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Decidability of downward XPath

DIEGO FIGUEIRA

INRIA, ENS Cachan, LSV & University of Edinburgh

We investigate the satisfiability problem for downward-XPath, the fragment of XPath that includes

the child and descendant axes, and tests for (in)equality of attributes’ values. We prove that this

problem is decidable, ExpTime-complete. These bounds also hold when path expressions allow
closure under the Kleene star operator. To obtain these results, we introduce a Downward Data

automata model (DD automata) over trees with data, which has a decidable emptiness problem.
Satisfiability of downward-XPath can be reduced to the emptiness problem of DD automata and

hence its decidability follows. Although downward-XPath does not include any horizontal axis,

DD automata are more expressive and can perform some horizontal tests. Thus, we show that the
satisfiability remains in ExpTime even in the presence of the regular constraints expressible by DD

automata. However, the same problem in the presence of any regular constraint is known to have

a non-primitive recursive complexity. Finally, we give the exact complexity of the satisfiability
problem for several fragments of downward-XPath.

Categories and Subject Descriptors: I.7.2 [Document Preparation]: Markup Languages; H.2.3
[Database Management]: Languages; H.2.3 [Languages]: Query Languages

General Terms: Algorithms, Languages

Additional Key Words and Phrases: data tree, XML, XPath, downward data automata, DD

automata, data values, infinite alphabet, emptiness, satisfiability, extensible language

1. INTRODUCTION

XPath is arguably the most widely used xml query language. It is implemented in
XSLT and XQuery and it is used as a constituent part of several specification and
update languages. XPath is fundamentally a general purpose language for address-
ing, searching, and matching pieces of an xml document. It is an open standard
and constitutes a World Wide Web Consortium (W3C) Recommendation [Clark
and DeRose 1999].

Query containment and query equivalence are important static analysis prob-
lems, which are useful to query optimization tasks. In logics closed under boolean
operators, these problems reduce to checking for satisfiability : Is there a document
on which a given query has a non-empty result? By answering this question we
can decide at compile time whether the query contains a contradiction and thus
the computation of the query (or subquery) on the document can be avoided. Or,
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2 · Diego Figueira

by answering the query equivalence problem, one can test if a query can be safely
replaced by another one which is more optimized in some sense (e.g., in the use of
some resource). Moreover, the satisfiability problem is crucial for applications on
security [Fan et al. 2004], type checking transformations [Martens and Neven 2007],
and consistency of xml specifications.

Core-XPath (term introduced in [Gottlob et al. 2005]) is the fragment of XPath
1.0 that captures all the navigational behavior of XPath. It has been well studied
and its satisfiability problem is known to be decidable even in the presence of
DTDs. The extension of this language with the possibility to make equality and
inequality tests between attributes of elements in the xml document is named Core-
Data-XPath in [Bojańczyk et al. 2009]. The satisfiability problem for this logic is
undecidable, as shown in [Geerts and Fan 2005]. It is then reasonable to study the
interaction between different navigational fragments of XPath with equality tests
with the aim of finding decidable and computationally well-behaved fragments. In
the present work, we focus on the downward-looking fragments of XPath, from now
on denoted by XPath(↓∗, ↓,=), where navigation between nodes can only be done in
the downward direction: from the root towards the leaves. With this logic one can
express, for example, that every node labeled a has a descendant b with the same
data value, or that there are no two descendant nodes labled with c and d with the
same data value. We remark that the logics we treat here correspond to subsets
of the W3C standard XPath 1.0 [Clark and DeRose 1999], for a complete formal
semantics see [Gottlob et al. 2002]. XPath 2.0 is a radically different language than
XPath 1.0. It integrates XPath and XQuery in a common syntax, and includes
variables and explicit quantification. These constructs are out of the scope of the
current work.

Our main contribution is that the satisfiability problem for XPath(↓∗, ↓,=) is
decidable. This is the fragment with equality and inequality tests of attributes’
values, the ↓∗ axis that can access descendant nodes at any depth and the ↓ axis to
access child elements.1 Actually, we prove a stronger result, showing the decidabil-
ity of the satisfiability of regXPath(↓,=), which is the extension of XPath(↓∗, ↓,=)
with the Kleene star operator to take reflexive-transitive closures of arbitrary path
expressions. We nail down the precise complexity showing an ExpTime deci-
sion procedure. The problem is hence ExpTime-complete since XPath(↓, ↓∗) is
already ExpTime-hard by [Benedikt et al. 2008]. To obtain this bound, we intro-
duce the class of Downward Data automata (DD automata). We show that any
regXPath(↓,=) formula can be efficiently translated to an equivalent DD automa-
ton. This automata model has a 2ExpTime emptiness problem, but can be shown
to be decidable in ExpTime when restricted to the sub-class of automata needed
to capture regXPath(↓,=). In this way we obtain an ExpTime procedure for the
satisfiability of regXPath(↓,=).

In fact, DD automata are more expressive than regXPath(↓,=), and this is
true even for the aforementioned sub-class of automata. For example, although
regXPath(↓,=) does not include any horizontal axis, DD automata can test for

1We use the notation XPath(O,=) to refer to the fragment of XPath including all the relations
contained in O for navigation, and where the presence of ‘=’ indicates that the language can

perform data tests (both for equality and inequality of data values).
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Decidability of downward XPath · 3

certain horizontal properties. This model can express, for instance, that the se-
quence of children of the root is described by the regular expression (a b c)∗. It
will then follow that the satisfiability problem for regXPath(↓,=) under the regular
constraints that can be expressed by DD automata remains decidable in ExpTime.
This is a particularly well behaved class of regular properties, since the satisfiabil-
ity problem of regXPath(↓,=) restricted to regular tree languages is known to have
non-primitive recursive complexity.2

On the other hand, we prove that the fragment XPath(↓∗,=) without the ↓ axis
is ExpTime-hard, even for a restricted fragment of XPath(↓∗,=) without unions of
path expressions. This reduction seems to rely on data equality tests, as the cor-
responding fragment XPath(↓∗) without unions is shown to be PSpace-complete.
We thus prove that the satisfiability problems for XPath(↓∗,=), XPath(↓∗, ↓,=)
and regXPath(↓,=) are all ExpTime-complete. Additionally, we present a natural
fragment of XPath(↓∗,=) that is PSpace-complete. We complete the picture by
showing that satisfiability for XPath(↓,=) is also PSpace-complete. Our results,
together with the results of [Benedikt et al. 2008; Marx 2004], establish the pre-
cise complexity for all downward fragments of XPath with and without data tests
(cf. Table IV on page 44).

Related work

The main results of this work first appeared in the conference paper [Figueira 2009].
The cited work does not contain a full proof of the decidability of the downward
fragment of XPath, but only the main ideas due to a space limitation. Here we
give a full and detailed proof by a reduction to a powerful class of automata, and
we extend some results. Although the main XPath results of [Figueira 2009] are
the same as of the present work, the underlying automata model is completely
different. There are basically two reasons to adopt a different strategy to show
the decidability. First, the automaton introduced here is simpler than the one of
[Figueira 2009]: it does not require a nested definition between two different kinds
of automata as in [Figueira 2009]. And second, it is more general: it can express
data properties that cannot be expressed in the model of [Figueira 2009], and it
can test (weak) regular properties on the sequence of children of a node. The larger
expressive power of the automata model yields a decidability procedure for the
satisfiability of downward-XPath under a subclass of regular properties, something
that was out of the scope of [Figueira 2009]. The results of this paper also appear
in the doctoral dissertation [Figueira 2010b, Chapter 5].

Benedikt et al. [2008] study the satisfiability problem for many XPath logics,
mostly fragments without negation or without data equality tests. Also, the frag-
ment XPath(↓,=) is shown to be in NExpTime. We improve this result by pro-
viding an optimal PSpace upper bound. It is also known that XPath(↓) is al-
ready PSpace-hard3, and in this work we give a matching upper bound show-
ing PSpace-completeness. Furthermore, Marx [2004] proves that XPath(↓, ↓∗) is

2This is a corollary of [Figueira and Segoufin 2009].
3This is a direct consequence of XPath(↓) being able to code any formula from the normal modal
logic K, which enjoys the finite- and tree-model properties [Blackburn et al. 2001], and is PSpace-

complete [Ladner 1977].
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ExpTime-complete. In this work we prove that this complexity is preserved in the
presence of data values and even under closure with Kleene star. We also study
XPath(↓∗,=), a fragment that is not considered in [Benedikt et al. 2008], and show
that XPath(↓∗,=) is ExpTime-complete while XPath(↓∗) is PSpace-complete. In
this case, data tests do make a real difference in complexity (at least under widely-
held complexity theoretical assumptions).

First-order logic with two variables and data equality tests is investigated in
[Bojańczyk et al. 2009]. Although in the absence of data values FO2 is expressive-
equivalent to Core-XPath (cf. [Marx 2005]), FO2 with data equality tests is in-
comparable with respect to all the data aware fragments treated here. Bojańczyk
et al. [2009] also showed the decidability of a fragment of XPath(↑, ↓,←,→,=) with
sibling and upward axes but restricted to local elements accessible by a ‘one-step’ re-
lation, i.e., parent, child, previous-sibling, next-sibling. This fragment is restricted
to using data formulæ of the kind 〈ε = α〉 (or 〈ε 6= α〉) that test whether a data
value accessible with a path expression α is equal to the data value of the current
point of evaluation (denoted by ε). In contrast, the fragments we treat here disallow
upward and sibling axes but allow the descendant ↓∗ axis and arbitrary 〈α = α′〉,
〈α 6= α′〉 data test expressions.

In [Figueira 2010a] the fragment XPath(↓, ↓∗,→,→∗,=) is treated, denominated
‘forward-XPath’. In the cited work, the full set of downward (child, descendant)
and rightward (next-sibling, following-sibling) axes are allowed. This logic can
express, for example, a key constraint property on a label a (i.e., that all the nodes
labeled with a have different data values), which cannot be expressed in downward-
XPath. The satisfiability problem for forward-XPath is shown to still be decidable in
[Figueira 2010a]. Also, in [Figueira and Segoufin 2011], the satisfiability problem for
XPath(↓, ↓∗, ↑, ↑∗,=) is shown to be decidable. This fragment is an extension of the
downward fragment with the parent (↑) and ancestor (↑∗) relations, and it is called
vertical -XPath. However, these decidability results come at the expense of a huge
rise in complexity with respect to the downward fragment. Indeed, the time or space
required by the decidability procedure for the satisfiability of the forward or vertical
fragments cannot be bounded by any primitive recursive function [Jurdziński and
Lazić 2008]. In fact, this non-primitive recursive lower-bound holds for any XPath
fragment containing (or being able to express) any of the axes →+, ↑+, +← as
shown in [Figueira and Segoufin 2009].4 However, all the downward fragments are
below ExpTime, as evidenced in our present work. Meeting these elementary upper
bounds requires an altogether different approach from the ones taken in [Figueira
2010a; Figueira and Segoufin 2011].

2. PRELIMINARIES

Notation

We first fix some basic notation. Let N = {1, 2, 3, . . . }, and let [n] := {1, . . . , n}
for n ∈ N. By ℘(S) we denote the power set of a set S. We use letters A, B to
denote finite alphabets, D to denote a countably infinite domain (e.g., N) and the
letters E and F to denote any kind (finite or infinite) of set. In our examples we

4Here, (·)+ stands for the non-reflexive version of (·)∗.
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a, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

Fig. 1. A data tree of Trees(A×D) with A = {a, b} and D = N.

will consider D = N. We define the composition (f ◦ g)(x) = f(g(x)).

Unranked ordered finite trees

We define Trees(E), the set of finite, ordered and unranked trees over an arbitrary
alphabet E.

A position of a tree is an element of N∗. The root’s position is the empty string
and we denote it by ε. The position of any other node in the tree is the position of
its parent appended to a number s + 1 ∈ N, where s is the number of the node’s
left siblings. We write ‘·’ for the concatenation operator, and we use x, y, z, w, v
as variables for positions, and i, j, k, l,m, n as variables for numbers. Thus, for
example, x·i is a position which is not the root, that has i− 1 siblings to the left,
and has x as parent position.

Formally, we define TreesPos ⊆ ℘(N∗) the set of sets of finite tree positions, such
that: P ∈ TreesPos iff (a) P ⊆ N∗, |P | < ∞; (b) it is prefix-closed; and (c) if
n·(i + 1) ∈ P for i ∈ N, then n·i ∈ P . A tree is a mapping from a set of positions
to letters of the alphabet

Trees(E) := {t : P → E | P ∈ TreesPos} .

Given a tree t ∈ Trees(E), pos(t) denotes the domain P and alph(t) the alphabet
E of the tree. From now on, we informally refer by ‘node’ to a position x together
with the value t(x). We define the ancestor partial order � as the prefix relation
x � x·y for every x, y, and ≺ as the strict prefix relation x ≺ x·y for |y| > 0.
We say that two positions x, y are incomparable if x 6� y and y 6� x. Given
a tree t and x ∈ pos(t), t|x denotes the subtree of t at position x. That is,
t|x : {y | x·y ∈ pos(t)} → alph(t) is the tree t|x(y) = t(x·y). The notation f |x is
generalized to any function f whose domain is in TreesPos. In the context of a tree
t, a siblinghood is a maximal sequence of siblings or, in other words, a sequence
of positions x·1, . . . , x·l ∈ pos(t) such that x·(l + 1) 6∈ pos(t). Given a tree t and a
position x, we define #children(t, x) = |{x·i | x·i ∈ pos(t)}|.

Given two trees t1 ∈ Trees(E), t2 ∈ Trees(F) with the same set of positions P
(i.e., pos(t1) = pos(t2) = P ), we define t1 ⊗ t2 : P → (E×F) by (t1 ⊗ t2)(x) =
(t1(x), t2(x)).

The set of data trees over a finite alphabet A and an infinite domain D is defined
as Trees(A×D). Note that every tree t ∈ Trees(A×D) can be decomposed into two
trees a ∈ Trees(A) and d ∈ Trees(D) such that t = a ⊗ d. Figure 1 shows an
example of a data tree. We denote the set of data values used in a data tree with

data(a⊗ d) := {d(x) | x ∈ pos(d)} .
ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.



6 · Diego Figueira

We freely extend this notation and denote by data(X) all the elements of D con-
tained in X, for whatever object X may be.

Regular properties on branches

One important object of a data tree is that of a ‘branch’: a succession of nodes
that starts at the root and goes downward, ending at any node of the tree. Note
that we consider the possibility that a branch may end at an inner node and not
necessarily at a leaf. Given two positions x ≺ y in a branch, we define str(x, y) as
the string of labels from the finite alphabet contained between x and y, including
x and y. All the power of the automata model we will define relies on the ability to
test data properties at distant positions of the tree. These positions are end points
of branches whose string belongs to a certain regular language. We next define the
execution of a nondeterministic finite automaton over a branch of a data tree.

NFAs A = (A, Q, q1, δ, F ) are defined as usual, that is, A is a finite alphabet,
Q is a finite set of states, q1 is the initial state, δ ⊆ Q × A × Q is the transition
function, and F ⊆ Q is the final set of states. As usual, L(A) denotes the set of
strings accepted by A . We write (q, a, q′) ∈ A to denote that there is a transition
from q to q′ in A by reading a.

Let t = a⊗b be a data tree in Trees(A×D). Given a NFA A over the alphabet A,
we consider the execution of A on the string contained between a position x ∈ pos(t)
and a descendant position x·y ∈ pos(t). For a state q, let A [q] be identical to A
with the exception that now q is the initial state.

We note a ‘one-step’ of the execution as

q
A−→
x

q′

if (q,a(x), q′) is a transition of A , the data tree being implicit in the notation. And
we write

q
A−→

x,x·y
q′ iff

q
A−→
x

q′ if y = ε;

q
A−→
x

p1
A−→
x·i1

p2
A−→

x·i1·i2
· · · A−→

x·i1····in
pn+1 = q′ if y = i1· · · · in.

That is, if we can reach the configuration by reading the letters between x and
x·y in a descending way. Note that the automaton’s run includes the starting and
ending labels. Hence, all runs execute at least one transition.

We fix a notation for the data values of those positions selected by some run of
A . For a state q of A and a tree t, we write [[A , q]]t to denote the set of data values
of all positions x that can be reached starting at the root with state q and ending
at x with a final state from F ,

[[A , q]]t = {d(x) | x ∈ pos(t), str(ε, x) ∈ L(A [q])} .

We write [[A ]]t for [[A , q1]]t, where q1 is the initial state of A .

3. AUTOMATA MODEL

In this section we define an automata model that runs over data trees. We show
that this model has a decidable emptiness problem in Section 4. In Section 6.1 we

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.
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show that XPath(↓∗, ↓,=) formulæ can be effectively translated to an equivalent DD
automaton, thus obtaining a decidability procedure for its satisfiability problem.

Our model, called Downward Data automaton (or simply DD automaton), has
an execution that consists of two steps: (1) the execution of a transducer, and (2)
the verification of data properties of the transduced tree.

For a data tree t = a ⊗ d, the first step consists in the translation of a into
another tree b. This is done using a nondeterministic letter-to-letter transducer
over unranked trees. We adopt a more detailed definition, where the transducer
explicitly has as a parameter the class C of regular properties that it can test over a
siblinghood at each transition. If we take this parameter to be the set of all regular
properties, this automaton is a standard transducer over unranked trees. However,
the emptiness problem for Downward Data automata has a very high complexity
lower bound unless we restrict C to be a suitable subclass of regular languages (cf.
discussion on page 9). This class, defined as the set of extensible languages, will be
introduced in the sequel (Definition 3.7).

In the second step, for every subtree of the transduced tree b ⊗ d, a property
on the data values of the tree is verified. The letter at the root of the subtree
under inspection determines the property to verify. The properties are boolean
combinations of tests verifying the existence of data values shared by nodes in the
subtree, hanging from branches satisfying some regular expression.

A brief comment on notation. In the definition of these automata there will be
two sorts of sets of states, namely the states corresponding to the run of the trans-
ducer, and the states corresponding to the run of the verifier. To avoid confusion
we consistently write Q̇, q̇, q̇′, . . . as symbols for the states of the transducer, and
Q, q, q′, . . . for the states of the verifier.

