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This paper revisits the Degenerate Unmixing Estimation
Technique (DUET) for blind audio separation of an arbitrary
number of sources given two mixtures through a recursively
computed and adaptive time-frequency representation. Re-
cently, synchrosqueezing was introduced as a promising
signal disentangling method which allows to compute re-
versible and sharpen time-frequency representations. Thus,
it can be used to reduce overlaps between the sources in the
time-frequency plane and to improve the sources’ sparsity
which is often exploited by source separation techniques.
Furthermore, synchrosqueezing can also be extended using
the Levenberg-Marquardt algorithm to allow a user to adjust
the energy concentration of a time-frequency representation
which can be efficiently implemented without the FFT al-
gorithm. Hence, we show that our approach can improve
the quality of the source separation process while remaining
suitable for real-time applications.

Index Terms— blind source separation, time-frequency
analysis, synchrosqueezing, Levenberg-Marquardt algorithm.

1. INTRODUCTION

Source separation is the task which aims at estimating the
source components present in a mixture [1]. It could allow
a user to freely manipulate each isolated instrument in a poly-
phonic audio mixture and could find many other practical ap-
plications (e.g. karaoke, remixing, denoising, etc.). The blind
degenerate case (where the number of sources is greater than
the number of observed mixtures) remains the most challeng-
ing. State-of-the-art methods should use strong assumptions
over the sources, such as sparsity [2], harmonicity [3], or dis-
joint orthogonality [4] which can only be revealed thanks to a
proper signal representation. Nowadays, these signal proper-
ties are also exploited by promising recent methods based on
deep neural networks [5] or Kernel Additive Modeling (KAM)
[6] which have shown their ability to capture source-specific
features from a time-frequency representation (TFR).

The synchrosqueezing transform [7, 8] was introduced as
a sharpening method which contrarily to the reassignment
[9], provides reversible TFRs. This method was recently ex-
tended to frequency modulated signals [10, 11] and was com-
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bined with the Levenberg-Marquardt algorithm [12] to be-
come adaptive thanks to a damping parameter. These methods
have shown their interest for disentangling multicomponent
signals or to obtain physically interpretable components [13].

Thus, we propose to revisit a well known and efficient
algorithm for blind source separation called Degenerate Un-
mixing Estimation Technique (DUET) [4, 14], which operates
in the time-frequency plane using a disjoint orthogonality as-
sumption between the sources. This approach can estimate
an arbitrary number of sources from a stereophonic mixtures
in a blind configuration and has shown its efficiency on real-
world audio signals. Due to its simplicity and its robustness,
the DUET algorithm is suitable for an investigation of the TFR
role in a source separation algorithm in realistic blind audio
source separation scenarios. We also show that our proposed
approaches can be implemented in terms of recursive filtering
to allow real-time applications without using the Fast Fourier
Transform (FFT) algorithm.

The paper is organized as follows. The Levenberg-
Marquardt algorithm applied to the recursive synchrosqueezed
Short-Time Fourier Transforms (STFT) is introduced in Sec-
tion 2. A blind source separation method which combines
DUET and synchrosqueezing is then proposed in Section 3
and evaluated by numerical experiments in Section 4. Finally,
results and future works are discussed in Section 5.

2. THE RECURSIVE LEVENBERG-MARQUARDT
SYNCHROSQUEEZING TRANSFORM

LetXh(t, ω) denote for any time t and any angular frequency
ω, the STFT of a signal x(t) using a differentiable analysis
window h(t), defined as:

Xh(t, ω) =

∫
R
x(u)h(t− u)∗ e−jωu du (1)

= e−jωt
∫
R
x(t− u)h(u)∗ ejωu︸ ︷︷ ︸

g(u,ω)

du (2)

z∗ being the complex conjugate of z and j2 = −1. Since
|Xh(t, ω)|2 provides a TFR called spectrogram, a signal re-
construction can be provided using [12]:

x(t− t0) =
1

h(t0)∗

∫
R
Xh(t, ω) ejω(t−t0)

dω

2π
(3)
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for any time delay t0 ≥ 0 verifying h(t0) 6= 0. In [12, 15], we
showed that Eq. (2) can be viewed as a convolution product
of x with a filter g(t, ω) = h(t) ejωt, which can be efficiently
implemented in terms of a recursive filtering process if we use
a specific analysis window hk(t) = tk−1

Tk(k−1)! e
− t

T U(t), with
k ≥ 1 the filter order, T the time spread of the window and
U(t) the Heaviside step function. Computation details and a
Matlab implementation of this approach is freely available as
a part of ASTRES toolbox in [13].

