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ONE DIMENSIONAL CRITICAL KINETIC FOKKER-PLANCK EQUATIONS,

BESSEL AND STABLE PROCESSES

NICOLAS FOURNIER AND CAMILLE TARDIF

Abstract. We consider a particle moving in one dimension, its velocity being a reversible diffusion

process, with constant diffusion coefficient, of which the invariant measure behaves like (1 + |v|)−β

for some β > 0. We prove that, under a suitable rescaling, the position process resembles a Brownian
motion if β ≥ 5, a stable process if β ∈ [1, 5) and an integrated symmetric Bessel process if β ∈ (0, 1).

The critical cases β = 1 and β = 5 require special rescalings. We recover some results of [21, 7, 16]

and [1] on the kinetic Fokker-Planck equation, with an alternative approach.

1. Introduction and results

We consider a particle moving in one dimension, its velocity (Vt)t≥0 solving, for some β > 0,

dVt = dBt −
β

2

Vt
1 + V 2

t

dt,

or a slightly generalized equation. Its invariant distribution behaves like (1 + |v|)−β . We prove that,

under a suitable rescaling, the position process Xt = X0+
∫ t

0
Vsds resembles, in large time, a Brownian

motion if β ≥ 5, a stable process if β ∈ [1, 5) and an integrated symmetric Bessel process if β ∈ (0, 1).
The critical cases β = 1 and β = 5 require special rescalings.

1.1. Introduction. Consider a one-dimensional particle with position Xt ∈ R and velocity Vt ∈ R,
evolving in a force field Φ and undergoing many small random shocks. The smooth force field Φ :
R→ R is supposed to depend only on the velocity. The Newton equations describing the evolution of
this particle are

dXt = Vtdt, dVt = Φ(Vt)dt+ dBt,(1)

where (Bt)t≥0 is a Brownian motion modeling the random shocks. Langevin [15] studied the case where
Φ is the restoring/friction force Φ(v) = −v and showed that the position of the particle behaves, when
t tends to infinity, as a Brownian motion.

In the whole paper, we consider a restoring force of the form Φ(v) = − 1
2U
′(v) where U is a smooth

nonnegative even potential. Hence the velocity process (Vt)t≥0 is a reversible diffusion process with
invariant measure exp(−U(v))dv. When ZU =

∫
R exp(−U(v))dv is finite, it holds that Vt converges

in law to a random variable with density exp(−U(v))/ZU , as t→∞.

Denote, for each t ≥ 0, by ft the law of (Xt, Vt), which is a probability measure on R × R. Then
(ft)t≥0 is a weak solution of the kinetic Fokker-Planck equation

(2) ∂tft(x, v) + v∂xft(x, v) =
1

2
∂vvft(x, v)− ∂v[Φ(v)ft(x, v)].

2010 Mathematics Subject Classification. 60J60, 35Q84, 60F05.
Key words and phrases. Kinetic diffusion process, Kinetic Fokker-Planck equation, heavy-tailed equilibrium, anoma-

lous diffusion phenomena, Bessel processes, stable processes, local times, central limit theorem, homogenization.
We warmly thank Quentin Berger for illuminating discussions. This research was supported by the French ANR-17-

CE40-0030 EFI.

1



2 NICOLAS FOURNIER AND CAMILLE TARDIF

We say that there is a normal diffusion limit when, for some constant σ > 0 and in a weak sense,

lim
ε→0

ε−1/2ft/ε(ε
−1/2x, v) =

e−x
2/(2σ2)

σ
√

2π
× e−U(v)

ZU
,

meaning that for each t > 0, (ε1/2Xt/ε, Vt/ε) converges in law to (σWt, V̄ ), where (Wt)t≥0 is a Brownian

motion independent of some random variable V̄ with density exp(−U(v))/ZU .

Roughly, normal diffusion limit occurs when the restoring force field is strong enough, or equiv-
alently when the potential U grows sufficiently fast to infinity. Probabilistic techniques to get such
results are described in Pardoux-Veretennikov [22], see also Cattiaux, Chafäı and Guillin [6].

