AnDA. For both AnDA schemes, we use 50 analogs in
the analog forecasting steps. The patch-based representation
exploits 20 x 20 patches and retains 10 EOFs. Table 1 re-
ports the RMSE values obtained by the compared algorithms.
Whereas we only report a marginal improvement of OI+MS-
AnDA,,,p compared to OI (RMSE values of 0.033 vs. 0.035),
the proposed AnDA models leads to a gain of about 20%
(RMSE values of 0.028 vs. 0.035).

Ol OI+MS-AnDA,,,p
0.035 0.033

OI+MS-AnDA
0.028

| RMSE

Table 1: RMSE comparison (in meters)

Figure 1 illustrates two examples of the results obtained
using the proposed method. The error maps (second row)
show a reduction of the error when adding the MS-AnDA
reconstructed fine scale component. The performance of both
algorithms is highlighted in the gradient magnitude maps
(third row) where we see clearly on one hand the smoothing
effect in OI result, and in the other hand, the gradient en-
hancement and the structures that made appearance in case of
OI+MS-AnDA.

5. CONCLUSION AND FUTURE WORK

This study was motivated by the following question: How
can data-driven methods (and especially analog methods)
help improving SLA mapping using optimal interpolation?
We address this question by proposing a multiscale based
method where the fine scale component of the SLA maps is
reconstructed using a data-driven data assimilation method.
Given a database of model simulations we use a K-NN based
method coming with ensemble-based filtering in order to re-
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Fig. 1: The result of the proposed method for 2 different days.
From left to right: (first row) ground truth, OI and OI+MS-
AnDA, (second row) simulated along track, error maps using
the difference between OI then OI+MS-AnDA and ground
truth, (third row) gradient magnitude maps of ground truth,
OI and OI+MS-AnDA.



trieve the lost information. The proposed method improves
OI reconstruction in a reasonable time providing that we use
patch based representation and EOF based dimensionality
reduction.

While the reconstruction of d.X; is done independently of
X in this work, we may investigate an additional conditioning
by X. Future work may also explore other analog forecast-
ing strategies: i) investigating better choices for the kernel
by selecting more dynamically-adapted ones as used in [13],
ii) making profit of the recent advancement in artificial neu-
ral networks (ANN) for forecasting and designing algorithms
that can integrate ANN based forecasting techniques in the
MS-AnDA paradigm. One could also explore the synergy of
SSH fields and other satellite-derived sea surface fields, such
as SST and ocean colour, to further improve the reconstruc-
tion of SSH fields. We think that this work and the directions
of research we suggest will help in bringing more interest in
applied machine learning to ocean altimetry mapping and of-
fers some perspectives that are worthy of investigation.
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