2.1. Synchrosqueezed STFT

Synchrosqueezing is a post-processing technique which
enhances the time-frequency localization of a transform
while allowing signal reconstruction. For the STFT, the syn-
chrosqueezing transform is based on the synthesis formula
given by Eq. (3) which leads to the following definition [12]:

SXh
(t,ω) =

∫
R
Xh(t, ω′) ejω

′(t−t0)δ(ω − ω̂x(t,ω′)) dω′ (4)

where δ(t) denotes the Dirac distribution. This transform
provides a sharpened TFR computed as |SXh(t, ω)|2 (cf. il-
lustration in Fig. 1), when an efficient local Instantaneous
Frequency Estimator (IFE) is used for ω̂x [11]. Usually, the
frequency reassignment operator is used such as [9]:

ω̂x(t, ω) = ω + Im
(
XDh(t, ω)

Xh(t, ω)

)
, with Dh(t) =

dh

dt
(t).

(5)
An enhanced second-order IFE could also be used to compute
the vertical synchrosqueezed STFT as in [11]. Thus, the origi-
nal signal x can be recovered from the synchrosqueezed STFT
using the following reconstruction formula [12]:

x̂(t− t0) =
1

h(t0)∗

∫
R
SXh(t, ω)

dω

2π
(6)

where the integration interval can profitably be restricted to
the vicinity of the signal ridge for components extraction.

(a) spectrogram |Xh(t, ω)|2 (b) synchrosqueezing |SXh(t, ω)|2

Fig. 1. Comparison of the TFRs provided by the recursively
computed spectrogram (a) and the squared modulus of the
recursive synchrosqueezed STFT (b). The analysed signal is a
mixture made of 4 audio sources from the Bach10 dataset.

2.2. Levenberg-Marquardt synchrosqueezing

Reflection on synchrosqueezing was continued, and by anal-
ogy, the Levenberg-Marquardt root finding algorithm has
been used to compute new reassignment operators to adjust
the energy localization in the time-frequency plane through a
damping parameter µ [16]. This parameter could be locally
matched to the signal content by a voice activity detector [17]
or by a noise only/signal+noise binary detector [17, 18]. The
new operators are computed as:(

t̂µ(t, ω)
ω̂µ(t, ω)

)
=

(
t
ω

)
−
(
∇tRhx(t, ω) + µI2

)−1
Rhx(t, ω)

(7)

with Rhx(t, ω) =

(
t− t̂x(t, ω)
ω − ω̂x(t, ω)

)
(8)

∇tRhx(t, ω) =
(
∂Rh

x

∂t (t, ω)
∂Rh

x

∂ω (t, ω)

)
(9)

I2 being the 2× 2 identity matrix and t̂x being the time reas-
signment operator computed as:

t̂x(t, ω) = t− Re
(
XTh(t, ω)

Xh(t, ω)

)
, with Th(t) = t h(t).

(10)
Thus, the Levenberg-Marquardt synchrosqueezing trans-

form can be computed by replacing ω̂ in Eq. (4) by ω̂µ. This
leads to new adaptive and reversible TFRs which can also be
efficiently computed through recursive filtering [12, 15].

3. BLIND SOURCE SEPARATION

Now, let’s consider a two-channel mixture made of I ≥ 2
sources si. Each active source in the first channel x1, is atten-
uated by a factor ai and delayed by a duration τi (expressed
in seconds), in the second channel x2. Thus, the resulting
mixture can be modeled as:

x1(t) =

I∑
i=1

si(t)

x2(t) =

I∑
i=1

aisi(t− τi) (11)

which can be expressed in the time-frequency domain as:(
Xh

1 (t,ω)

Xh
2 (t,ω)

)
=

(
1 . . . 1

a1 e
−jωτ1 . . . aI e

−jωτI

)S
h
1 (t, ω)

...
ShI (t, ω)

 .