Transducer

Let C be a subclass of regular languages C ⊆ REG . We define a bottom-up
unranked tree transducer. This definition is parametrized by C in the following
sense: At every transition, the automaton can test the siblinghood for membership
in some regular language that must be in the class C .

Definition 3.1. A C -transducer defines a relation between trees with the same
set of positions. Given a transducer R , we use the same symbol R to denote the
relation of the pairs of trees accepted by R with a slight abuse of notation, i.e.,
R ⊆ Trees(A×B). The idea is that a ∈ Trees(A) and b ∈ Trees(B) are related
by R if a ⊗ b ∈ R . Thus, in order to be related by R , the trees a and b need
to have the same set of positions. This relation is defined as the set of accepted
trees of a nondeterministic bottom-up unranked transducer represented as a tuple
〈C ,A,B, Q̇, Q̇F , δ〉 where

—A and B are finite alphabets of letters,

—Q̇ is a finite set of states,

—Q̇F ⊆ Q̇ is the set of final states,

—C ⊆ REG(Q̇) is a class of regular languages over the alphabet Q̇,

—δ ⊆ Q̇× A× B× C is a finite set of transitions.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.
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We define a⊗b ∈ R iff a ∈ Trees(A), b ∈ Trees(B) with pos(a) = pos(b) = P , and
there exists a state assigment ρ : P → Q̇, such that

—for every leaf x, there exists L ∈ C with ε ∈ L and (ρ(x),a(x),b(x),L) ∈ δ,
—for every siblinghood x·1, . . . , x·l, there is L ∈ C such that (ρ(x),a(x),b(x),L) ∈
δ and ρ(x·1)· · · · ·ρ(x·l) ∈ L.

We call ρ a run of R on a⊗ b. We say that the run is accepting iff ρ(ε) ∈ Q̇F .

We now turn to the second step.

Verifier

Definition 3.2. A verifier V ⊆ Trees(B×D) defines a set of data trees that are
valid with respect to some data properties. It is a tuple 〈A1, . . . ,AK, v〉 of K NFA
over the alphabet B, namely A1, . . . ,AK, and a function v : B→ Φ mapping letters
of the alphabet to formulæ expressing data properties. The idea is that every
subtree t|x of the original tree t must verify a property expressed by the formula
v(b(x)). A typical property that we can test at a subtree is the existence of two
positions with the same data value, such that one is reachable by going downward
through a branch whose labelling is in some regular language L1, and the other by
some other branch with labelling in L2.

The properties of Φ are a subset of closed first-order formulæ with no quantifier
alternation (that is, no ∀∃ or ∃∀ patterns allowed), and K unary relations, one for
every automaton Ai, namely

D1, . . . , DK .

Given a set Vars of variables, Φ contains all the formulæ φ defined by the grammar

φ ::= ¬φ | φ ∧ φ | φ ∨ φ | ∃v̄.ψ
ψ ::= ψ ∧ ψ | ψ ∨ ψ | v = v′ | v 6= v′ | Di(v)

where v̄ stands for a set of variables from Vars, v, v′ ∈ Vars, i ∈ [K], and we restrict
φ to have no free variables. The variables are interpreted over the set of data values,
and the Di’s as sets of values reachable by the automata Ai’s.

Given a data tree t, let It be the first-order interpretation where each unary
relation Di is interpreted as [[Ai]]t, and the interpretation of the domain is D. We
say that that ϕ is verified in t if ϕ is true under the interpretation It. A verifier
〈A1, . . . ,AK, v〉 accepts a data tree t = a ⊗ d ∈ Trees(B×D) if for every position
x ∈ pos(t) the formula v(a(x)) is verified in the subtree t|x.

Example 3.3. Suppose v(a) = ∃x1, x2 . D1(x1)∧D2(x2)∧x1 6= x2, for a letter a.
This means that for every a-rooted subtree we can find two branches in the regular
languages recognized by A1 and A2 respectively leading to two nodes whose data
values are different as depicted in Figure 2.

Definition 3.4. A C -Downward Data automaton (C -DD for short) is a pair
(R ,V ) made of a C -transducer R ⊆ Trees(A×B) and a verifier V ⊆ Trees(B×D).
A data tree a ⊗ d is accepted by (R ,V ) iff there exists b ∈ Trees(B) such that
a⊗b ∈ R and b⊗d ∈ V , as depicted in Figure 3. When we want to make explicit
that the witnessing tree for the acceptance of a ⊗ d is b, we will say equivalently

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.
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∈ L1L2 !

=

∈ L1

L2 !
=

Fig. 2. If L1,L2 are the languages recognized by A1,A2, and the marked positions are labeled by
a, then v(a) is verified in both subtrees.

a⊗ d a⊗ b b⊗ d

⇐⇒

R V(R , V )

∈ ∈ ∈

Fig. 3. Acceptance condition of a DD automaton (R ,V ).

that a ⊗ b ⊗ d is accepted by (R ,V ). Also, we say that a ⊗ b ⊗ d has a run if
there is a run of R on a⊗ b, where b⊗ d ∈ V .

We now give some closure properties of DD automata.
We say that a class of languages C is closed under componentwise product, if

for every two languages L1,L2 of C and the language L1×cL2 = {(a1, b1) · · · (an, bn) |
a1 · · · an ∈ L1, b1 · · · bn ∈ L2} is in C . Note that if L1,L2 are regular, L1 ×c L2 is
regular.

Proposition 3.5. Given a class C of languages closed under componentwise
product, the class of languages recognized by C -DD automata is closed under inter-
section.

The proof of this proposition can be found in the online appendix.
To obtain closure under complementation we need some extra hypothesis. Given

an alphabet A and a letter a ∈ A, we call the membership language of a to
the language {w·a·w′ | w,w′ ∈ A∗}. We also say that a class C ⊆ REG is closed
under inverse homomorphisms if for every language L ∈ C over an alphabet
A and for every homomorphism h : B→ A there is a language L′ ∈ C over B such
that L′ = {w ∈ B∗ | h(w) ∈ L}.

Proposition 3.6. Let C a class of languages closed under intersection, comple-
mentation, inverse homomorphisms and containing all membership languages. The
class of languages recognized by C -DD automata is closed under complementation.

The proof of this proposition can be found in the online appendix.

Complexity of emptiness problem. The emptiness problem for C -Downward Data
automata has a non-primitive recursive complexity if we do not impose any restric-
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tion to C . The non-primitive recursive lower bound can be seen as a consequence
of the fact that DD automata

—can force the model to be linear (i.e., that all nodes have at most one child), and

—can capture any downward XPath formula, as we will see in Section 6.1.

It is known that the satisfiability problem for downward XPath on non-branching
data trees (called data word) is non-primitive recursive (see e.g. [Figueira and
Segoufin 2009]). Although the emptiness problem for DD automata without any
restriction is not discussed here, we believe that it is decidable. Probably, it can be
shown to be decidable via the theory of well quasi orderings, by a similar technique
as the one used in [Figueira 2010a] in the context of downward alternating register
automata.

Nevertheless, when C is restricted to have some good properties, emptiness of
DD automata can be tested in 2ExpTime. Further, if the verifier is such that
the number of occurrences of the relations Di inside every quantified subformula
is bounded by a constant5, we achieve an ExpTime decision procedure. We will
show that downward XPath formulæ can be translated in PTime into equivalent
DD automata. These automata are restricted to a class of languages C with good
properties, and such that the number of occurrences of the Di are always bounded
by 2. Then, the decidability in ExpTime of the satisfiability problem for downward-
XPath will follow. In the next section we define which is the necessary property
that C must have in order to obtain the aforementioned upper bounds.

Extensibility of languages

To have a low complexity in the testing for emptiness of C -DD automata, we need
to weaken the kind of regular properties that the transducer can verify. That is, we
need to restrict C . The idea is that if a word is in a language, then an extension
of the word where more occurrences of each letter may occur must also be in the
language. Let us formally define this notion.

Let A = {a1, . . . , an} be an alphabet and p be the Parikh image function. That
is, the function p : A∗ → Nn that associates each word with a vector that counts
the number of appearances of each letter, p(w)(i) = |{j | w(j) = ai}|, where w(j)
denotes the jth letter of the string w, starting at 1.

Definition 3.7. We say that a regular language L is extensible if for every
m ∈ N and word w ∈ L there exists another word w′ ∈ L such that for any
coordinate i ∈ [n],

if p(w)(i) 6= 0 then p(w′)(i) ≥ m, and

if p(w)(i) = 0 then p(w′)(i) = 0.

In this case we say that w′ is an m-extension of w. We write E for the class of all
extensible regular languages. Likewise we define a tree language to be extensible if it
can be defined by an unranked tree automaton whose transitions only use languages
from E to test properties on the siblinghoods. Note that this is a restriction of the

5For example, (∃v.D1(v)) ∧ ¬(∃v.D2(v) ∧D3(v)) is bounded by 2, since there are at most 2 Di’s

used in each quantified subformula.
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horizontal tests, and that an extensible tree language can still test for any regular
property along a branch. By Etree we denote the set of extensible tree languages.

Let us give some examples of extensible classes of languages. As a first example,
consider the following class of languages.

∃-class := {LA1,...,An,B | A1, . . . ,An and B are a finite alphabets, n ∈ N}, where

LA1,...,An,B := {w ∈ (∪iAi ∪ B)∗ | w contains at least one letter from each Ai}
Note that ∃-class is a class of extensible languages, it is closed under intersection,
complementation, inverse homomorphisms and contains all membership languages.
Therefore, the class of data tree languages accepted by ∃-class-DD automata is
closed under complementation. If we also close ∃-class under componentwise prod-
uct, we still obtain an extensible language. In this case, the class of languages
accepted by DD automata is closed by all boolean operaitons.

Also note that the class of ∃-class-transducers are those that can only test for
the existence or non existence of children with a certain label, but they do not
test any condition on the horizontal ordering or on the number of appearances of
elements in the siblinghoods. In fact, they can mostly test for vertical properties
along branches.

As another example, we define REG∗ the class of star -regular languages.

REG∗ := {L ∈ REG | L is defined by a regular expression whose every

symbol is in the scope of at least one ∗}
Thus, for example ‘((a | b) c∗d)∗’ is in REG∗ while ‘a∗b’ is not. The class REG∗ is
trivially extensible.

The property of extensibility is trivially closed under union, but not necessarily
under intersection or complementation.

Proposition 3.8. Given two extensible languages L1,L2, L1∪L2 is also exten-
sible.

As a counter-example for the intersection, note that (ab)∗ ∩ a∗b∗ = {ε, ab} which
is not extensible, and for the complementation note also that under the singleton
alphabet A = {a}, (a+a)c = {ε, a}, which is not extensible.

In the sequel, we will show decidability of the emptiness problem for E -DD
automata.

4. THE EMPTINESS PROBLEM

Throughout this section, we fix the transducer to be an E -transducer. The main
objective of this section is to prove the following theorem.

Theorem 4.1. The emptiness problem for E -Downward Data automata can be
decided in 2ExpTime.

Sketch of the proof

The proof of the main theorem is divided into four parts. In the first part (Sec-
tion 4.1) we define some decoration or marking of the nodes of a data trees that
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in some sense witnesses the acceptance of a run of a DD automaton. These dec-
orations of the tree are the main structures with which we will work with in our
proof.

The second part (Section 4.2) is dedicated to proving two properties. The first
property states that if a DD automaton is nonempty, it accepts a tree decorated
with some guidance system that marks the paths to be covered in order to verify the
properties imposed by the verifier. In some sense, it decorates the tree as in Figure 2,
avoiding having two paths going through the same node. The guidance system is
called certificate and this property is called admissibility of correct certificates. The
second property states that if a DD automaton is nonempty, then it accepts a tree
whose data values are in a certain normal form, as follows. Every pair of subtrees
rooted at two different children of a node, have a disjoint set of data values, with
the exception of some polynomially bounded many (this is called the disjoint values
property).

The third part (Section 4.3) is centered around proving that DD automata have
the exponential width model property. That is, if a DD automaton has a nonempty
language, then it accepts a tree whose width is exponentially bounded in the size
of the automaton.

In the fourth part (Section 4.4) we give the algorithm for testing emptiness of
DD automata, which is based on the bound on the width and the two previous
properties: the disjoint values property and the admissibility of correct certificates.

Parameters

We first fix some parameters that we will need in the complexity analysis. We fix,
once and for all, that the verifier V contains K NFA: A1, . . . ,AK. We write Aut
to denote the se of these automata, Aut = {A1, . . . ,AK}. We assume without any
loss of generality that all A1, . . . ,AK share the same set of states Q := {q1, . . . , qN},
and have q1 as initial state. Also, for each i we write QAi

F for the set of final
states of Ai. By |A | we denote the number of transitions of A , and Aut stands
for |A1| + · · · + |AK|. Let Vars be the set of variables used by the formulæ of the
verifier, and let |Vars| = V. We write R for the maximum number of relations
admitted under a quantification. In other words, for any formula of the verifier and
for any quantified subformula ∃x̄.ψ, there are at most R different relations used in
ψ from the K available. The worst case would be when R = K, as in the formula
v(b) = ∃x.D1(x)∧· · ·∧DK(x) for some b ∈ B. This is an important parameter, since
we will later see that the subclass of E -DD automata with R fixed has an ExpTime
emptiness problem, while the general class has a 2ExpTime emptiness problem. In
Section 6.1 we will argue that downward XPath expressions can be translated into
E -DD automata where R = 2, and from this fact it will follow that its satisfiability
is in ExpTime. Intuitively, the class of properties that do not have a bounded R
are of the form there is a data value d accessible by n downward paths in the regular
languages L1, . . . ,Ln but not by any path in the languages L′1, . . . ,L′m, where n
and m are parameters. To verify these properties with our approach would require
double exponential time in n,m.

Finally, we fix Q̇ to denote the set of states of the transducer. In addition, we use
NFA to represent the regular language L for every transition (q̇, a, b,L) ∈ δ. We will
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usually use the symbol B to denote such an automaton. We will assume without any
loss of generality that all automata used in the transitions of the transducer share
the same set of states Q̃ = {q̃0, q̃1, . . . } and that all automata have the same initial
state q̃0. |R | stands for the number of transitions of R , and we assume that |Q̇| is
at most |R |. By |V | we denote K + N + R + V + Aut. Summing up, our complexity
analysis will be based on the parameters: K,N,R,V, |Q̇|, |Q̃|, |R |,Aut, |V |.

4.1 Decorations of trees

In order to bound the width of the tree, we need a more fine grained notion of
runs of a transducer. We label the nodes of the tree with the run of the automaton
recognizing the regular language on the siblinghood used at the transition of the
transducer’s run. This will enable us to state a pumping argument on siblinghoods
of the data tree.

Detailed run

Consider, for any extensible language L ∈ E over Q̇, a NFA BL with initial state
q̃0. Remember that every BL used in the transducer uses the same set Q̃ of states.

Definition 4.2. A detailed run of a transducer R on a tree a⊗b : P → A×B
consists of a 3-uple (τ, ρ, ρh).

—ρ is a run, that in this context we call a vertical run.

—τ is the transition assignment

τ : P → δ

specifying which choice of transitions are needed for the run ρ. It verifies, for
every position x with l children,

τ(x) = (ρ(x),a(x),b(x),L) where ρ(x·1) · · · ρ(x·l) ∈ L.
We abbreviate Bx to denote the NFA BL of the regular language L defined in
the transition τ(x) of the transducer’s run.

—Finally, ρh is an assignment from the set of positions P to the set of states of the
automaton B that corresponds to the regular language that needs to be checked
in order to apply the transition.

ρh : P → Q̃ .

We call ρh the horizontal run. It verifies the following conditions (in short, that
it is a run of a NFA on the siblinghood).

1. For every leftmost sibling x·1 ∈ P , (q̃0, ρ(x·1), ρh(x·1)) is a transition of Bx.
2. For every pair of consecutive siblings x·i, x·(i+ 1) ∈ P ,

(ρh(x·i), ρ(x·(i+ 1)), ρh(x·(i+ 1)))

is a transition of Bx.
3. For every rightmost sibling x·l, ρh(x·l) is a final state of Bx.

This completes the definition of a detailed run.

We also need to be able to precisely describe the behavior of the data values at
a position of a data tree.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.



14 · Diego Figueira

Description of data

Next we introduce sets of data simultaneously accessible by R automata (remember
that this is the maximum number of simultaneous relations Di’s used by the verifier
V ). For each one of these sets of data values, we preserve at most V elements (this
is a bound on the maximum number of variables used by V ).

Observe that the verifier can test properties of the set of the cardinality of the
sets [[Ai]], or a boolean combination of them. More precisely, the verifier can only
test the (in)existence of a number of data values that are in some intersection set
[[Ai1 ]] ∩ · · · ∩ [[Ait ]]. Here, Ai1 , . . . ,Ait range over Aut , and t ≤ R. The tests boil
down to checking whether

—the intersection contains at least 1, 2, . . . ,V different elements, or

—the intersection contains at most 0, 1, . . . ,V − 1 different elements.

Note that we cannot test, for example, that the set contains exactly V elements,
since we would need a formula with V +1 variables. We annotate the tree with this
information. Since later we will need to check that this information is consistent
between a parent position and its children, we need to also consider the states of
the automata Ai. Next, we define the set of intersections of at most R relations
[[Ai1 , qj1 ]] ∩ · · · ∩ [[AiR , qjR ]].

Inters := ℘≤R(Aut ×Q) ,

where ℘≤R denotes the set of subsets of at most R elements. The following holds
by definition.

|Inters| ≤ (K · N)R (1)

Given a data tree t and an intersection we extend the [[ ]]t notation by taking the
intersection of the R sets. That is,

[[I]]t =
⋂
{[[A , q]]t | (A , q) ∈ I} , for I ∈ Inters.

Definition 4.3. The data profile is a function that assigns the number of ele-
ments present at each I ∈ Inters to every data tree as follows.

d-profile : Trees(A× D)→ Inters → [0..V]

d-profile(t) = {I 7→ min(|[[I]]t|,V) | I ∈ Inters}

Observe that since V is the number of variables in Φ, it is enough to count up to V.
A tree’s profile carries sufficient information to evaluate at the root any formula

ϕ ∈ Φ used by the verifier. We write f |= ϕ if f is a function f : Inters → [0..V] and
ϕ is a formula of the verifier v(b) = ϕ such that ϕ holds in a tree t if f = d-profile(t).
We formally define this relation in Table I. Thus, for any data tree t, position x,
and ϕ ∈ Φ, d-profile(t|x) |= ϕ iff ϕ holds at t|x.