Then it is tempting to study what is going on when the force field is weakly restoring, or equivalently
when the potential U grows slowly to infinity or equivalently when the invariant measure is heavy-
tailed. For example, choosing drastically Φ(v) = 0, there is no hope to get a diffusion limit for Xt

since in that case Xt = X0 +
∫ t

0
Bsds and it has a scaling in ε3/2. Precisely, by the scaling property of

Brownian motion it comes that ε3/2Xt/ε converges in law to
∫ t

0
Bsds which is a Gaussian process but

no longer a Markov process. We say in that case that there is an anomalous diffusion limit, and more
generally we use this terminology in situations where ζ(ε)Xt/ε converges in law to some non-trivial

process, with a scaling function ζ(ε) different from ε1/2.

In fact, and it is the main subject of our article, it is possible to find a family of critical forces which
give limits with scaling functions that interpolate between the Brownian scale ε1/2 and the integrated
Brownian scale ε3/2. If we look at forces such that Φ(v) ' −sg(v)|v|γ for large values of |v|, one can
check that if γ > −1 then the force is restoring enough so that normal diffusion limit occurs, while if

γ < −1 the force is too weakly restoring at infinity and (Xt)t≥0 behaves as
∫ t

0
Bsds, with the scaling

function ε3/2. Roughly speaking, those critical forces have to be taken such that the term Φ(Vs)ds,
in the dynamics of (Vt)t≥0, has the same scaling than dBs. The only way is to choose γ = −1, i.e
Φ(v) ∼ −β/v for large values of |v| where β is some nonnegative constant.

The answer to this kind of questions, and it was the starting point of our article, can be found in a
series of P.D.E. papers by Nasreddine-Puel [21], Cattiaux-Nasreddine-Puel [7] and Lebeau-Puel [16].
They precisely study the family of critical forces

(3) Φ(v) = −β
2

v

1 + v2
i.e. U(v) =

β

2
log(1 + v2)

with β > 0. The case of large β is treated in [21] (β > 5) in any dimension and indeed a normal
diffusion limit occurs. The case β = 5 is treated in [7]. Some smaller values of β are explored in [16]:
they prove that, in dimension one, anomalous fractional diffusion limit occurs for β ∈ (1, 5) \ {2, 3, 4}.
The case β ∈ (0, 1] ∪ {2, 3, 4} is thus left open. We recall the main result in [16].

Theorem (Lebeau-Puel). Consider a solution (ft)t≥0 solution to (2) with Φ given by (3) for some
β ∈ (1, 5) \ {2, 3, 4} and set α = (β + 1)/3. Then for t > 0, in a weak sense,

lim
ε→0

ε−1/αft/ε(ε
−1/αx, v) = ρ(t, x)

e−U(v)

ZU
,

where ρ(t, x) solves the fractional heat equation

∂tρ+ κ(−∆)α/2ρ = 0,

κ being an explicit constant depending on β.

Note that such fractional (anomalous) diffusion limits are not so unexpected and often arise in
physics. Many works show how to modify the collision kernel in some Boltzmann-like linear equations
to get some fractional diffusion limit. One can e.g. linearize the Boltzmann equation around a fat tail
equilibrium or consider some ad hoc cross section. This was initiated by Mischler, Mouhot and Mellet
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[19], with close links to the earlier work of Milton, Komorowski and Olla [20] on Markov chains. This
was continued by Mellet [18], Ben Abdallah, Mellet and Puel [2, 3] and others.

Nevertheless, in the case of the above critical kinetic Fokker Planck model, the anomalous diffusion
case β ∈ (1, 5) seems rather difficult to treat, in comparison to above cited works [19, 18, 2, 3] on
Boltzmann-like equations. In particular, while the stable index α is more or less prescribed from the
beginning in [19, 18, 2, 3], it is a rather mysterious function of β in the present case. The paper [16]
relies on a deep spectral analysis, making a wide use of special functions, and the result is impressive.