(12)
Hence, our proposal consists in replacing the computed STFTs
Si by the desired TFR (i.e. a synchrosqueezed version) in the
whole proposed source separation algorithm.

3.1. Mixing parameters estimation

DUET algorithm [4, 14] can recover both the mixing param-
eters and estimates of the original sources by assuming that



only one source is active at each time-frequency coordinate
(t, ω). This allows us to write the following expressions when
a source i is active at a given (t, ω) coordinate:(

Xh
1 (t,ω)

Xh
2 (t,ω)

)
=

(
1

ai e
−jωτi

)
Shi (t, ω). (13)

Thus, the mixing parameters can be estimated whenX1(t, ω) 6=
0 (resp. X2(t, ω) 6= 0) such as:

âi(t, ω) =

∣∣∣∣Xh
2 (t, ω)

Xh
1 (t, ω)

∣∣∣∣ (14)

τ̂i(t, ω) = − 1

ω
arg

(
Xh

2 (t, ω)

Xh
1 (t, ω)

)
, ∀ω 6= 0. (15)

For the sake of enhancing the robustness, DUET algorithm
computes a smoothed 2D histogram using the symmetric at-
tenuation instead of â, computed as:

α̂i(t, ω) = âi(t, ω)− 1

âi(t, ω)
(16)

The signal energy is then distributed according to the esti-
mates α̂ and τ̂ over the corresponding axes with a resolution
∆α and ∆τ . Hence, the histogram is computed as:

H(α, τ) =

∫∫
(t,ω)∈I(α,τ)

|Xh
1 (t, ω)Xh

2 (t, ω)|2 dtdω (17)

with:
I(α, τ) = {(t, ω) : |α− α̂(t,ω)| < ∆α, |τ − τ̂ (t,ω)| < ∆τ}
The parameters associated to each source can be deduced

from the prominent detected peaks in H(α, τ) for which the
mixing parameter âi can be recovered from α̂i using:

âi =
α̂i +

√
α̂2
i + 4

2
(18)

which can be deduced after inverting Eq. (16).

3.2. Sources estimation

Each time-frequency coordinate associated to the histogram
given by Eq. (17) can be associated to the prominent source
using its corresponding mixing parameters such as:

J(t, ω) = arg min
k

(∣∣âk e−jωτ̂kXh
1 (t, ω)−Xh

2 (t, ω)
∣∣

1 + â2k

)
(19)

which allows the computation of the binary separation mask
Mi of each source computed as:

Mi(t, ω) =

{
1 if J(t, ω) = i

0 otherwise
. (20)

Finally, the TFR of each source is simply recovered by:

Ŝi(t, ω) = Mi
Xh

1 (t, ω) + âk e
+jωτ̂kXh

2 (t, ω)

1 + â2k
(21)

for which the waveform is reconstructed using the corre-
sponding synthesis formula (i.e. Eq. (3) when STFT is used
or Eq. (6) for the synchrosqueezed STFT).

4. NUMERICAL EXPERIMENTS

4.1. Audio dataset

Our experiments use the Bach10 dataset1 which contains 10
musical excerpts of classical music for which the isolated
tracks are availables. Each musical piece is made of 4 sources
(string instruments) resampled at Fs = 8000 Hz and trun-
cated at the 5 first seconds. The simulated stereophonic mix-
tures are computed using random mixing parameters ai ∈
{0.4, 0.6, 0.8, 1} and τi ∈ [− 2

Fs
; + 2

Fs
] ensuring that all of

the original sources have distinct parameters.

4.2. TFR and W-disjoint orthogonality

Two sources s1, s2 are said window-disjoint orthogonal if
their windowed Fourier transforms (or STFTs) verify [19]:

Sh1 (t, ω)Sh2 (t, ω) = 0 ∀(t, ω). (22)

We now propose to extend this definition to any TFR since
the source separation quality of DUET depends on how the
sources can overlap in the time-frequency plane. In [14], the
author proposes to measure the W-disjoint orthogonality of a
source i in a mixture, for a given separation mask Mi using:
Di(Mi) =∫∫

R2

|Mi(t,ω)S
h
i (t,ω)|2 dtdω −

∫∫
R2

|Mi(t,ω)Yi(t,ω)|2 dtdω∫∫
R2

|Shi (t,ω)|2 dtdω
(23)

where Yi(t, ω) =
∑
∀j 6=i

Shj (t, ω) denotes the sum of all the

other sources present in the analyzed mixture.
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Fig. 3. Approximated W-disjoint orthogonality using differ-
ent TFRs, as a function of µ. Results are averaged over 10
mixtures made of 4 sources from the Bach10 dataset.