A profile summarizes information about a position in terms of data values in its
subtrees. In addition, we also define the description of a data value in terms of the
different ways by which it can be obtained.
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f |= ψ ∧ ψ′ iff f |= ψ and f |= ψ′

f |= ¬ψ iff f 6|= ψ

f |= ∃v1, . . . , vt.ψ iff I, g, h |= ψ for some I ∈ Inters, g : {v1, . . . , vt} → {1, . . . , t}

and h : {1, . . . , t} → ℘(I) s.t. |h−1(I ′)| ≤ f(I ′) for all I ′ ⊆ I

I, g, h |= ψ ∧ ψ′ iff I, g, h |= ψ and I, g, h |= ψ′ I, g, h |= v = v′ iff g(v) = g(v′)

I, g, h |= ψ ∨ ψ′ iff I, g, h |= ψ or I, g, h |= ψ′ I, g, h |= v 6= v′ iff g(v) 6= g(v′)

I, g, h |= Di(v) iff (Ai, q1) ∈ h(g(v))

Table I. The relation f |= ϕ given f : Inters → [0..V].

Definition 4.4. The description of a data value is the set of states of the au-
tomata that can access the data value and it is defined as

desct(d) := {(A , q) ∈ Aut ×Q | d ∈ [[A , q]]t} ∈ Descriptions, where

Descriptions := ℘(Aut ×Q).

Certificates

For any intersection I, we want to keep track of which data values are in [[I]], and
how to access them in the subtree in order to verify that they belong to every [[A , q]]
in I. How do we decorate the tree in order to have this information at all times?
Suppose t is a data tree and x a position in it. We will develop some branch marking
system. For d ∈ [[I]]t, we mark several downward paths starting in x and ending
at a lower positions y � x with d(y) = d. We do this in such a way that for every

(A , q) ∈ I there is a marked path between x and y such that d(y) = d and q
A−→
x,y

qf

with qf a final state. We will mark every element of this path with the data value
‘d’ to which it leads. We call this marking a certificate. However, markings of paths
should not overlap. That we can always have such non-overlapping certificates is
not obvious, and it will be the matter of Section 4.2.

A certificate of a data tree t = a⊗d is a partial assignment κ : pos(t) ⇀ data(t).
If κ is undefined for a position x, we write κ(x) = ⊥, and we extend the desct
function with desct(⊥) := ∅ for convenience in the proofs. A certificate κ is said to
be correct if it has the properties of being valid and inductive that we will define
next.

The validity property for a position x ensures that the certificate takes into
account all the necessary data values to witness every intersection. That is, that
for every intersection I the data values of [[I]]t|x are contained either in κ(x) or in
some κ(x·i) for a child position x·i of x. Since the verifier has only V variables, it is
actually sufficient to verify the existence of certificates for up to V data values from
[[I]]t|x . This property, when combined with the inductive property results in each
of these data values having a path of certificates that witness each of the elements
of I.

Definition 4.5. Given I ∈ Inters, D ⊆ D, C ⊆ D×Descriptions, and given
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dcert, bcurr, dcurr ∈ D, then

valid(D, I, (bcurr, dcurr, dcert), C )

holds if there are k = min(V, |D|) different data values d1, . . . , dk ∈ D such that for
every variable i ∈ [k] and (A , q) ∈ I, there exists (q, bcurr, q

′) ∈ A and

—q′ ∈ QA
F and dcurr = dcert = di, or

—there is (di, Desc) ∈ C, with (A , q′) ∈ Desc.
The inductivity property states that for every position x such that κ(x) = d 6=

⊥, if d is in some [[A , q]], then there must exist a child position x·i with certificate
d such that d is in [[A , q′]]t|x·i for some q′ in the transition relation of A .

Definition 4.6. Given Desccert ∈ Descriptions, then

inductive(Desccert, (bcurr, dcurr, dcert), C )

holds iff for every (A , q) ∈ Desccert, there is (q, bcurr, q
′) ∈ A such that

—q′ ∈ QA
F and dcert = dcurr, or

—there is (dcurr, Desc) ∈ C with (A , q′) ∈ Desc.
Definition 4.7. A certificate κ is correct if for every position x ∈ pos(t) there

exists a subset of children Cx ⊆ {x·i | x·i ∈ pos(t)} such that

inductive( desct|x(κ(x)), (b(x),d(x), κ(x)), Ĉx )

holds, where Ĉx = {(κ(y),desct|y (κ(y))) | y ∈ Cx}; and for every intersection I ∈
Inters the valid property holds,

valid( [[I]]t|x , I, (b(x),d(x), κ(x)), Ĉx ) .

In this context we say that Ĉx is a valid and inductive subset of children positions
of x.

Take any x and (A , q) ∈ I ∈ Inters with k = min(V, [[I]]t|x). The correctness
condition implies that

—there are d1, . . . , dk different data values and x1, . . . , xk ∈ pos(t) below x such
that for all i: d(xi) = di;

—for all x ≺ y � xi, κ(y) = di; and

—q
A−→
x,xi

qf for some qf ∈ QA
F .

Note that not every data tree accepted by a E -DD automaton has a correct cer-
tificate. (Think for instance in a tree with branching width 1, in which in order to
verify the root’s property, two different data values are needed.) Indeed, admissibil-
ity of correct certificates is a property shared only by some of the trees recognized
by a E -DD automaton. However, in Section 4.2 we will show that every nonempty
E -DD automaton accepts a tree which admits a correct certificate. Even more, we
show that it accepts a tree where additionally the data values have a particular
property, that we define as the disjoint values property.
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Fig. 4. Subtree replication.

4.2 Correct certificates and disjoint values

This section is dedicated to proving two central properties that are essential to
obtain a decidability procedure for the DD automata emptiness problem. These
properties state that every nonempty DD automaton accepts a tree that (1) admits
a correct certificate, and (2) has the disjoint values property —a property that we
will define in Section 4.2.2.

Firstly, in Section 4.2.1 we attack the question of whether we can always assume
that we have a correct certificate, which is a property that is not shared by all
runs. The next section is devoted to showing that for any tree t accepted by a
DD automaton there exists a transformation of this tree t′ obtained by duplicating
some subtrees, that is also accepted by the automaton.

Secondly, Section 4.2.2 treats the question of whether we can always assume that
the run and certificate satisfy the disjoint values property. We will show that given
a correctly certified data tree, we can always rearrange the data values in order to
meet this property, while preserving the run and the certificate.

We define the function κ̂ by

κ̂(x) := {κ(x·i) | x·i ∈ pos(t)} ∪ {κ(x)},
that is, κ̂ assigns to every position x, the set of data values of the certificates of the
children of x, as well as of x.

The next two sections will show that the following theorem holds.

Theorem 4.8. For every E -DD automaton (R ,V ) that accepts a non-empty
language, there is a tree t and a correct certificate of t with the disjoint values
property such that t is accepted by (R ,V ).

4.2.1 Correct certificates. In this section we exploit the particular property of
extensibility (Definition 3.7) that we imposed to the regular languages used by
E -transducers.

As in previous sections, we have that every verifier we consider has a maximum
number of relations inside a quantified subformula bounded by R, maximum number
of variables bounded by V, the number of automata is K, and the number of states
in any automaton is bounded by N.

Our first observation is that if we duplicate a subtree of a data tree as in Figure 4,
the values of the certificates do not change, and either both trees are accepted or
both rejected by any verifier. The following easy proposition is given without a
proof.

Proposition 4.9. Given a data tree t, and given a position x·i ∈ pos(t) con-
sider the last index l such that x·l ∈ pos(t). Let t′ be the follwing data tree that
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results from duplicating the subtree t|x·i in t. We define t′ := (t ◦ fx), where fx is
the following surjective function.

fx : pos(t) ∪ {x·(l + 1)·y | x·i·y ∈ pos(t)} → pos(t)

fx(z) =

{
z if z 6� x·(l + 1)

x·i·y if z = x·(l + 1)·y
Then, for every z ∈ pos(t′), and d ∈ D, desct′|z (d) = desct|fx(z)

(d).

This can be also extended to R -transducer runs, always by replicating subtrees.
Here, the extensibility of the regular languages of R will be of utmost importance.

Proposition 4.10. If we have

—a E -DD automaton (R ,V ),

—a data tree t = a⊗ b⊗ d,

—a position x ∈ pos(t) with l = #children(t, x),

—a run ρ of R on t

—a regular language L such that (ρ(x),a(x),b(x),L) ∈ δ and ρ(x·1) · · · ρ(x·l) ∈ L
—an extension q̇1 · · · q̇n ∈ L of ρ(x·1) · · · ρ(x·l) (where of course n > l), and any

surjective function hx : [n]→ [l] such that q̇i = ρ(x·hx(i)) for every i ∈ [n],

—a data tree defined as t′ := (t ◦ fx), whose set of positions is

P = {x·j·y | x·hx(j)·y ∈ pos(t)} ∪ {z | z ∈ pos(t), x 6≺ z}
and where fx is as follows.

fx : P → pos(t)

fx(y) =

{
y if x 6≺ y
x·hx(j)·y if y = x·j·y

Then:

(1) For every position y ∈ pos(t′) and data value d, desct′|y (d) = desct|fx(y)
(d).

(2) ρ ◦ fx is a run of R on t′.

The proof for this Proposition can be found in the online appendix.

Remark 4.11. Note that Proposition 4.10 implies that if t is accepted by a ver-
ifier, then t′ is also accepted, and idem for the transducer.

Now we can show that we can always restrict to correct certificates.

Proposition 4.12. Every nonempty E -DD automaton accepts some data tree
with a correct certificate.

Proof. Let us fix a DD automaton (R ,V ). We will show the following state-
ment.

Claim 4.13. Given a data tree t = a ⊗ b ⊗ d, a run ρ on t, and a data value
e ∈ data(t) ∪ {⊥} such that t is accepted by V , there exists another tree t′ with
the same height as t, with run ρ′ and a correct certificate κ′ such that κ′(ε) = e,
ρ′(ε) = ρ(ε) and t′ is accepted by V according to ρ′. Further, for every d ∈ D,
desct(d) = desct′(d).
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Since (R ,V ) is nonempty, there exists a data tree t with an accepting run ρ. If we
take e = ⊥, by Claim 4.13 we obtain a data tree t′ with an accepting run ρ′, and
a correct certificate κ′, proving the statement of the proposition.

Proof of Claim 4.13. We proceed by induction on the height of t.

The base case consists in showing that the property holds for a tree t of height 0
consisting of only one position: ε. In this case it suffices to define t′ = t, κ′(ε) = e
and ρ′ = ρ, and all the properties are trivially met.

For the inductive case, suppose that for all trees of height at most h the statement
holds. Let t be of height h+ 1 with a run ρ and let e ∈ data(t)∪ {⊥}. We need to
provide a tree t′ run ρ′ and certificate κ′ with the desired properties.

The basic idea is to build t′ by replicating some subtrees of t to allow to have
sufficently non-overlaping paths to generate the correct certificate. To build such
tree and certificate, it is useful to have a function that, given a data value d, a NFA
A and a state q, returns a position x with data value d such that str(ε, x) ∈ L(A [q]).
If there is no such witnessing position, (i.e., if d 6∈ [[A , q]]t) it returns an undefined
value. We denote by posWitness any such function. It has the next property, for
every data value d, automaton A and state q.

—posWitness(d,A , q) ∈ {y ∈ pos(t) | str(ε, y) ∈ L(A [q]), d(y) = d}, or

—posWitness(d,A , q) = ⊥ if {y ∈ pos(t) | str(ε, y) ∈ L(A [q]), d(y) = d} = ∅.

Remember that the certificate we build κ′ need to have the data value e at the
root. In order to verify the inductivity condition at the root, we will collect every
witness position for the data value e. In some sense we want to gather information
about which subtrees t|j need to have a certificate with data value e.

A = {(e, j) | j � posWitness(e,A , q),A ∈ Aut , q ∈ Q, j ∈ pos(t)}

In order to build a valid certificate at the root, we also must take into account the
subtrees t|j that are necessary to verify the formulæ for every intersection I.

CI = {(d, j) | d ∈ [[I]]t, j � posWitness(d,A , q), (A , q) ∈ I, j ∈ pos(t)}

We must then witness all the elements of E = A ∪⋃{CI | I ∈ Inters}. We build a
data tree t′′, which is the result of duplicating some of the subtrees of t so as to have
enough space to fit all the necessary witness certificates required by E. We then
need at most |E| replications of trees. This is achieved by the extensibility of the
languages corresponding to the transitions of ρ. Let us consider q̇1, . . . , q̇n to be an
|E|-extension of ρi(1)· · · · ·ρi(l) ∈ L for a language L such that (ρ(ε),a(ε),b(ε),L) ∈
δ. We define fε as in Proposition 4.10, and we define t′′ = t ◦ fε, ρ′′ = ρ ◦ fε. It
follows that ρ′′ is a run on t′′ and by Remark 4.11 t′′ is accepted by V .

To define κ′, we must make sure that for each element of E there is a corre-
sponding certificate in some child of the root of t′′. Of course, there cannot be
two certificates in the same child, so we need a way to choose distinct children
for distinct elements of E. Let g be a function that chooses, for each element of
E, which subtree to use, g : E → {j | j ∈ pos(t′′)} such that g is injective and
fε(g(d, j·y)) = j for every (d, j·y) ∈ E.
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We are in a good shape to define a certificate κ′ for t′′ that satisfies the correctness
property at the root. But we need κ′ to be correct also at all subtrees of t′′. This
is given by the inductive hypothesis.

For every subtree t′′|i of t′′ we apply the inductive hypothesis with the data value
d0 such that g−1(i) = (d0, y) for some y, or with ⊥ otherwise. We thus obtain a
tree t′i with a correct certificate κ′i and run ρ′i. Finally we build the following tree
t′, certificate κ′, and run ρ′ satisfying all the properties.

t′(x) =

{
t(x) if x = ε

t′i(y) if x = i·y, i ∈ pos(t′′), y ∈ pos(t′i)

κ′(x) =

{
e if x = ε

κ′i(y) if x = i·y, i ∈ pos(t′′), y ∈ pos(t′i)

ρ′(x) =

{
ρ(x) if x = ε

ρ′i(y) if x = i·y, i ∈ pos(t′′), y ∈ pos(t′i)

ρ′ is a run on t′ since it is composed of runs ρ′i from the subtrees and at the root
it satisfies the transition (ρ′(ε),a(ε),b(ε),L) ∈ δ. κ′ is a correct certificate, since
the κi’s are correct certificates for all the subtrees, and κ verifies the inductive and
valid conditions at the root. The description of any data value d at the root was not
altered since we only applied Proposition 4.10 and the inductive hypothesis that
preserve the descriptions. Finally, we can see that V accepts t′ since it accepts
each of its subtrees, and also has the property of the root, since no descriptions of
data values were modified.

4.2.2 Disjoint values. We introduce a property concerning the data values of
the tree. The idea is that given two disjoint subtrees t|x, t|y with x 6� y, y 6� x, the
only data values they can share, if any, are those of the certificates of their roots
κ(x), κ(y), or those of some of their children κ(x·i), κ(y·j). Remember that these
last ones constitute all the witness data that are necessary to verify the profile at
x and y. All other data values can be assumed to occur in only one of the two
subtrees. Here we show that for every nonempty DD automaton there is always a
tree that can be certified in such a way that this property holds. Next we formalize
the disjoint values property, which will be an essential property in order to prove
our main decidability result of Theorem 4.1.

Definition 4.14. Let t = a ⊗ d be a data tree recognized by a DD automaton
(R ,V ). Let κ be a correct certificate. We say that it has the disjoint values
property if, for every pair of incomparable positions x, y ∈ pos(a⊗ d),

data(t|x) ∩ data(t|y) ⊆ κ̂(x) ∩ κ̂(y) .

We show here that we can always assume the model to have the disjoint values
property. The idea is that once we have a correct certificate κ over a data tree t,
we know that at any inner node x ∈ pos(t), all the important data values to verify
d-profile(t|x) shared between subtrees {t|x·i | x·i ∈ pos}, are those contained in the
certificates of the children κ(x·i) or κ(x). That is, for every x, the only necessary
data values to verify its profile (or an ancestor’s profile) is in κ̂(x). We can then
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ensure that these are the only data values that may be shared by any two t|x·i,
t|x·j .

We now state the important proposition of this section.

Proposition 4.15 (Disjointness). Given

—a data tree t with a correct certificate κ, and x ∈ pos(t),

—a data value dx ∈ data(t|x) \ κ̂(x), d′x 6∈ data(t),

—the bijective function f : D→ D such that f(d) = d for all d ∈ data(t)\{dx} and
f(dx) = d′x,

—the data tree t′ with pos(t′) = pos(t) and a certificate κ′, defined as follows.

t′(y) =

{
(a(y), (f ◦ d)(y)) if y � x
t(y) otherwise

κ′(y) =

{
(f ◦ κ)(y) if y � x
κ(y) otherwise

Then, for every position y ∈ pos(t), d-profile(t|y) = d-profile(t′|y), and κ′ is a
correct certificate for t′.

The following trivial lemma will be useful in the sequel.

Lemma 4.16. Given a data tree t, I, I ′ ∈ Inters, and x, y ∈ pos(t), x � y, such

that for every (A , q) ∈ I there is (A , q′) ∈ I ′ such that q
A−→
x,y

q′, we have that

[[I ′]]t|y·i ⊆ [[I]]t|x for every i.

The proof of this Lemma can be found in the online appendix.

Proof of Proposition 4.15. First, suppose that y is such that

(1) y � x, or

(2) x 6� y 6� x.

Then, κ′|y is a correct certificate for t′|y. This is because in the case (2), t|y = t′|y
and κ|y = κ′|y, and in the case (1), t′|y is the result of applying the data bijection
f to t|y, and κ′|y = f ◦ κ|y.