1http://music.cs.northwestern.edu/data/Bach10.
html
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(a) optimal value (µ = 0.06)
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(b) arbitrary high value (µ = 10)

Fig. 2. Comparison of the source separation results provided by the proposed methods applied on the Bach10 dataset. (a) and
(b) use different values of the damping parameter µ used by the recursive Levenberg-Marquardt synchrosqueezed STFT (other
TFRs are not affected by µ).

A high value for Di corresponds to a better expected
source separation quality provided by DUET. Thus, a compar-
ison of the averaged W-disjoint orthogonality measured using
Eq. (3) for each TFR computed on the Bach10 dataset, is dis-
played in Fig. 3. Here, Di of all the sources is also averaged
between all the pieces of the dataset. Each TFR is computed
using M = 1024 discrete frequency bins. A classical STFT
computed using FFT with a Hann window of length 128 ms
(1024 samples at Fs = 8000 Hz) with an 1

2 -overlap between
adjacent frames is used as a baseline method. For the re-
cursively computed TFRs, an Infinite Impulse Response (IIR)
filter of order k = 5 using a window time spread equal to
L = TFs = 100 is used. For the reconstruction a delay equal
to n0 = (k − 1)L samples, which corresponds to the maxi-
mum of the causal window, is considered (cf. [12] for details).
Our results show that the synchrosqueezed STFT provides a
better W-disjoint orthogonality than the STFT (recursive or
classical). When combined with the Levenberg-Marquardt
algorithm, a maximal Di is reached with µ = 0.06. As theo-
retically investigated in [16, 12], a lower value of µ improves
the time-frequency energy localization and converges to the
recursive synchrosqueezed STFT results and higher values
for µ converge to the recursive STFT results due to a poorer
time-frequency localization. Interestingly, the best results are
provided by a trade-off with a value of µ which is not too
small. The validity of this choice is also confirmed by the
source separation results presented in the next section.

4.3. Blind source separation results

Now, we compare the source separation results provided by
the proposed methods using the same configuration as in
Section 4.2, which are applied to the Bach10 dataset. For
each compared method, the mixing parameters are assumed

to be known and identical The source separation quality is
measured in terms of Reconstruction Quality Factor (RQF)
computed as [12]: RQF = 10 log10

( ∑
n |x[n]|

2∑
n |x[n]−x̂[n]|2

)
and

in terms of Signal-to-Interference Ratio (SIR), Signal-to-
Distortion Ratio (SDR) and Signal-to-Artifact Ratio (SAR)
which are commonly used measures computed through BSS
Eval2 [20]. According to the results displayed in Fig. 2, best
separation results (in particular with a higher SIR) are reached
using the recursive Levenberg-Marquardt synchrosqueezed
STFT using µ = 0.06. This result confirm the expectation
provided by the W-disjoint orthogonality in Fig. 3. As also
expected, the recursive synchrosqueezed STFT outperforms
the STFT. However, the recursive version of the STFT ob-
tains slightly better results than the STFT computed using the
FFT, despite a lower averaged value of Di. For the com-
parison, Fig. 2(b) displays results for µ = 10 and shows
that Levenberg-Marquardt synchrosqueezing obtains results
comparable to those provided by STFT when µ is too high.

5. CONCLUSION

In this paper, we have proposed new extensions of the DUET
source separation algorithm using a recursive implementation
of the Levenberg-Marquardt synchrosqueezed STFT. We have
shown that synchrosqueezing allows to compute a sharpen
and reversible TFR which can improve the disjoint orthogo-
nality between the sources. This results in a significant im-
provement of the source separation results in comparison with
classical TFRs (∆SIR≈+5dB in average). Future works will
consist in investigating new source separation methods based
on TFR masking using the synchrosqueezing technique.

2BSS Eval: http://bass-db.gforge.inria.fr/bss_
eval/
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