Suppose then that y ≺ x. We show that for any k ≤ V,

(a) if |[[I]]t|y | ≥ k, then there are k distinct data values d1, . . . , dk ∈ [[I]]t|y ∩ [[I]]t
′|y ,

and

(b) if |[[I]]t
′|y | ≥ k, then there are k distinct data values d1, . . . , dk ∈ [[I]]t|y ∩ [[I]]t

′|y .

Note that (a) and (b) imply that the profiles of y are the same in t and t′.
For (a), suppose |[[I]]t|y | ≥ k. By correctness of κ there are k distinct data

values d1, . . . , dk ∈ [[I]]t|y and k distinct positions y·i1, . . . , y·ik ∈ pos(t) such that
there are k downward paths starting at y·i1, . . . , y·ik with respective certificates
d1, . . . , dk. By the choice of dx, if dx ∈ {d1, . . . , dk}, it cannot be that any witness
position of dx ∈ [[I]]t|y lies within t|x, as it would mean that dx ∈ κ̂(x). Thus,
d1, . . . , dk ∈ [[I]]t

′|y .
For (b), assume there are k distinct data values d1, . . . , dk ∈ [[I]]t

′|y . If none of
these is d′x, then the certificate κ (which is the same as κ′ for these values) shows the
paths to witness these data values in t|y and then d1, . . . , dk ∈ [[I]]t|y . If d′x ∈ [[I]]t

′|y ,

as d′x only appears in t|x, there must be an intersection I ′ such that d′x ∈ [[I ′]]t
′|x ,
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and for every (A , q) ∈ I there is (A , q′) ∈ I ′ with q
A−→
y,x′

q′, for x = x′·i. Hence,

f−1(d′x) = dx ∈ [[I ′]]t|x . Since dx 6∈ κ̂(x) by hypothesis, this means (by correctness
of κ) that dx is not in any ‘small’ intersection, and thus |[[I ′]]t|x | > V, which, by

Lemma 4.16, implies that |[[I]]t|y | > V. Since for all other data values d′x 6= d ∈ [[I]]t
′
y

we have that d ∈ [[I]]t|y , there must be k data values d1, . . . , dk ∈ [[I]]t|y ∩ [[I]]t
′|y .

It follows that the certificate κ′ is also correct for all positions y of t′, since all
the intersections I with |[[I]]t|y | ≤ V coincide in t and t′.

By applying repeatedly Proposition 4.15 we obtain the following result.

Corollary 4.17. For any data tree t = b ⊗ d with correct certificate κ, there
exists another data tree t′ = b ⊗ d′ with correct certificate κ′ such that for every
position x ∈ pos(t), d-profile(t|x) = d-profile(t′|x) and t′ has the disjoint values
property.

Putting together Proposition 4.12 with Corollary 4.17 we hence verify Theo-
rem 4.8 which was the objective of the current Section 4.2.

Now we have all the main ingredients to state the horizontal pumping argument.
In the next section we show that every E -DD automaton accepts a data tree whose
width is bounded by a fixed function on the size of the automaton, or it does not
accept any data tree at all.

4.3 Horizontal pumping

We first bound, for any x, the size of the set of children Cx necessary for any correct
certificate.

Lemma 4.18. For every correct certificate on a data tree t and every position
x ∈ pos(t) there exists a subset Cx of children of x that is valid and inductive with
respect to the certificate, and |Cx| ≤ L, with L = (K · N)R · p(V,R,K,N) for some
fixed polynomial p.

The proof of this Lemma can be found in the online appendix.

Lemma 4.19 (Horizontal pumping). Let

—t be a data tree accepted by a DD automaton (R ,V ),

—(τ, ρ, ρh) be a detailed R -run and κ a correct certificate,

—x ∈ pos(t) and Cx ⊆ {x·1, . . . , x·#children(t, x)} be a valid and inductive subset
of children positions of x,

—x·i, x·(i+ 1), . . . , x·(i+ j) be a set of consecutive siblings with the following prop-
erties:
—ρh(x·i) = ρh(x·j),
—none of the positions x·(i+ 1), . . . , x·(i+ j) is in Cx.

Then the data tree t′ resulting from the deletion of the subtrees t|x·(i+1), . . . , t|x·(i+j)

t′ = t ◦ f, f(y) =

{
y if y ∈ pos(t) and ∀t : y 6� x·(i+ t)

x·(i+ t)·z if x·(i+ j + t)·z ∈ pos(t)

is also accepted, with the detailed run (τ ◦f, ρ◦f, ρh ◦f) and correct certificate κ◦f
resulting by the deletion of the positions x·(i+ 1), . . . , x·(i+ j).
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Proof. Let t = a⊗ b⊗ d and l = #children(t, x). The run

ρh(x·1) · · · ρh(x·i)ρh(i+ j + 1) · · · ρh(l)

continues to be an accepting run for the NFA Bx corresponding to τ(x) on the string
ρ(x·1) · · · ρ(x·i)ρ(i+j+1) · · · ρ(l), and hence τ(x) correctly labels the position with a
valid transition. On the other hand, κ continues to be correct since all the necessary
elements of Cx are preserved after the pruning.

Corollary 4.20. If there exists a data tree recognized by a DD (R ,V ) with a
correct certificate, then there also exists a tree with bounded width which is also rec-
ognized by (R ,V ) with a correct certificate. The bound is (K ·N)R ·p(V,R,K,N, |Q̃|)
for some polynomial p.

The proof of this corollary can be found in the online appendix.

Remark 4.21. The bound of Corollary 4.20 also holds for trees with the disjoint
values property, since this property is preserved when a subtree is removed.

We just showed how we can bound the width of a tree with a correct certificate.
Unfortunately, bounding the height of the tree is not as simple. Here we will need
to make use of the properties showed in Section 4.2.

If a run is such that it can be decorated with a correct certificate that has the
disjoint values property, we can show that the acceptance or not of the tree can be
decided by inspecting only some local conditions between every inner node and its
children. This will be the object of the next section, where we will prove that these
local properties can be tested in 2ExpTime.

4.4 The emptiness algorithm

In this section we show how to label each node of the tree with some finite infor-
mation (that we call tree configuration). We do this in such a way that testing
whether a data tree is accepted or not by a DD automaton amounts to verifying a
local property between a node’s configuration and the configurations of its children,
for every node of the tree. The configuration depends solely on the certificate of the
root and its children, and on the state of the run of the transducer. There is a dou-
bly exponential number in the size of the automaton of such configurations. This
fact, together with the bounded width of the tree we showed in Corollary 4.20, leads
to a decision procedure to test for emptiness. The algorithm runs in 2ExpTime
considering R as a parameter, or ExpTime if R is taken as a constant.

By Theorem 4.8, we assume for the rest of this section that we are always working
with a data tree t equipped with: an accepting run ρ of R on t, and a correct
certificate κ on t, under the disjoint values property.

In the next section we define the configurations that we associate to each node.
We will show an algorithm to test if there is a tree with an accepting configuration
at the root. This algorithm heavily relies on the fact that the tree is ranked,
given by Corollary 4.20. The correctness of this algorithm will be a consequence
of the disjoint values property and the admisibility of correct certificates shown in
Section 4.2.
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Configurations

Next, we define a configuration for a data tree. The idea is that each position x of
a data tree t is associated with the configuration for t|x. Let t = a ⊗ b ⊗ d. We
describe what a configuration looks like for a A tree configuration contains the
state of the transducer’s run, the data value of the root, the root’s certificate, the
children’s certificates, and the description of all the data values of the certificates it
contains. In the following definition remember that κ̂(x) denotes the set consisting
of κ(x) and all κ(x′) for x′ a children of x, and that ⇀ defines partial functions.

TConfigs = Q̇× D× D× ℘≤W(D)× (D⇀ ℘(Aut×Q))

tconfig(t, ρ, κ) =
(
ρ(ε), d(ε), κ(ε), κ̂(ε), {d 7→ desct(d) | d ∈ κ̂(ε)}

)
Although the configurations contain data values, it is not important to know the

concrete data values. We are only interested in the classes of equivalence modulo
equality contained in the configuration. This is sensible, since the model of au-
tomata presented can only test for data equality or inequality. Later on, we will
see that this means that we can substitute D with a finite alphabet.

The objective is to prove that if we are given a tree with a run and certificate,
we can deduce the configuration of the root by inspecting only the configurations
of the immediate subtrees. And vice versa, if we are given a forest of trees with
their respective runs and configurations, and a configuration that is compatible
with them (in a sense that will be described below), we can then build a witness
data tree with the configuration in question.

Given a DD automaton (R ,V ), what conditions on the configurations do we
need to check? To abstract these conditions we define an entailment relation that
checks whether the root configuration can be deduced from the configurations of
the children

` ⊆ (TConfigs)∗ × TConfigs .

We next give the conditions forM ` (q̇0, d0, c0, C0, α0) to hold, with (q̇0, d0, c0, C0, α0)
the configuration of the root and M = (q̇1, d1, c1, C1, α1) · · · (q̇m, dm, cm, Cm, αm)
the configurations of the immediate subtrees.

We define that M ` (q̇0, d0, c0, C0, α0) holds if the following conditions are sat-
isfied. The conditions, although lengthy, are straightforward. They are necessary
and sufficient to have a tree where (q̇0, d0, c0, C0, α0) is the configuration of the root,
and M are the configurations of the children of the root. They can be informally
described as follows: (i) ` is consistent with the run of the transducer; (ii) c0 is a
fresh data value (i.e., a data value that is not in M), or a data value equal to some
ci; (iii) every data value ci is contained in C0; (iv) the ci’s have the validity property
for every intersection; (v) c0 and the ci’s have the inductivity property; (vi) α0 is
obtained from the description at the children configuration αi’s, by applying all
possible transitions from any of the automata; (vii) the root satisfies the verifier’s
formula. In the next definition, we use a function

f : (TConfigs)∗ → (B×D)→ D→ ℘(Aut×Q)

such that f (M)(b, d0)(d) = A if A is the data description of d, deduced from the
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root’s letter and datum (b, d0), and the configurations of the children positions M .

f (M)(b, d0)(d) = {(A , q) | i ∈ [m], d ∈ Ci, (A , q′) ∈ αi(d), (q, b, q′) ∈ A} ∪
{(A , q) | d = d0, (q, b, q

′) ∈ A , q′ ∈ QA
F }

We also use

h : (TConfigs)∗ → (B×D)→ Inters → ℘(D)

where h(M)(b, d0)(d) is the set of all data values in M that satisfy the intersection
I at the root.

h(M)(b, d0)(I) = {d | d ∈ {d0} ∪ C1 ∪ · · · ∪ Cm, I ⊆ f (M)(b, d0)(d)}
The conditions are as follows.

(i) There exists (q̇0, a, b,L) ∈ δ with q̇1 · · · q̇m ∈ L. For the remaining conditions
let us fix f ′ = f (M)(b, d0) and h ′ = h(M)(b, d0).

(ii) Either c0 = ci for some i ∈ [m], or c0 = d0 otherwise.

(iii) C0 = {c0, c1, . . . , cm}.
(iv) For every I ∈ Inters, the validity condition (Definition 4.5) holds,

valid(h ′(I), I, (b, d0, c0),∪i∈[m]{(ci, αi(ci))}) .
(v) The inductive condition (Definition 4.6) holds,

inductive(α0(c0), (b, d0, c0),∪i∈[m]{(ci, αi(ci))}) .
(vi) α0 = {d 7→ f ′(d) | d ∈ C0}.

(vii) {I 7→ |h ′(I)|≤V} |= v(b), where v is the verifier’s mapping, and |= is as defined
in Table I on page 15.

We remark that in the above definition we do not exclude the case where M = ε.
In fact, this case corresponds to the configurations of the leaves.

Correctness of `
We verify that this is indeed enough to have a decision procedure. Below, the
soundness Proposition 4.22 states that, given a sequence of trees with their respec-
tive configurations, for any configuration entailed from these we can find a tree that
witnesses this configuration. On the other hand, the completeness Proposition 4.25
states that for any tree, the configurations of the immediate subtrees entail the
configuration of the tree.

Proposition 4.22 (soundness). Given m data trees with R -runs, correct cer-
tificates and the disjoint values property

t1, ρ1, κ1, . . . , tm, ρm, κm

with ti = ai⊗bi⊗di ∈ Trees(A×B×D) such that ρi is a run for ai⊗bi, V accepts
bi ⊗ di, and

∀i 6= j data(ti) ∩ data(tj) ⊆ κ̂i(ε) ∩ κ̂j(ε) . (2)

If

M = (q̇1, d1, c1, C1, α1) · · · (q̇m, dm, cm, Cm, αm) ` T
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with (q̇i, di, ci, Ci, αi) = tconfig(ti, ρi, κi) for every i, then there exists a tree t0 ∈
Trees(A×B×D) with run ρ0 and correct certificate κ0 with the disjoint values prop-
erty, such that it is accepted by V , and

tconfig(t0, ρ0, κ0) = T.

Before going into the details of the proof, we need to state some necessary lemmas
(4.23, 4.24). Take any tree t0 with root (a, b, d0) and subtrees t1, . . . , tm, such that

either d0 ∈ C1 ∪ · · · ∪ Cm or d0 6∈ ∪i∈[m]data(ti) . (3)

Let us fix f ′ = f (M)(b, d0) and h ′ = h(M)(b, d0).
The proof of the following two Lemmas can be found in the online appendix.

Lemma 4.23. For any d ∈ C1 ∪ · · · ∪ Cm, f ′(d) = desct0(d).

Lemma 4.24. For any intersection I and k ≤ V, |[[I]]t0 | ≥ k iff |h ′(I)| ≥ k.

Proof of Proposition 4.22. We show that there exists (a, b, dcert) ∈ A×B×D
such that the tree with (a, b, dcert) at the root and t1, . . . , tm as immediate subtrees
has a correct certificate κ0 with the disjoint values property, and a R -run ρ0, such
that the configuration of the tree is T .

We first define the run. Let T = (q̇0, d0, dcert, C0, α0). As we remarked before, we
are only interested in the classes of equivalence of T, T1, . . . , Tm modulo renaming
of data values. So that we can always assume that d0 is such that hypothesis (3)
holds: if d0 6∈ C1 ∪ · · · ∪ Cm, we simply assume that d0 is any value not contained
in data(t1) ∪ · · · ∪ data(tm).

By condition (i) of the entailment definition, there is some transition (q̇0, a, b,L)
of R such that ρ1(ε) · · · ρm(ε) ∈ L. Let t0 ∈ Trees(A×B×D), defined by t0(ε) =
(a, b, d0) and t0(i·x) = ti(x) for i ∈ [m]. Hence the run ρ0 defined as ρ0(ε) = q̇0,
ρ0(i·x) = ρi(x) is a valid R -run on t0.

We now show that T is indeed a configuration that corresponds to t0. By con-
dition (ii) either dcert = d0 for some fresh data value (i.e., not appearing in any
subtree, by hypothesis (3)), or dcert = κi(ε) for some i ∈ [m]. In the first case we
trivially have

desct0(d) = {(A , q) | (q, b, q′) ∈ A , q′ ∈ QA
F } = α0(d)

by definition of α0 (condition (vi)) and definition of f ′(dcert). In the second case,
we have by Lemma 4.23 that f ′(dcert) correctly yields the description of dcert at the
root and we verify desct0(dcert) = α0(dcert). By condition (iii) and using the same
reasoning as before, κ1(ε)∪ · · · ∪ κm(ε) = C0 and for all d ∈ C0, α0(d) = desct0(d).
Then, we have that dconfig(t0, ρ0, κ0) = T .

We define the certificate κ0 as κ0(ε) = dcert and κ0(i·x) = κi(x). From hypothesis
(2) and the fact that ti, κi have the disjoint values property for every i ∈ [m], we
deduce that t0, κ0 also has the disjoint values property.

We show that κ0 is a correct certificate for t0. For the validity condition we first
have by Lemma 4.24 that the sets h ′(I) are good approximations6 of [[I]]t0 . This,
together with condition (iv) and Definition 4.5 gives us that κ0 must be valid, while
the inductivity property is a consequence of Definition 4.6 and condition (v).

6They coincide in min([[I]]t0 ,V) elements.
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Finally, since h ′(I) has the same cardinality up to V elements as [[I]]t0 , {I 7→
|h ′|≤V} |= ϕ iff ϕ holds at t0 for any ϕ ∈ Φ used in V . Then, by condition (vii), t0
is accepted by V .

Proposition 4.25 (completeness). Given a data tree t ∈ Trees(A×B×D)
with correct certificate κ, run ρ and the disjoint values property accepted by V ,
then

tconfig(t|1, ρ|1, κ|1) · · · tconfig(t|m, ρ|m, κ|m) ` tconfig(t, ρ, κ)

for m the maximum index such that m ∈ pos(t).

Proof. Let t = a ⊗ b ⊗ d. We verify conditions (i) through (vii). Condition
(i) is trivially true as ρ is a run on t. Condition (ii) holds, since the κ(ε) can be
either equal to d(ε) or equal to some child certificate κ(i) as a consequence of κ
being a correct certificate. Condition (iii) holds because we have all the certificates
from the child configurations. The correctness of the descriptions of condition (vi)
for the data values {κ(1), . . . , κ(m)} is based on the disjoint values property. As
a consequence of this property, we have that for every data value κ(i) and every
j ∈ [m], if κ(i) ∈ data(t|j), then κ(i) ∈ κ̂(j). This means that we have a complete
description of κ(i) for every subtree t|j . For the case of the root’s certificate κ(ε)
we have two cases. If κ(ε) equals some κ(i), then we use the same argument as
before. Otherwise, we use the inductivity of the certificate κ, knowing that by
Definition 4.6 if κ(ε) is in some [[A , q]]t, there must be a path of certificates with
value κ(ε). So, the fact that there are no κ(i) = κ(ε) means that desct(κ(ε)) can
be completely witnessed locally by inspecting only the root. Then, the description
obtained by f ’ contained in tconfig(t, ρ, κ) is correct. Since condition (vi) holds and
b ⊗ d satisfies v(b(ε)), then it verifies condition (vii). Finally, conditions (iv) and
(v) are consequences of the validity and inductivity properties of κ respectively.

Remark 4.26. Observe that Corollary 4.20 with Remark 4.21 gives us a bound
on the width of a recognized tree with a correct run and the disjoint values property.
We can thus restrict ourselves to relations T1 · · ·Tt ` T with t ≤ W from now on.
(Remember that W is the bound on the width of the tree given by Corollary 4.20.)

Also, note that the concrete data values of the configuration are not important
and can be abstracted away, as soon as they allow to test the conditions of the
entailment `. For T, T ′ ∈ TConfigs, let us write T ∼ T ′ if there is a bijection of
data values f : D→ D such that f(T ) = T ′, where f(T ) stands for the replacement
of every datum d by f(d) in T . In every configuration there are at most W +2 data
values (the root’s data value, the root’s certificate, and at most W corresponding to
the certificates of the children). Then, by Remark 4.26, a ‘`’ test involves not more
than W+1 configurations and hence we only need at most (W+1) ·(W+2) different
data values. Let us define TConfigs′ to be TConfigs where instead of having D as
data domain, we have {1, . . . , (W + 1) · (W + 2)}. Let

D′ := {1, . . . , (W + 1) · (W + 2)} (4)

and then let TConfigs′ be defined in terms of the restricted set of data values D′,

TConfigs′ = Q̇× D′ × D′ × ℘≤W(D′)× (D′ ⇀ ℘(Aut×Q)) . (5)

We then have the following obvious lemma.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.



28 · Diego Figueira

Lemma 4.27. For every T, T1, . . . , Tn ∈ TConfigs such that T1 · · ·Tn ` T , there
exist T ′, T ′1, . . . , T

′
n ∈ TConfigs′ with T ∼ T ′ and Ti ∼ T ′i for all i, such that

T ′1 · · ·T ′n ` T ′.

This means that, since we are only interested in the tree configurations that
can be reached by ` modulo isomorphism of data values, we can simply use the
tree configurations of TConfigs′. These are doubly exponential in R, or singly
exponential if R is fixed.

Lemma 4.28. The number of elements in TConfigs′ is exponential in |R | and
|V | if R is a constant, or doubly exponential otherwise.

The proof of this Lemma can be found in the online appendix.
As the first step towards an upper bound, we observe that the ` relation on

TConfigs′ can be checked in polynomial time in Aut,W, |R |.

Lemma 4.29. Given T, T1, . . . , Tn ∈ TConfigs′ with n ≤W, T1 · · ·Tn ` T can be
tested in time p(Aut,W, |R |) for some polynomial p.

We now show an algorithm to test whether a tree configuration can be reached
by the entailment relation `.

Theorem 4.30. The emptiness problem for DD automata is in 2ExpTime. It
can be tested in time

(Aut, |R | · V · R · K · N)p(|Q̃|,V,R)·r(K·N)
s(R)

for p, r and s polynomials.

Proof. We consider a standard reachability algorithm by saturation. We start
with an initial empty set of configurations C0 = ∅, and we iterate to make it grow to
entailed configurations until, after at most |TConfigs′| iterations, the set stabilizes.
We then test if some of the reachable tree configurations contains a final state.

The set of initial configurations is C0 = ∅. At iteration i + 1, for every possible
T0 ∈ TConfigs′ we test the following conditions

—T0 6∈ Ci
—There exists a (possibly empty) sequence T1, . . . , Tt with t ≤W such that

—T1, . . . , Tt ∈ Ci
—T1, . . . , Tt ` T0

and we define Ci+1 := Ci ∪C ′, for C ′ the set of all configurations T0 satisfying the
above conditions. If C ′ is empty, we stop and return the subset Ci of TConfigs′ of
(`)-reachable configurations.

This algorithm clearly gives as a result the set of configurations of all the accepted
trees. For every iteration we might need to perform |TConfigs′|W+1 tests for the `
conditions, each one demanding p(Aut,W, |R |) for a polynomial p by Lemma 4.29.
Finally, the loop can only be executed |TConfigs′| times. We then have that the
total time consumed is

|TConfigs′|W+2 · p(Aut,W, |R |) .
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By the inequation (7) of Lemma 4.28, and since W is exponential only in R by (6),
we have that the emptiness problem is bounded by

(Aut · |R | · V · R · K · N)p(|Q̃|,V,R)·r(K·N)s(R)

for p, r, s polynomials, and we hence have a 2ExpTime decision procedure. We
just proved that the problem of whether a DD automaton accepts a tree t with a
correct certificate with the disjoint values properties, can be tested in 2ExpTime.
Then, by Theorem 4.8 the result follows.

Note that the theorem above implies the Main Theorem 4.1. From the previous
proof, we have that the complexity is doubly exponential only in R.

Corollary 4.31. If R is fixed, emptiness of DD automata is in ExpTime. It
can be tested in time bounded by

(Aut · |R | · V · K · N)p(|Q̃|,V,K,N)

for some polynomial p.

Note that the height of a ` derivation is directly related to the height of the
tree. Hence, for trees with a fixed height, we can take advantage of this fact by
performing an on-the-fly algorithm.

Definition 4.32. We define the height-h emptiness problem as follows.

Height-h emptiness problem
Input: A DD automaton (R ,V ) and a number h ∈ N.

Output: Is there a data tree t of height at most h
such that t is accepted by (R ,V )?

For the next theorem let us assume that h is coded in unary.

Theorem 4.33. If R is fixed, the height-h emptiness problem of DD automata
is in PSpace.

The proof of this Theorem can be found in the online appendix.

Remark 4.34. If sp(`) is the space needed to check T1 · · ·Tn ` T , n ≤ W, then
the algorithm of Theorem 4.33 uses an amount of space bounded by

sp(`) + p(h, log(|Q̇|), |Q̃|,K,N,V)

for some polynomial p.

The purpose of the remark above for discriminating the space needed to perform
the entailment condition sp(`) will become clear in Section 6.2.

5. XPATH

Here we introduce the query language XPath adapted to data trees, though orig-
inally it is a language for xml documents. In Section 6.3 we will see that the
satisfiability problem on data trees is equivalent to the satisfiability problem on
xml documents. We work with a simplification of XPath, stripped of its syntactic
sugar. We consider fragments of XPath that correspond to the navigational part of
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[[↓]]t = {(x, x·i) | x·i ∈ pos(t)} [[α∗]]t = the reflexive transitive closure of [[α]]t

[[ε]]t = {(x, x) | x ∈ pos(t)} [[αβ]]t = {(x, z) | ∃y.

[[α ∪ β]]t = [[α]]t ∪ [[β]]t (x, y) ∈ [[α]]t, (y, z) ∈ [[β]]t}

[[α[ϕ]]]t = {(x, y) ∈ [[α]]t | y ∈ [[ϕ]]t} [[[ϕ]α]]t = {(x, y) ∈ [[α]]t | x ∈ [[ϕ]]t}

[[a]]t = {x ∈ pos(t) | a(x) = a} [[〈α〉]]t = {x ∈ pos(t) | ∃y.(x, y) ∈ [[α]]t}

[[¬ϕ]]t = pos(t) \ [[ϕ]]t [[ϕ ∧ ψ]]t = [[ϕ]]t ∩ [[ψ]]t

[[〈α=β〉]]t = {x ∈ pos(t) | ∃y, z.(x, y) ∈ [[α]]t, [[〈α 6=β〉]]t = {x ∈ pos(t) | ∃y, z.(x, y) ∈ [[α]]t,

(x, z) ∈ [[β]]t,d(y) = d(z)} (x, z) ∈ [[β]]t,d(y) 6= d(z)}

Table II. Semantics of XPath for a data tree t = a⊗ d.

XPath 1.0 with data equality and inequality. Let us give the formal definition of this
logic. XPath is a two-sorted language, with path expressions (that we write α, β, γ)
and node expressions (ϕ,ψ, η). The fragment XPath(O,=), with O ⊆ {↓, ↓∗} is
defined by mutual recursion as follows:

α, β ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β o ∈ O ∪ {ε} ,
ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉 a ∈ A,

where A is a finite alphabet. A formula of XPath(O,=) is either a node expression
or a path expression of the logic. XPath(O) is the fragment XPath(O,=) without
the node expressions of the form 〈α = β〉 or 〈α 6= β〉.

There have been efforts to extend this navigational core of XPath in order to
have the full expressivity of FO or MSO —for example by adding a least fix-point
operator (cf. [ten Cate 2006, Sect. 4.2])— but these logics generally lack clarity
and simplicity. However, a form of recursion can be added by means of the Kleene
star, which allows the formation of the transitive closure of any path expression.
Although in general this is not enough to already capture MSO —as shown by ten
Cate and Segoufin [2008], it does give an intuitive language with counting ability.
By regXPath(O,=) we refer to the language where path expressions are extended

α, β ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β | α∗ o ∈ O
by allowing the Kleene star on any path expression. In terms of expressivity, we
have that XPath(↓∗,=) ( XPath(↓∗, ↓,=) ( regXPath(↓,=) = regXPath(↓∗, ↓,=).
For example, in regXPath(↓,=) we can express that the tree has a branch of even
length. This is a property that does not depend on the data values, and that cannot
be expressed in XPath(↓∗, ↓) nor XPath(↓∗, ↓,=).

We formally define the semantics of XPath in Table II. As an example, if t is the
data tree depicted by Figure 1 on page 5,

[[〈↓∗[ b ∧ 〈↓ [b] 6=↓ [b]〉 ]〉]]t = {ε, 1, 12}.
Hereinafter, we write t |= ϕ to denote [[ϕ]]t 6= ∅. In this case we say that t

satisfies ϕ. We state the problem we will address, given a fragment P of XPath.

SAT-P Satisfiability problem for P
Input: ϕ ∈P.

Output: Is there a tree t such that t |= ϕ ?
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As we are working with downward-looking fragments of XPath, this problem is
equivalent to testing if there is a tree in which the formula ϕ is satisfied at the root.
Moreover, we can restrict ourselves to the case where ϕ is a node expression, since
[[α]] 6= ∅ iff [[〈α〉]] 6= ∅. We remind the reader that although we state the problem in
terms of data trees, all our results hold on the class of all xml documents. Indeed,
this is a consequence of considering an xml document as a data tree where the
attributes are at leaf positions. This issue will be explained in detail in Section 6.3.

6. THE SATISFIABILITY PROBLEM

The first part of this section is devoted to the proof of decidability of the satis-
fiability problem for regXPath(↓,=), the language with the child relation and the
Kleene star over path expressions. In later subsections we consider the satisfiability
problem of several fragments of this logic, with or without data tests.

6.1 Regular-downward XPath

The proof of satisfiability for regXPath(↓,=) is by reduction to the emptiness prob-
lem of DD automata. Before embarking on the reduction, we need to fix some
standard terminology.

Definition 6.1. A subformula of ϕ is a substring of ϕ that is a formula. We
say that a set S of formulæ is closed under subformulæ if: for every ϕ ∈ S
and for every subformula ψ of ϕ, we have that ψ ∈ S. S is closed under simple
negations if, for every ϕ ∈ S it holds ¬ϕ ∈ S unless ϕ is of the form ¬ψ. We
denote the minimal superset of S closed under subformulæ and simple negations
by S¬.

A locally consistent set over S is a maximal subset of H ⊆ S that satisfies the
following conditions:

—For all ¬ϕ ∈ S: ¬ϕ ∈ H if and only if ϕ 6∈ H.

—For all ϕ ∧ ψ ∈ S: ϕ ∈ H and ψ ∈ H if and only if ϕ ∧ ψ ∈ H.

—For all ϕ ∨ ψ ∈ S: ϕ ∈ H or ψ ∈ H if and only if ϕ ∨ ψ ∈ H.

For the rest of the section, we consider the parameters of the DD automata (K,
N, R, V, |Q̇|, |Q̃|, |R |, Aut, |V |) as defined in Section 4.

Theorem 6.2. Given a formula η ∈ regXPath(↓,=), a DD automaton (R ,V )
can be effectively built, such that for any data tree t: t |= η iff (R ,V ) accepts t.

Proof. Let η be a formula of regXPath(↓,=). We build the DD automaton
(R ,V ), where R tags each node with those sub-node expressions of η that hold at
each node, and V checks that all the data and path expressions are verified.

Let nsub(η) = {γ | γ a node expression in sub(η)}, where sub(η) is the set of
subformulæ of η. Let B be the set of all locally consistent sets over {η}¬. Let us
build R in such a way that at each step it chooses nondeterministically one element
from B consistent with the current label and outputs it. That is, if a ∈ A is the
letter of the current position then it outputs any element b ∈ B such that ¬a 6∈ b.7
Note that the transducer only needs one (final) state (i.e., Q̇ = {q̇}) to reflect this

7Note that if a 6∈ sub(η), then ¬a 6∈ b and a 6∈ b for all b ∈ B.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.



32 · Diego Figueira

behavior. Further, the only regular language used in all its transitions is {q̇}∗. We
can represent {q̇}∗ with a NFA with a singleton set of states Q̃.

For every path expression α in sub(η), let Aα be a NFA over the alphabet B
that recognizes α. For example, if α = [ϕ] ↓ [ψ], then Aα recognizes {b b′ | b, b′ ∈
B, ϕ ∈ b, ψ ∈ b′}. It can be built in polynomial time in |α| and |B| (but note
that |B| is exponential in |η|). We define the verifier V to contain the set Aut =
{Aα | α path expression of sub(η)} of automata. The mapping v is defined, for
every element b ∈ B, as the formula that tests all the path formulæ in b.

v(b) =
∧

(¬)〈α�β〉∈b
�∈{=, 6=}

(¬)∃v, v′ .
(
v � v′ ∧Dα(v) ∧Dβ(v′)

)
∧

∧
(¬)〈α〉∈b

(¬)∃v . Dα(v)

Intuitively, the only purpose of the transducer R is to guess which subformulæ
of η are true and which are false. The real work is done by the verifier V , checking
that every formula was correctly guessed.

Suppose that t = a⊗ b⊗ d is accepted by (R ,V ), i.e., a⊗ b ∈ R , b⊗ d ∈ V .
For every position x ∈ pos(t) and subformula ψ ∈ sub(η), we show that ψ ∈ b(x) if
and only if x ∈ [[ψ]]a⊗d. We proceed by induction on the size of ψ. The base case
is when ψ is a test for a label. This is immediate by the definition of R , which
preserves the label: a(x) ∈ b(x) if a(x) ∈ sub(η). Suppose now that ψ = 〈α � β〉
with � ∈ {=, 6=}. By definition of v(b(x)), V verifies that there are data values
d � d′ such that d ∈ [[Aα]]b⊗d|x and d′ ∈ [[Aβ ]]b⊗d|x . This means that there is a
path that starts at x and ends at some position x·y that satisfies α, in the sense
that whenever a node expression ξ has to hold in a position x·x′ (where x′ � y),
Aα verifies that ξ ∈ b(x·x′). By inductive hypothesis, we obtain that x′ ∈ [[ξ]]a⊗d.
Hence, (x, x·y) ∈ [[α]]a⊗d, where d = d(x·y). Applying the same reasoning for β and
d′, we obtain that x ∈ [[〈α�β〉]]a⊗d. The case where ψ = 〈α〉 is only easier. Finally,
if ψ is a boolean combination, we simply need to apply the inductive hypothesis
and the rules of locally consistent sets.

Suppose now that t |= η for some data tree t = a ⊗ d. We show that a ⊗ d is
accepted by the automaton that results from the translation above. Let b(x) =
{ψ ∈ {η}¬ | x ∈ [[ψ]]t} for every x ∈ pos(t). It is easy to check that b(x) is a
locally consistent set and hence that b(x) ∈ B. Note that a ⊗ b is accepted by
the transducer R since ¬a(x) 6∈ b(x). The verifier accepts b ⊗ d since every test
performed at a position x corresponds basically to testing b(x) = {ψ ∈ {η}¬ |
x ∈ [[ψ]]t} by using the labels of the descendant positions. For every ψ ∈ {η}¬ the
following can be shown by induction on the size of ψ. If ψ ∈ b(x) (in other words,
if x ∈ [[ψ]]t), and ψ is of the form (¬)〈α � β〉 or (¬)〈α〉, then the formula of the
verifier ψ′ is true in t|x, where ψ′ is the translation of ψ according to v(b). This
proves that t is accepted by (R ,V ).

The result above already gives us a decidability procedure for the satisfiability
problem. Let us analyse its upper bound.

Corollary 6.3. The translation of Theorem 6.2 yields an automaton that uses
at most R = 2 relations per existential clause and at most V = 2 variables. It can
be built in exponential time in η such that K + N ≤ p(|η|) for some polynomial p.
The sets of states Q̇ and Q̃ have only one state.
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The proof for the Corollary can be found in the online appendix.
From Theorem 6.2 and Corollary 6.3 we conclude that the satisfiability problem

for the full fragment is in ExpTime.

Theorem 6.4 (main result). SAT-regXPath(↓,=) is in ExpTime.

Proof. Given a formula η ∈ regXPath(↓,=) we build, in exponential time, a E -
DD automaton (R ,V ) as in Theorem 6.2. As remarked in Corollary 6.3, R is such
that the set of states Q̇ and Q̃ are fixed. V is such that K and N are polynomial in
|η|, R = 2, and V = 2.

We run the emptiness algorithm of Theorem 4.30 on (R ,V ). Since R is fixed, by
Corollary 4.31, the time consumed by this algorithm is bounded by

(Aut · |R | · V · K · N)p(|Q̃|,V,K,N)

for some polynomial p. Notice that all the variables in the exponent, namely
|Q̃|,V,K,N, are bounded by a polynomial in |η|. The remaining variables can
be at most exponential in |η|. Hence, we have an exponential time algorithm for
testing the satisfiability of a formula η ∈ regXPath(↓,=).

Lower bound

We next prove the ExpTime-hardness of satisfiability for XPath(↓∗,=). Remark-
ably, this logic cannot express a one step down in the tree as it does not possess
the ↓ axis, and this will be the major obstacle in the coding.

Theorem 6.5. SAT-XPath(↓∗,=) is ExpTime-hard.

Proof. The proof is by reduction from the two-player corridor tiling game. An
instance of this game consists of a set T of tiles T = {T1, . . . , Ts}, a special winning
tile Ts, the sequence of initial tiles {T 0

1 , . . . , T
0
n} ⊆ T , and the horizontal and vertical

tiling relations H,V ⊆ T × T . The game is played on an n × N board where the
initial configuration of the first row is given by T 0

1 · · ·T 0
n . At any moment during

the game any pair of horizontally consecutive tiles must be in the relation H and
every pair of vertically consecutive tiles in the relation V . The game is played
by two players: Abelard and Eloise. Each player takes turn in placing a tile of
his or her choice, filling the board from left to right, from bottom to top, always
respecting the horizontal and vertical constraints H and V . Eloise is the first to
play, and she wins if during the game the winning tile Ts is placed on the board,
or if Abelard cannot place any tile. Otherwise, if the game continues indefinitely
or if Eloise cannot place any tile, the game is won by Abelard . A partial game is a
game that may not have finished. We assume that the tile Ts can only appear as
the last placed element in the board (and in this case the game is finished). It is
known that deciding whether Eloise has a winning strategy is ExpTime-complete.

Abstract representation of a winning strategy. It is easy to see that in this game
Eloise has a winning strategy if, and only if, she has a strategy to win before the
row sn of the board is reached (s is the number of tiles). (Otherwise, there would
be a repeated configuration in two different rows, and the game could be shrunk
to one with less than sn rows.) Hence, we represent a partial game as a string of
length at most sn · n, containing the plays on the board from left to right, bottom
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to top, respecting the constraints H and V . We represent a winning strategy for
Eloise as a tree of nodes labeled with tiles such that

—the root contains T 0
1 ,

—every node at even depth (e.g., the root) contains as children every tile T such
that the path of tiles (from the root to the current node) appended with T is a
partial game,

—every node at odd depth with a tile T 6= Ts contains at least one children,

—all the maximal paths of the tree represent winning games for Eloise.

Concrete representation of a winning strategy. We must now produce a property
of XPath(↓∗,=) such that any tree that satisfies it represents a winning strategy
for Eloise. We use the coding of a winning strategy as presented before, extended
with some extra nodes and labels, which are necessary to make sure that every path
contains at most n · sn tiles, and that the nodes verify the H and V restrictions.
For simplicity, we assume that n is an even number, and hence that all positions
in odd columns are played by Eloise and the others by Abelard . (A similar coding
strategy can be used when n is odd.)

Our alphabet consists of

—the symbols I1 . . . In that indicate the current column of the corridor,

—the symbols b0 . . . bm where m = d(n+ 1) · log(s)e that act as bits to count from
0 to sn (it is enough that they count at least up to sn),

—the symbols T1 . . . Ts to code the tile placed at each play,

—a symbol # to separate rows, and an extra symbol $ whose role will be explained
later.

Inside a path, each block of nodes between two consecutive occurrences of #
codes the evolution of the game for a particular row. Each node labeled Ii has a
tile associated, coded as a descendant node with the same data value containing
some label Tj as label. For example, in Figure 5, the first column I1 of the current
row is associated to the tile T3, because 〈T3, 1〉 is a descendant of 〈I1, 1〉 with the
same data value. Similarly, each occurrence of # is associated to a number, which
is the number of the current row. This number is coded by the bi elements with
the same data value. In the example, 〈#, 0〉 is associated to the bits b0 and b2 that
give the binary number 101.

Finally, the symbol $ is used to delimit the region where the next element of the
coding must appear, this will be our way of thinking the next step of the coding.
This is to move from one position of the board to the next one, from the last position
to the # delimiter, and from the # to the first position of the next row. Intuitively,
between an element Ii, i < n, and the element $ with the same data value, only
Ii+1 may appear. (There may be, however, more than one node with label Ii before
the appearance of Ii+1, or more than one node Ii+1. This corresponds o the fact
that we have a reflexive-transitive relation ↓∗.) This mechanism of coding a very
relaxed ‘one step’ is the building block of our coding. The idea is that since the
logic lacks the ↓ axis, we need to restrict the appearance of the next move of the
game to a limited fragment of the tree. By means of this element $, we can state,
for example, that whenever we are in a I2 element, then in this restricted portion I3
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Fig. 5. Part of the model coding all the plays of row 5, which is between the #-element associated

to 5 (101 in binary), and the element # with number 6 (110).

must appear with 〈ε = ↓∗[I3]↓∗[$]〉. In a similar way we can demand that there is
a prefix of I2 elements, after which all elements have label I3, until the occurrence
of the label $, as we will see later.

In Figure 5 we show an example of a possible extract of the tree between the #
associated to the number 5 until the next # associated to the number 6. The coding
forces the tree to have branching as it contains all possible answers of Abelard at
even positions.

Properties of the tree coding a winning strategy. Since the properties expressed
by our logic cannot avoid having repeated consecutives labels along a path, the
coding will handle groups of nodes with the same label. Let us call an a-group to
a maximal connected segment of a path that has the label a. The fact that there
could be a sequence of elements with equal label does not cause any problem to the
coding. In some sense it is redundant information in the coding.

Following the intuition given before, we spell out the concrete properties of the
data tree that encodes a winning strategy for Eloise.

(1) For every i, we demand that there are no data values shared by different Ii-
groups along a path. Likewise for all Ti and #-groups.

(2) The nodes labeled by $ are leaves, in the sense that no other symbol may appear
as descendant.

(3) Every Ii has its corresponding $, i.e., it has a descendant labeled $ with the
same data value.

(4) Every Ii has a next element, unless it contains the winning tile. That is, there
is a Ii+1 between Ii and its corresponding $ if i < n (and similarly, a # after
I1, and a I1 after #).

(5) Each Ii has a unique tile: there is a descendant with equal data value and a
tile T as label, and all descendants with equal data value carrying a tile, have
the tile T .

(6) Every Ii inside a step along a branch must have the same tile.
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Fig. 6. Every legal move Tk of Abelard is played.

Fig. 7. Repeated elements in the coding.

(7) Between Ii (i < n) and its corresponding $ there can only appear an Ii+1-group.
(The same applies for the labels In and #, and for # and I1.)

(8) The tiles match horizontally: the tiles corresponding to any two consecutive
nodes labeled Ii and Ii+1 are in the H relation. Likewise, the tiles match
vertically: the tiles corresponding to any two nodes labeled Ii separated by
exactly one #-group are in the V relation.

(9) All the elements corresponding to the first row have tiles T 0
1 · · ·T 0

n .

(10) Every legal move of Abelard is taken into account. For every node Ii with i
being odd such that there is a tile Tk that can be played in the next position
(according to H, V and the tiles already placed, as in Figure 6), then it must
appear in the next position. Note that this forces a branching in the tree.

(11) The data value of a # element is associated to a counter. The least significant
bit corresponds to b0. A bit 1 at a bit position i is coded as the presence of
a descendant node with the same data value labeled bi. The counter starts in
0, and along a path, each time a #-group appears, the counter increments by
one.

(12) There is no # element that has all the bi bits in 1. Because that would mean
that Eloise was not able to put a Ts tile in less than sn rounds.

As already mentioned, we do not avoid having more than one element before the
$. As shown in Figure 7, there may be consecutive repetitions of the same label
along a path, or subtrees that are duplicated, but this does not spoil the coding.
We are actually forcing properties for all branches and all possible extra elements
that the tree may contain. Any extra element or branching induces more copies of
winning strategies for Eloise.

For every data tree with these properties, one can replace all consecutive ap-
pearances of the same label along a path by only one appearance, and strip off all
the nodes containing labels which are not tiles. This gives us a winning strategy.
Conversely, given a winning strategy for Eloise, we can add data values to the
tree and the necessary nodes to transform it into a data tree that satisfies all the
aforementioned properties.

Enforcing the properties in XPath(↓∗,=). We first define some predicates that we
will use throughout the coding. skσ(ϕ) evaluates ϕ at a node at k-steps (with our way
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Fig. 8. A bitwise increment of the counter.

of coding a step as we have seen before) from the current point of evaluation, given
that the current symbol is σ. For this purpose we first define next(Ii) := Ii+1 (if
i < n), next(In) := # and next(#) := I1. Hence, we define for a ∈ {#, I1, . . . , In},

s0a(ϕ) := a ∧ ϕ sk+1
a (ϕ) := a ∧ 〈ε = ↓∗[sknext(a)(ϕ)]↓∗[$]〉

Similarly, ti checks that the tile of the current node I corresponds to Ti,

ti := 〈ε = ↓∗[Ti]〉

biti checks that the i-bit of the counter’s binary encoding of a #-node is one (1),

biti := 〈ε = ↓∗[bi]〉

and G forces a property to hold at all nodes of the tree.

G(ϕ) := ¬〈↓∗[¬ϕ]〉

We now exhibit the XPath formulæ for each of the properties just seen.

(1) For every Ii: ¬↓∗[Ii ∧ 〈ε = ↓∗[¬Ii]↓∗[Ii]〉]. Likewise for Ti and #.

(2) G($→ ¬〈↓∗[¬$]〉).
(3) For every Ii: G(Ii → 〈ε = ↓∗[$]〉).
(4) G(Ii ∧ ¬ts → s1Ii(>)) ∧ G(#→ s1#(>)).

(5) For every Ii and ` 6= j: G(¬(t` ∧ tj)). For every i: G(Ii →
∨
j tj).

(6) For every i < n and j 6= k, G(Ii → ¬〈ε = ↓∗[Ii+1 ∧ tj ]↓∗[Ii+1 ∧ tk]↓∗[$]〉). (And
a similar condition for # and I1.)

(7) For every i < n and a 6∈ {Ii, Ii+1, $}, G(Ii → ¬〈ε = ↓∗[a]↓∗[$]〉), G(Ii → ¬〈ε =
↓∗[Ii+1]↓∗[Ii]↓∗[$]〉), and G(Ii → ¬〈ε = ↓∗[$]↓∗[Ii ∨ Ii+1]↓∗[$]〉).

(8) The tiles match horizontally: for every k and Ti, Tj such that (Ti, Tj) 6∈ H,
¬〈↓∗[Ik ∧ ti ∧ s1Ik(tj)]〉. The tiles match vertically: for every k and Ti, Tj such

that (Ti, Tj) 6∈ V , ¬〈↓∗[Ik ∧ ti ∧ sn+1
Ik

(tj)]〉.
(9) For all i ∈ [1..n] and tile Tj = T 0

i , si#(tj) must hold at the root.

(10) For every Ti, Tj , Tk such that (Ti, Tk) ∈ V and (Tj , Tk) ∈ H :

¬
〈
↓∗
[
I2` ∧ ti ∧ snI2`

(
I2`−1 ∧ tj ∧ ¬s1I2`−1

(tk)
)〉

(11) It is easy to code that the first # is all-zero. The increment of the counter
between two # is coded as in Figure 8, by G(# ∧ flip(i) → zero<i ∧ turni ∧
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copy>i), where

flip(i) := ¬biti ∧
∧
j<i

bitj zero<i :=
∧
j<i

¬sn+1
# (bitj) turni := ¬sn+1

# (¬biti)

copy>i :=
∧
j>i

(bitj ∧ ¬sn+1
# (¬bitj)) ∨ (¬bitj ∧ ¬sn+1

# (bitj))

(12) G(#→ ¬∧i biti)
This completes the coding. It is easy to see that all the formulæ have polynomial

size on s and n, and that they express the previous properties. Hence, Eloise has
a winning strategy in the two-player corridor tiling game iff the conjunction of the
formulæ just described is satisfiable. Notice that the above reduction does not
use path unions, and this means that even XPath(↓∗,=) stripped of path unions is
ExpTime-hard.

6.2 PSpace fragments

We now turn to some other downward fragments of XPath. We complete the picture
by analysing the complexity of all the possible combinations of downward axes in
the presence or absence of data values tests. We first introduce a basic definition
that we use throughout the section.

Definition 6.6. We say that the logic P has the poly-depth model property
if there exists a polynomial p such that for every formula ϕ ∈P, ϕ is satisfiable if
and only if ϕ is satisfied by a data tree of height at most p(|ϕ|).

We can now prove the following statement that we will later use to show PSpace-
completeness for XPath(↓,=).

Proposition 6.7. Every fragment P of regXPath(↓,=) that has the poly-depth
model property is in PSpace.

The proof of this Proposition can be found in the online appendix.
We use the result above to prove the following proposition, whose proof can be

found in the online appendix.

Proposition 6.8. SAT-XPath(↓,=) is PSpace-complete.

This concludes our analysis of downward fragments of XPath with data tests.
Summing up, we showed that the satisfiability problem for regXPath(↓,=), XPath(↓
, ↓∗,=) and XPath(↓∗,=) is ExpTime-complete, while it is PSpace-complete for
XPath(↓,=). For the sake of completeness, we now turn to downward fragments
where no data tests are available.

Corollary 6.9. SAT-XPath(↓) is PSpace-complete.

Proof. The lower bound by [Benedikt et al. 2008, Theorem 5.1] and the upper
bound by Proposition 6.8.

Proposition 6.10. XPath(↓∗) is PSpace-hard.

The proof goes by reduction from an instance of the QBF (Quantified Boolean
Formula [Garey and Johnson 1979]) validity problem to SAT-XPath(↓∗) and can be
found in the online appendix.
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Fig. 9. The subtree copy property.

Now we focus in finding an upper bound for SAT-XPath(↓∗). We prove that it is
in PSpace by the poly-depth model property. But before doing that, we need to
introduce an important property of this logic. The subtree copy property states
that if a tree satisfies some XPath(↓∗) property at the root, then the tree where
some subtree was copied at a higher position of the tree (as depicted in Figure 9)
also satisfies the property.

Lemma 6.11 (subtree copy). Given a tree t, and given two positions x, y ∈
pos(t) with x ≺ y, consider the last index l such that x·l ∈ pos(t). Let t′ be defined
as follows.

pos(t′) = pos(t) ∪ {x·(l + 1)·z | y·z ∈ pos(t)}

t′(z) =

{
t(z) if z ∈ pos(t)

t(y·w) if z = x·(l + 1)·w
Then, for every w ∈ pos(t) and ϕ ∈ XPath(↓∗), t|w |= ϕ iff t′|w |= ϕ. The shapes
of t and t′ are illustrated in Figure 9.

The proof of this Lemma can be found in the online appendix.
Note that the preceding Lemma 6.11 is a stronger property than that of Propo-

sition 4.9, but this one holds only for XPath(↓∗), a logic with no data tests or ↓
axis. Having stated the subtree copy property, we can now show the following
proposition.

Proposition 6.12. SAT-XPath(↓∗) is in PSpace.

Indeed it can be shown that ϕ ∈ XPath(↓∗) is satisfiable iff it is satisfied by a tree
of height bounded by |ϕ|2. The full proof can be found in the online appendix.

We then have as a corollary from Proposition 6.12 and Proposition 6.10 that
XPath(↓∗) is complete for PSpace.

Theorem 6.13. SAT-XPath(↓∗) is PSpace-complete.

So far we have that, in the presence of data values, the presence of the descendant
axis ↓∗ produces an increase (in the case PSpace 6= ExpTime) in the complexity
from PSpace to ExpTime. However, we argue that it is not the ability to test for
data equality of distant elements what produces this increase in complexity. It is,
as a matter of fact, in the ability to test data values against that of the root in
formulæ like 〈ε = ↓∗[a]〉. We show that if we remove this kind of data tests, the
resulting logic is in PSpace, even though the fragment contains the ↓∗ axis.

Definition 6.14. We denote by XPath6ε(↓∗,=) the fragment of XPath(↓∗,=) where
ε path formulæ are forbidden, and in general where there is no ε-testing on a path
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Fig. 10. Transformation from an xml to a data tree.

(like in [ϕ]↓∗), that is, such that path formulæ are defined

α ::= ↓∗ | α[ϕ] | αβ | α ∪ β .

Proposition 6.15. SAT-XPath6ε(↓∗,=) is PSpace-complete.

The proof of the upper-bound goes by showing the poly-depth model property, and
can be found in the online appendix.

6.3 XML documents vs. data trees

As outlined before, xml documents may have multiple attributes with data values
on each element, while data trees can only have one. Here we will show that
every result we have stated in terms of data trees also holds on the class of xml
documents. Let us consider that the finite set of symbols is partitioned between
the names for attributes and the symbols of the xml elements, Aattr ∪ Aelem.

We define the class of attributes data trees as the trees a ⊗ d where every
position carries one label from Aelem and many data values indexed by Aattr that we
call ‘attributes’, a : P → Aelem, d : P → ℘<∞(Aattr×D)8 for some P ∈ TreesPos.
It follows that any xml document can be seen as an attributes data tree.

Let us consider then the extension of the languages where different attributes
may be compared, where node expressions are defined

ϕ ::= a | ¬ϕ | ϕ ∧ ψ | 〈α〉 | 〈α@attr1� β@attr2〉
where � ∈ {=, 6=}, a ∈ Aelem and attr1, attr2 ∈ Aattr. Let us call this logic
attrXPath. This language with the expected semantics over attributes data trees
can encode any attrXPath request on an xml document.

SAT-attrXPath(↓, ↓∗,=) is ExpTime-easy

As already mentioned, each xml document can be coded in a data tree by adding
one child for each attribute with its corresponding value as in Figure 10. We can
enforce this property with XPath(↓∗, ↓,=), by stating that all the nodes with a
symbol from Aattr are leaves,

ϕstruct = ¬〈 ↓∗[
∨

s∈Aattr

s ∧ 〈↓〉] 〉 .

We can interpret any attrXPath formula as an XPath formula by considering an
extended alphabet A = Aelem ∪ Aattr and replacing every appearance of ‘@attr1’
by ‘↓ [attr1]’. Let us call tr to this translation.

8Note that in this model an attribute may be associated with multiple data values.
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We can then decide the satisfiability of a formula ψ of attrXPath(↓, ↓∗,=) on
attributes data trees by testing the satisfiability of ‘tr(ψ) ∧ ϕstruct’ on data trees.
Since we have that XPath(↓, ↓∗,=) is in ExpTime, we also have an ExpTime de-
cidability procedure for the full downward fragment of attrXPath (as the translation
tr is clearly performed in PTime) even with the Kleene star operator.

SAT-attrXPath(↓∗,=) is ExpTime-hard

On the other hand, any XPath formula on data trees can be thought of an attrXPath
formula that uses at most one attribute. We can then deduce the ExpTime-
hardness result of attrXPath(↓∗,=) from that of XPath(↓∗,=).

SAT-attrXPath(↓,=) is PSpace-complete

For the case of attrXPath(↓,=) we can do the same translation, the only difference
being that for a formula ψ ∈ attrXPath(↓,=) the structure can be forced by

ϕstruct =
∧

0≤n≤d+1

¬〈↓n [
∨

s∈Aattr

s ∧ 〈↓〉]〉

where d is the maximum quantity of nested occurrences of ↓ in ψ. It is easy to
see that this forces the requested property for all the portion of the data tree that
we are interested in. That is, for the whole region that tr(ψ) can access. This is
associated with the poly-depth model property of the logic. We then have that
attrXPath(↓,=) is PSpace-complete.

6.4 In the presence of regular languages

In this section we make some observations on the following problem for L a class
of tree languages and P a fragment of XPath.

SAT-P + L Satisfiability problem for P under L
Input: ϕ ∈P and an automaton representing a language L ∈ L .

Output: Is there a tree t ∈ L such that t |= ϕ ?

By [Figueira 2010a] we know that satisfiability of downward XPath under a reg-
ular language is decidable. However, the problem has a very big complexity. Even
for the fragment containing only the descendant axis, it can be shown that there is
no algorithm that solves the satisfiability problem under a regular language in prim-
itive recursive time or space [Figueira and Segoufin 2009]. However, if the language
to be tested at the siblinghoods is restricted to be extensible, we can translate this
problem to the emptiness problem for DD automata obtaining the following result.

Theorem 6.16. SAT-regXPath(↓,=) + Etree , that is, the satisfiability problem
for regXPath(↓,=) under the class Etree of extensible tree regular languages, is in
ExpTime.

Proof. Let ϕ ∈ regXPath(↓,=) and L ∈ Etree , represented as an E -transducer
RL such that RL(t⊗ t) iff t ∈ L.

We first build the DD automaton (R ,V ) resulting from the translation of ϕ
by Theorem 6.2. We compute the composition R ′ = RL ◦ R such that R (t ⊗
t′) iff RL(t ⊗ t) and R (t ⊗ t′) in polynomial time in R and RL. We then test
the emptiness of (R ′,V ) in exponential time in the number of states |Q̃| of the

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.



42 · Diego Figueira

<!ELEMENT book_list (book*)>
<!ELEMENT book ((author, birthdate?)+, chapter+)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT birthdate (#PCDATA)>
<!ELEMENT chapter (#PCDATA)>

Table III. Example of a DTD under which regXPath(↓,=) is decidable in ExpTime.

automata corresponding to the (extensible) languages from the transitions of R ′.
The resulting reduction is in ExpTime because the same arguments used to show
6.4 can be applied.

The above Theorem 6.16 implies that the satisfiability of regXPath(↓,=) under
certain kind of restrictions is decidable in ExpTime. Note that these restrictions
may be specified as DTD, XML Schema, Relax NG, etc. For example, it would
mean that this logic is decidable under DTD whose every type is defined under
some transitive operator + or ∗. That is, that the definition of every type is in
REG∗ (as defined in Definition 3.7), like in the example of Table III.

7. CONCLUDING REMARKS

In Section 3 we introduced an automata model over data trees. Here we explore
very briefly two natural extensions that could be added to this automaton. Firstly,
the possibility of allowing any alternation free first order formula in the set Φ of
properties that the verifier can test, instead of the restricted kind where no negation
of a relation may occur. Secondly, what happens if we allow constants in Φ.

Negation of relations

The reader may have noticed in Definition 3.2 that the DD automata model does
not allow to have negated appearances of a relation Di under a (positive) existential
quantification. This is not by chance, and in effect we can see that if we allow to
have arbitrary boolean combinations of Di relations we fall into a much harder
emptiness problem. Although the decidability of the resulting model is not clear,
it is possible to show that in the case it is decidable, the emptiness problem cannot
be solved in primitive recursive complexity.

Consider the simple formula ¬(∃x.¬D1(x) ∧ D2(x)), such that A1 recognizes
{b b | b ∈ B} and A2 recognizes {b b b | b ∈ B}. In other words, A1 simply goes
to any child of the root, and A2 goes to any grandchild of the root. This kind
of property intuitively tests that all the data values appearing at depth l + 1 also
appear at depth l. Although we will not enter into detail, it is possible to code a
run of a weak version of a n-counters Minsky machine with increment errors (also
called gainy counter machine, or incrementing counter automaton, cf. [Demri and
Lazić 2009]) by using this kind of property. It is known that the emptiness problem
for these kind of machines is non-primitive recursive [Schnoebelen 2002], and hence
the emptiness problem for this extended automaton cannot be primitive recursive.

Constants

Another simple extension that DD automata may allow to have is the fact of hav-
ing a set of constant data values. This does not change the complexity results.
The results and definitions of Sections 4.1, 4.3, 4.2 remain valid. In Section 4.4
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we modify the tree configurations by keeping explicit track of these constants, by
adding the description of these constants to the data description mapping α at all
configurations, and modifying the conditions of ` accordingly. This implies that
we can verify the satisfiability of regXPath(↓,=) with constants also in ExpTime.

Discussion

We have shown the complexity of various downward fragments of XPath, as sum-
marized in Table IV. The highest complexity class we obtained is ExpTime. In
the presence of data equality tests, is a well-behaved fragment considering that in
the presence of all the axes XPath is undecidable. One important reason for this
is the absence of any sibling axis. Indeed, as soon as any horizontal navigation
is allowed in the logic, the problem becomes non-primitive recursive. However, we
have shown that we can evaluate some restricted fragment of XML Schema or DTD
that cannot limit the quantity of occurrences of nodes of a certain type, but that
can verify that there is a certain structure in the siblings of the tree. For example,
we can express that the children of every node with label book form a sequence of
labels in the language (author (chapter)∗)+ (since it is an extensible language). Also,
by solving the satisfiability problem we are also able to solve the containment and
equivalence problems of node expressions for free, since we work with logics closed
under boolean operators. We leave open the question of whether the inclusion of
path expressions (as binary relations) is also decidable in ExpTime.

We introduced the new class of Downward Data automata that capture all the
expressivity of regXPath(↓,=). This automata model is more expressive than XPath.
It can test properties like, for example, that there are exactly 7 data values with
label book; or that every node labeled book has between 1 and 4 children author with
different data value; or that there is a data value that can be simultaneously accessed
by three different branches, satisfying the path expressions “↓∗[article] ↓ [author]”,
“↓∗[conference]↓ [chair]”, and “↓∗[ scientist∧〈 (↓ [adviser])∗↓ [sex]↓ [female] 〉 ]↓ [name]”.

By the proof of decidability of the DD automata, we conclude that there is a
normal form of the model for downward XPath. If a formula η ∈ regXPath(↓,=) is
satisfiable, then it is satisfiable in a model of exponential height and polynomial
branching width, whose data values are such that only a polynomial number of data
values can be shared between any two disjoint subtrees. This property is reflected
by the fact that the emptiness of the automaton that results from the translation
of a downward XPath formula only depends on a polynomial number of data values
at every position. However, there is no syntactic restriction in the automaton, it
can retrieve and compare any number of data values between them and the root’s
data value at each step of its execution.

It would also be interesting to study if the techniques of this work could be used
to treat the satisfiability problem of monadic datalog programs [Ceri et al. 1989]
extended with equality and inequality of data values.

Finally, a recent result [Figueira 2011] on XPath on data words, suggests that
it is plausible that XPath(↓, ↓∗,→∗, ∗←,=) or even XPath(↓, ↓∗, ↑∗,→∗, ∗←,=) is
decidable in elementary time.

Conjecture 7.1 [Figueira 2011, Conjecture 1]. The satisfiability problem
for XPath(↓, ↓∗,→∗, ∗←,=) is decidable in elementary time.
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↓ ↓∗ = Complexity Details

• PSpace-complete Cor. 6.9

• PSpace-complete Thm. 6.13

• • ExpTime-complete [Marx 2004]

• • PSpace-complete Prop. 6.8

• • ExpTime-complete Thm. 6.4, Thm. 6.5

• • • ExpTime-complete Thm. 6.4, Thm. 6.5

regXPath(↓,=) ExpTime-complete Thm. 6.4, Thm. 6.5

XPath6ε(↓∗,=) PSpace-complete Prop. 6.15

regXPath(↓,=) + Etree ExpTime-complete Thm. 6.16, Thm. 6.5

Table IV. Summary of results. All the bounds also hold in the absence of path unions.

Conjecture 7.2 [Figueira 2011, Conjecture 2]. The satisfiability problem
for XPath(↓, ↓∗, ↑∗,→∗, ∗←,=) is decidable in elementary time.

This would be an extension of the result of the present work, and in contrast with
the fact that XPath(↓, ↓∗,→∗,+←,=) is undecidable and XPath(↓, ↓∗,→+,=) has
non-primitive recursive complexity [Figueira and Segoufin 2009].
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A. MISSING PROOFS

Proof of Proposition 3.5. First observe that the set of properties Φ of any
verifier is closed under conjunction and disjunction, since it is closed under the
operators ∧, ∨.

Suppose we have two DD automata (R 1,V 1) and (R 2,V 2), R i ⊆ Trees(A×Bi),
V i ⊆ Trees(Bi×D). We build the intersection automaton (R ,V ) where R ⊆
Trees(A×(B1×B2)) is a transducer that tags each position with a pair of letters,
such that a⊗b1⊗b2 ∈ R if, and only if, a⊗b1 ∈ R 1 and a⊗b2 ∈ R 2. This can be
done since C is closed under componentwise product, as follows. We define the state
space as Q̇1×Q̇2 and the final states as Q̇1

F ×Q̇2
F . For every transition (q̇1, a, b1,L1)

of R 1 and (q̇2, a, b2,L2) of R 2 we have a transition ((q̇1, q̇2), a, (b1, b2),L1×c L2) in
R .

On the other hand we build V ⊆ Trees((B1×B2)×D) such that b1 ⊗b2 ⊗d ∈ V
iff b1 ⊗ d ∈ V 1 and b2 ⊗ d ∈ V 2. This can be done since Φ is closed under
conjunction.

Proof of Proposition 3.6. Let (R ,V ) with R ⊆ Trees(A×B), V ⊆ Trees(B×D),
where Q̇ is the set of states of R . We build (R c,V c) the complement of (R ,V ). We
define R c ⊆ Trees(A×B′) with B′ = ℘(Z) where Z = Q̇×B×{below ,notyet , here}.
Every node x of the tree t is labeled by a set of tuples (q̇, b, i) ∈ Z describing, for
each of the possible partial runs of R on t|x, whether there is a node that does not
verify a property demanded by V . More precisely, q̇ is the state of the run at the
root, b refers to the output letter of the root, and i ∈ {below ,notyet , here} is to keep
track of whether in the currently described run there is a node falsifying a property
demanded by V . The value notyet denotes that all the nodes in the subtree t|x
for this run verify the properties of V ; below that there is a node different from x
that does not verify the property of V , and here that in the current run x does not
verify the property of V . Formally, R c tags every node x of the tree t with the set
of tuples (q̇, b, i) ∈ Z such that there is a partial run of R on t|x where

—the state of the root is q̇,
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—the output label of the root is b, and

—i = below iff there is a node of t|x different from the root with output label
(q̇′, b′, i′) such that i′ = here.

Further, R c checks that the output label of the root contains only tuples of the
form (q̇, b, i) where either i = below , i = here or q̇ is not final in R . This ensures
that all possible accepting runs of R lead to trees that falsify some demand of V
at some node. Notice that if there is a node different from the root with i′ = here
then i = below , and if there is no node different to the root with i′ = here, then
i may be here or notyet . Also, notice that the state at the leaves has i = here or
i = notyet (i.e., no below).

Assuming we can build R c with the described behavior, we define V c ⊆ Trees(B′×D)
with vc : B′ → Φ its formulæ assignment, as

vc(q̇, b, i) =

{
true if i ∈ {below ,notyet}
¬ v(b) if i = here.

It follows that if a data tree t is accepted by (R c,V c), then any run of R on t
produces an output such that falsifies V at some node, and then t is not accepted
by (R ,V ). In turn, if t is accepted by (R ,V ), there must be an accepting run of R
whose output verifies V . In other words, there must be a tuple (q̇, b,notyet) with
q̇ an accepting state in the root of every output of R applied to t, but this cannot
be since R c does not accept such trees.

Now let us describe with more care how R c is built from R . Let L1, . . . ,Ls
be all the languages from C used in the transitions of R . For every subset S of
these languages consider a language LS that tests that a word belongs to all the
languages of S, and does not belong to any other language. It follows that LS ∈ C ,
by closure under finite intersection and complementation.

Let us define the state space of R c as B′. Given a language L over Q̇ (the state
space of R ), we can build a similar language L′ over B′ that tests that we can pick
one tuple for each element of the word in such a way that when we project the first
component, the word belongs to L. If L is represented as a regular expression, this
boils down to replacing every atomic expression q̇ by a big disjunction of all the
elements of B′ containing a tuple with state q̇. It follows that L′ ∈ C since it is
closed under inverse homomorphisms. Note that we can further check that there
is a word of B′∗ in this language containing a tuple (q̇, b, i) with i = notyet (or
i = below). This is a consequence of having the membership languages for each
tuple with notyet and below .

Then, for every A ⊆ {L1, . . . ,Ls,notyet , below} consider a language LA that tests

—that there is a word over B′ and a tuple for every element such that the projection
on Q̇ is accepted by all languages of S and rejected by all others;

—if notyet ∈ A that there is an element of the word containing a tuple with notyet ;

—and if below ∈ A that there is an element of the word containing a tuple with
below .

Now, R c is built with the set of all rules of the form (B, a,B,LA) where A ⊆
{L1, . . . ,Ls, here, below}, a ∈ A, and B ∈ B′ such that
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for every q̇ ∈ Q̇, b ∈ B and L ∈ A such that (q̇, a, b,L) ∈ δ then either
—below 6∈ A and there is i ∈ {here,notyet} where (q̇, b, i) ∈ B, or
—below ∈ A and (q̇, b, below) ∈ B.

Thus, below means that there was a here in the subtree, and here means that it is
in that precise point that a formula is falsified.

Finally, the accepting states are those whose every tuple with an accepting state
contains no notyet flag.

Proof of Proposition 4.10. We first show (1). Note that t′ is the result of
adding some subtrees t|x·i1 , . . . , t|x·i` , where ` = #children(t′, x)−#children(t, x),
plus some possible reordering of the siblinghood. Let t0, t1, . . . , t` be data trees
such that t0 = t, and tj with j > 0 is the result of adding t|x·ij as a last child
of x in tj−1. Observe that we can apply Proposition 4.9 to each of the pair of
trees (t0, t1), (t1, t2), . . . , (t`−1, t`) obtaining that for every position y ∈ pos(tj)
and j ∈ [`],

desctj |y (d) = desctj−1|
g
j
x(y)

(d)

where gjx : pos(tj)→ pos(tj−1) is the surjective function given by Proposition 4.9.
Then, the function gx = g1x ◦ · · · ◦g`x is surjective onto pos(t), and for every position
y ∈ pos(t`), desct`|y (d) = desct|gx(y)

(d). Now, note that t` and t′ (and equivalently
fx and gx) differ only in the order of the subtrees of position x. Since, by definition,
desc is invariant under reordering of siblings, it follows that (1) holds.

To show (2), first consider any position of the form x·i ∈ pos(t′), and observe
that t′|x·i has a run (ρ◦fx)|x·hx(i). This is a consequence of t′|x·i and t|x·hx(i) being
identical, and the automaton being bottom-up. Secondly, we prove that t′|x has
a run (ρ ◦ fx)|x. This is because ρ(x·hx(1)) · · · ρ(x·hx(n)) ∈ L by hypothesis and
hence (ρ ◦ fx)|x(1) · · · (ρ ◦ fx)|x(n) ∈ L, where n = #children(t′, x). We can then
apply the transition (ρ(x),a(x),b(x),L) obtaining ρ(x) at the root. Finally, since
x has the same state in ρ and ρ ◦ fx, and the trees t and t′ are isomorphic except
for perhaps the subtree rooted on x, it follows that ρ ◦ fx is a run on t′.

Proof of Lemma 4.16. Given (A , q′) ∈ I ′, (A , q) ∈ I as in the Lemma, and
d ∈ [[A , q′]]t|y·i , we show that d ∈ [[A , q]]t|x . Let z be such that d(z) = d and

q′
A−→
y·i,z

qf with qf ∈ QA
F . By hypothesis, q

A−→
x,y

q′. Hence, q
A−→
x,y

q′
A−→
y·i,z

qf , and then

d ∈ [[A , q]]t|x .
Now suppose d ∈ [[I ′]]t|y·i . Since for all (A , q) ∈ I there exists (A , q′) ∈ I ′

as before, with d ∈ [[A , q′]]t|y·i , we can apply the same reasoning, obtaining that
d ∈ [[I]]t|x . Thus, [[I ′]]t|y·i ⊆ [[I]]t|x .

Proof of Lemma 4.18. We show that L := (K·N)R·(V·R)+K·N is a good upper-
bound. This is a direct consequence of the cardinality of Inters and the number of
possible pairs (A , q). To verify the validity condition as in Definition 4.5, for every
I ∈ Inters out of at most (K · N)R, we might need to add up to V · R certificates in
the children to witness I: one for each of the V data values and each (A , q) ∈ I.
On the other hand, to verify the inductivity condition on κ(x), we need at most
one extra child witness for each automaton and state in desct|x(κ(x)), which can
have no more than K · N elements.
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Proof of Corollary 4.20. We show that it can be bounded by

W := (|Q̃| − 1) · (L + 1) which by definition of L

= (|Q̃| − 1) · ((K · N)R · p′(V,R,K,N) + 1)

= (K · N)R · p(V,R,K,N, |Q̃|)
(6)

for some polynomials p, p′. Given a maximal sequence of siblings x·1, . . . , x·l, we
already established in Lemma 4.18 that a valid and inductive subset Cx needs no
more than L elements to preserve the correctness of the certificate. Hence, there
can be at most L + 1 zones of consecutive positions not in Cx, and each one of them
must have at most |Q̃| − 1 elements. Should it have more, then there are at least
two repeating elements with the same horizontal configuration by the pigeonhole
principle, and we can then apply Lemma 4.19 and remove some of the siblings.

Proof of Lemma 4.24. The right-to-left implication is a direct consequence of
the definition of h ′(I). For the left-to-right implication, suppose that |[[I]]t0 | ≥ k.
Take d ∈ [[I]]t0 . We argue that if d appears in some κ̂i(ε), then it is in h ′(I). This
is because all the subtrees ti with d ∈ data(ti) must have d ∈ Ci, as a consequence
of the hypothesis (2). Hence we have a complete description of d at every subtree,
and f ′ yields the correct description of d at the root by Lemma 4.23, which implies
that d ∈ h ′(I) by definition of h .

Suppose on the other hand that d is not in κ̂i(ε) for any i. Since every κi is
correct, this means that d does not appear in any small intersection [[I ′]] of fewer
than V data values. Hence, in particular |[[I]]t0 | ≥ V. By hypothesis (2), we know
that d can appear in at most one tree ti, or at the root. We consider both cases.

If d appears only at the root, it means that d = d0, and for every (A , q) ∈ I there
is q′ ∈ QA

F with (q, b, q′) ∈ A and this is taken into account by the definition of
h ′(I). Hence, d ∈ h ′(I).

If d appears only in ti, this means that there is an intersection I ′ such that
d ∈ [[I ′]]ti and for every (A , q) ∈ I there is (A , q′) ∈ I ′ with (q, b, q′) ∈ A . Note
that if |[[I ′]]ti | < V then κ̂i(ε) ⊇ [[I ′]]ti . Since we had assumed that d 6∈ κ̂i(ε), we
have that |[[I ′]]ti | ≥ V. Then, there are V data values d1, . . . , dV ∈ κ̂i(ε)∩ [[I ′]]ti . By
Lemma 4.16, [[I ′]]ti ⊆ [[I]]t0 and thus d1, . . . , dV ∈ [[I]]t. This means that d1, . . . , dV
are described in M and hence that d1, . . . , dV ∈ h ′(I) and |h ′(I)| ≥ V. Finally, note
that d cannot appear in some ti and at the root by hypothesis (3).

Proof of Lemma 4.23. The fact that d ∈ C1 ∪ · · · ∪Cm implies that d ∈ κ̂i(ε)
for some i. Then, by hypothesis (2), if d ∈ data(tj) for some j ∈ [m], j 6= i, then
d ∈ κ̂j(ε). This means that we have a complete description of d at every element
of M : for every j ∈ [m] either αj(d) = desctj (d), or αj(d) = ⊥ and desctj (d) = ∅.
Hence, by definition of f ′ we have: f ′(d) = desct0(d).

Proof of Lemma 4.28. Now we have at most |D′| data values, and the function
of each configuration is restricted to the data values (at most W) of the configura-
tion. We then have the following bounds by definition of TConfigs′ (5).

|TConfigs′| ≤ |Q̇| · |D′| · 2K·N · (|D′| · 2K·N)W

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.
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|D′| is polynomial in W, and we then have

|TConfigs′| ≤ |Q̇| · (p(W))q(W) · 2K·N·r(W) (7)

for some polynomials p, q, r. W is exponential only in R, and if R is constant, W is
polynomial in |R | and |V | by definition (6). Thus, the lemma follows.

Proof of Lemma 4.29. Condition (i) can be tested in polynomial time in |R |,
|Q̃| and n, where |Q̃| is polynomial in W. The function f (T1 · · ·Tn)(b, d0)(d) can be
computed in polynomial time in Aut and |T1|+· · ·+|Tn| (which is polynomial in W).
It follows that the description function α of condition (vi) can be checked in poly-
nomial time in W, since it consists in at most W + 1 applications of f (M)(b, d0)(d).
Conditions (ii) and (iii) are easily checked in polynomial time in |T |, |T1|, . . . , |Tn|.
Condition (v) can be tested in polynomial time in W and Aut by the above reasons.
For condition (iv), we see that h(M)(b, d0)(I) can be built in time polynomial, and
that for every possible intersection I and value of h(M)(b, d0)(I) a polynomial con-
dition must be checked, hence, since |Inters| is polynomial in W, testing condition
(iv) remains polynomial.

Proof of Corollary 6.3. The fact that R = 2 and V = 2 is immediate from
the definition of V . As already discussed, the transducer only uses one state,
|Q̇| = 1, and that it only needs to use transitions (q̇, a, b,L) with L = (Q̇)∗. L is
represented with a NFA with a set of states |Q̃| = 1.

The translation we presented is not polynomial. Indeed there is an exponential
number of transitions both in R and in the automata Aα of V , but it contains
a polynomial number of automata Aα. Further, each Aα has a number of states
polynomial in |α|, and a number of transitions polynomial in |α| and |B|. This last
one is singly exponential in |ϕ|.

Proof of Proposition 6.7. Suppose that if a formula η ∈ P is satisfied by
a data tree, then it is satisfied by a tree of height h ≤ p(|η|), where p is a fixed
polynomial that does not depend on η.

We make use of the translation of Theorem 6.2, but we avoid storingthe transition
relations of R and of the automata Aut of V explicitly. Instead, we use two facts.
First, that testing whether a set S of subformulæ of η is a locally consistent set uses
polynomial space in |η|, and these sets can then be enumerated in polynomial space.
And second, that v(b) can be built in polynomial space, given a locally consistent
set b. Thus, the space sp(`) needed for checking T1 · · ·Tn ` T is polynomial.

Hence, by Theorem 4.33 with Remark 4.34 we have an emptiness algorithm that
uses space p(h,K,N)+sp(`) for some polynomial p. This is a consequence of |Q̇|, V,
R and |Q̃| being constant, and h,K,N being polynomial in |η| by Corollary 6.3.

Proof of Proposition 6.8. Benedikt et al. [2008] show that XPath(↓,=) is
PSpace-hard and NExpTime-easy. Here we show a PSpace upper bound by
proving the poly-depth model property. Note that if η is satisfiable in t, then it is
satisfiable in t � n where n is the maximum number of nested ↓ in η9, and t � n is
the submodel of t consisting of all the nodes that are at distance at most n from

9For example, the maximum number of nexted ↓ in the expression 〈↓ [a ∧ 〈↓↓ [b]〉] ↓ [〈↓↓ [a]〉]〉 is

4.
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p1

p̄2

p̄3p3

p2

p1

p3 p̄3

X X X X

p3 p1p̄3p2 p2 p3 p̄3

Fig. 11. A coding of the satisfiability of a formula ∃p1∀p2, p3.(p1 ∨ p2) ∧ (p3 ∨ ¬p3 ∨ ¬p2).

the root: t � n = {x 7→ t(x) | x ∈ pos(t), |x| ≤ n}. Hence, by Proposition 6.7,
XPath(↓,=) is in PSpace.

Proof of Proposition 6.10. The proof goes by reduction from an instance of
the QBF (Quantified Boolean Formula [Garey and Johnson 1979]) validity problem
to SAT-XPath(↓∗).

Let

ϕ = Q1p1 . . . Qnpn.ψ

where pi are propositional variables (pairwise distinct), Qi ∈ {∀,∃} and ψ is a
formula of the propositional calculus in CNF.

The idea is to force a model in which every branch contains a full valuation for
the variables p1, . . . , pn. The tree’s alphabet is A = {p1, . . . , pn, p̄1, . . . , p̄n, X}, and
every branch lists a valuation in order, that is, first there is a node with a label
in {p1, p̄1}, then another in {p2, p̄2}, etc. The label X simply marks the ending of
a valuation in a branch. After this marking we build the tree that satisfies ψ by
choosing a witness atom for every disjunctive clause. Finally, we check that there
are no inconsistencies with respect to its valuation. For example, in Figure 11 we
depict a possible tree that is forced by a formula.

Let vi be the formula that specifies that the node is a valuation for the propo-
sitional variable pi, vi := pi ∨ p̄i. We specify formulæ f1, . . . , fn depending on
Q1, . . . , Qn, where G is defined as in the proof of Theorem 6.5.

—If Q1 = ∀, then f1 = 〈↓∗[p1]〉 ∧ 〈↓∗[p̄1]〉.
If Q1 = ∃, then f1 = 〈↓∗[p1]〉 ∨ 〈↓∗[p̄1]〉.

—If Qi = ∀ for i > 1, then fi = G(vi−1 → 〈↓∗[pi]〉 ∧ 〈↓∗[p̄i]〉).
If Qi = ∃, then fi = G(vi−1 → 〈↓∗[pi]〉 ∨ 〈↓∗[p̄i]〉).

—ϕX forces that the label X always appears once the valuation for all propositions
has been defined.

ϕX = ¬〈↓∗[v1]↓∗[v2] · · · ↓∗[vn−1]↓∗[vn ∧ ¬〈↓∗[X]〉]〉
—For all X we build a formula for ψ = C1 ∧ . . . ∧ Cl where Ci = t1 ∨ . . . ∨ tm and

each tj is either pk or p̄k for some k. That is,

τ =
∧
Ci

∨
t∈Ci

〈↓∗[t]〉

and this must hold for all X-valued nodes,

ϕψ = G(X → τ) .
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—Finally, we must check that there are no inconsistencies between the pi along a
branch.

ϕinc =

n∧
i=1

¬〈↓∗[pi]↓∗[p̄i]〉 ∧ ¬〈↓∗[p̄i]↓∗[pi]〉

The final formula is then

ϕF =

n∧
i=1

fi ∧ ϕX ∧ ϕψ ∧ ϕinc .

Suppose that ϕ is valid. We can build a tree that satisfies ϕF as follows. Let’s
assume that Q1 = ∃ (the other case is similar). Note that ∃piQi+1pi+1 · · ·Qnpn.ψ is
valid if, and only if, there is a valuation v(pi) for pi such thatQi+1pi+1 · · ·Qnpn.ψ[pi 7→
v(pi)] is valid, (where this is interpreted as the result of replacing pi by true or false
in the formula according to v(pi)). Conversely, ∀piQi+1pi+1 · · ·Qnpn.ψ is valid if,
and only if, both Qi+1pi+1 · · ·Qnpn.ψ[pi 7→ 1] and Qi+1pi+1 · · ·Qnpn.ψ[pi 7→ 0] are
valid. Now, we build the tree as follows. We first take the witnessing valuation of
p1 for the validity of ϕ and put it as the root. Then we iterate adding leaves in the
tree until obtaining a tree whose every leaf is at depth n− 1 in the following way.
Suppose we are adding the children of a leaf at depth i with i < n−1. Let v be the
valuation of p1 . . . pi that corresponds to the labels that appear in the path that
leads to the current leaf. Consider ϕ′ as the result of replacing every pj by true or
false corresponding to v(pj) for every j ≤ i in Qi+1pi+1 · · ·Qnpnψ, and note that
ϕ′ must be valid. If Qi+1 = ∃ we just add one child with the witnessing valuation
v(pi+1) that makes ϕ′[pi+1 7→ v(pi+1)] valid. If Qi+1 = ∀ we add two children with
labels pi+1 and p̄i+1. Once we do this with all the quantifiers, we append a node
with label X to all leaves, and put the witness of the satisfaction of ψ which must
be a choice between the valuations that occurred along the path, which gives us a
tree whose every leaf is at depth n+ 1, as in Figure 11. Note that it cannot be that
there is a pi and p̄i along a path. Indeed, this tree satisfies ϕF .

On the other hand, if ϕF is satisfied by a tree, then we can produce witness for
every ∃ quantifier of the formula, always making sure that the valuation chosen for
one propositional variable pi will not change, since we disallow having pi nad p̄i in
the same path. This shows that ϕ is in fact valid.

Then we have that ϕ is QBF-valid if and only if ϕF is satisfiable. Note that
this reduction does not use path unions. Then, this lower bound holds even in the
absence of path unions.

Proof of Lemma 6.11. All path formulæ that hold at the root of t, hold also
in t′ as it is an extension of the tree. On the other hand, any path formula that is
satisfied at the root by a succession of nodes in a branch in t′, can also be found in
t′, as we only count with the ↓∗ axis. This is true not only for the root but for any
position of t. In other words, the logic XPath(↓∗) is closed under subtree copy.

Proof of Proposition 6.12. We prove that ϕ ∈ XPath(↓∗) is satisfiable iff it
is satisfied by a tree of height bounded by |ϕ|2.

For the proof of this statement we first define, for a path expression, the set
of possible sequences of node tests that it must satisfy, that we note with ‘nseq ’
(Table V). The idea is that if for instance {ψ,ϕ}·{ϕ}·{ψ, η} ∈ nseq(α) for a path
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nseq : XPath(↓∗)→ ℘
((
℘(XPath(↓∗))

)∗)
nseq(α ∪ β) = nseq(α) ∪ nseq(β) nseq([ψ]) = {{ψ}}

nseq(αβ) = {S1·(A1 ∪A2)·S2 | nseq(ε) = {∅}
S1·A1 ∈ nseq(α), A2·S2 ∈ nseq(β)} nseq(↓∗) = {∅·∅}

Table V. Given a path expression α, nseq(α) is the set of possible sequence of node tests that a
witnessing branch must satisfy.

expression α, then t |= 〈α〉 if there are ε � x � y such that t |= ψ, t |= ϕ, t|x |= ϕ,
t|y |= ψ and t|y |= η. Let witt : pos(t) × XPath(↓∗) → ℘(pos(t)) be a witness
function such that for any x ∈ pos(t) and α ∈ XPath(↓∗) such that t|x |= 〈α〉 there
is S ∈ nseq(α) where

—all elements in witt(x, α) = {x1, . . . , xn} belong to the same branch, x1 ≺ x2 ≺
· · · ≺ xn;

—there are i1 ≤ · · · ≤ i|S| such that {i1, . . . , i|S|} = {1, . . . , n}, and t|xij
|= ∧

S(j)

for every j.

Note that in particular |witt(x, α)| ≤ |S| for some S ∈ nseq(α), and we hence have

|witt(x, α)| ≤ |α| . (8)

In the sequel, given ϕ ∈ XPath(↓∗) we write nesting(ϕ) for the maximum number
of nested node tests (that is, of nested ‘[ ]’) that are in the formula ϕ.

We can make use of Lemma 6.11 to make sure that we can always assume witt
to be in a normal form where all its elements are chained with the parent/child
relation. That is, that given witt(x, α) = {x1 ≺ · · · ≺ xn}, then for all i

xi+1 = xi·j for some j . (9)

We are now in a position to explain the main argument. Let ϕ ∈ XPath(↓∗) and
n = nesting(ϕ), and suppose we have a tree t that satisfies ϕ. Next, we describe a
procedure to ‘mark’ the important nodes in the tree. We start by marking the root
with the label ‘n’. Then, for every position x marked with t ≥ 0 and for every path
expression β ∈ sub(ϕ) such that nesting(β) ≤ t and t|x |= β, we mark all positions
y ∈ witt(x, β) with ‘t− 1’.

Note that all the positions marked with {−1, 0, . . . , n} form one connected com-
ponent by (9), and that they are all at a distance from the root of at most
nesting(ϕ) · |ϕ| by (8). Let t′ be the tree resulting from eliminating all the po-
sitions with no marking. We then have that t |= ϕ iff t′ |= ϕ, and hence that
XPath(↓∗) has the poly-depth model property. We conclude by Proposition 6.7
that XPath(↓∗) is in PSpace.

Proof of Proposition 6.15. The proof of the upper-bound goes by showing
the poly-depth model property. Let t = a⊗ d be a data tree. The key observation
is that any XPath6ε(↓∗,=) expression of the form 〈α〉, 〈α = β〉 or 〈α 6= β〉 that
is satisfied at a node x of a tree, is also satisfied in any ancestor of x. This is
because all path expressions start with a ↓∗ axis. In other words, for any pair of
positions x, x′ such that x � x′, the set of formulæ of the aforementioned type
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that are satisfied in x′ is a subset of those that are satisfied in x. Given a branch
ε = x0 ≺ · · · ≺ xn of t where xi+1 is a child of xi for all i, and given a formula ϕ,
consider for every i ∈ [n]

Ci = {ψ | ψ ∈ sub(ϕ), ψ of the form 〈α〉, 〈α = β〉 or 〈α 6= β〉 s.t. t|xi
|= ψ}.

We then have C0 ⊇ · · · ⊇ Cn, and there is only a polynomial number of different
sets. Take any two Ci = Cj such that a(xi) = a(xj). Then, the tree which results
from replacing the subtree at xi by the subtree at xj preserves the satisfaction
of ϕ at the root. Hence, the logic has the poly-depth model property and by
Proposition 6.7 its satisfiability problem is in PSpace.

The lower-bound comes from the proof of Proposition 6.10, whose encoding is in
XPath6ε(↓∗,=).

Proof of Theorem 4.33. Given the previous algoritm of Theorem 4.30, note
that all the configurations corresponding to derivations of height i are present once
the ith iteration has been executed. Also, note that the height of the derivation
and the height of the tree are related in this sense: any tree of height h can be
witnessed by a derivation of height h. We can then build a top-down NPSpace
algorithm as follows.

Let us denote by g(T, l) the following procedure for T ∈ TConfigs′, l ∈ [0..h].
First, g(T, 0) yields ‘ok’ iff ε ` T , otherwise it fails. g(T, l + 1) performs the
following tasks. Guesses the tree configurations T1, . . . , Tn with 0 ≤ n ≤W. Checks
T1 · · ·Tn ` T in PSpace, and recursively tests that g(T1, l), . . . , g(Tn, l) succeed.
Consider now the main algorithm that guesses a root configuration T ∈ TConfigs′

and checks both that it contains a final state q̇ ∈ Q̇F and that g(T, h) succeeds.
This algorithm correctly answers whether there exists a derivation of height at most
h that has T at the root.

Notice that the space needed to store the data description function α of a config-
uration T is bounded by sp(α) = (W + 1) · log(|D′|) ·K ·N, for D′ as defined in (4).
Then the space needed to store a tree configuration is

sp(T ) = log(|Q̇|) + log(|D′|) + sp(α)

≤ log(|Q̇|) + p(|Q̃|,K,N,V)

for some polynomial p. This is a consequence of (4) and (6), and the fact that
R is fixed. If we perform a DFS evaluation strategy of g we only need to store
simultaneously at most (W + 1) · h configurations and hence the algorithm takes a
space polynomial in the size of the automata R ,V considering R is fixed. It is then
immediate that this is a NPSpace procedure for any configuration and l.

Thus, as NPSpace = PSpace the theorem follows.
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