In probabilistic words, the above theorem states that ε1/αXt/ε converges in law to a symmetric α-
stable random variable. Since β ∈ (1, 5) and α = (β+ 1)/3, one observes as expected an interpolation
between the scale functions ε1/2 and ε3/2. This clearly sounds probabilistic, and our main goal is to give

a probabilistic proof, establishing a α-stable limit theorem for the additive functional ε1/α
∫ t/ε

0
Vsds,

including if possible the cases β ∈ (0, 1] ∪ {2, 3, 4} previously left open.

1.2. A first probabilistic approach. Let us describe a natural probabilistic approach to treat the
problem. First recall informally (see Revuz-Yor [23, Chapter XI] and Subsection 2.3 below for more
precisions) that a Bessel process (Rt)t≥0 with dimension δ is a nonnegative diffusion process with the
following dynamics

(4) dRt = dBt +
δ − 1

2

1

Rt
dt.

It has the same scaling as the Brownian motion, namely (ε1/2Rt/ε)t≥0
d
= (Rt)t≥0. The subtlety is that

(4) makes no clear sense when the process reaches 0, and the following phase transitions occur. When
δ ≥ 2 it does never reach 0; when δ ∈ (0, 2) it reaches 0 infinitely often and bounces on it; when δ ≤ 0,
the process reaches 0 and is then absorbed forever.

When Φ(v) = −βv
2(1+v2) , as in [21, 7, 16], it holds that Φ(v) ' −β

2v for large values of |v|. hence

the velocity process (Vt)t≥0 should behave, when far away from 0, like a (signed) Bessel process with
dimension δ = 1 − β. But even when δ ≤ 0, the velocity process is not stuck when it reaches 0,
because Φ is smooth. Hence in any case, it should be possible to approximate the position process

Xt = X0 +
∫ t

0
Vsds by a sum of (signed) i.i.d. areas of excursions (outside of 0) of a Bessel process

with dimension δ = 1− β. Observe that the definition of such an excursion is not clear, in particular
when β ∈ (0, 1], since then δ ≤ 0, the process started at 0 never leaves 0. However, one can let it start
from r > 0 and let r → 0 after with a correct rescaling.

Using some explicit computations relying on modified Bessel functions it seems possible to show
that the (random) area A of the excursion of a Bessel process with dimension δ = 1 − β has a
distribution with a fat tail, namely that P[A ≥ a] ' cβa−α as a→∞, where α = (β+ 1)/3 and where
cβ > 0 is a constant.

All in all, this Bessel excursion area has a moment of order 2 when β > 5, so that one expects a
classical central limit theorem to hold, yielding normal diffusion for the position process (Xt)t≥0. But
when β ∈ (1, 5), this central limit theorem has to be replaced by a stable limit theorem yielding to an
anomalous stable diffusion limit. And when β ∈ (0, 1), there is one more issue, due to the fact that
the duration of the Bessel excursion is no longer integrable.

Surprisingly, while searching for some information about the law of the area of a Bessel excursion,
we found the paper by Barkai, Aghion and Kessler [1] in the physics literature. They use exactly the
above probabilistic strategy to prove precisely the same kind of results, with the very same critical
force field, but motivated by another physical phenomenon.

Actually physicists discovered that atoms, when cooled by a laser, diffuse anomalously, like Lévy
walks. See Castin, Dalibard and Cohen-Tannoudji [5], Sagi, Brook, Almog and Davidson [24] and
Marksteiner, Ellinger and Zoller [17]. A theoretical study has been proposed by Barkai, Aghion and
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Kessler [1] (see also and Hirschberg, Mukamel and Schütz [10]). They precisely model the motion of
atoms by (2) with the force (3) induced by the laser field. They prove, with quite a high level of rigor,
using tedious explicit computations relying on special functions, the results Puel et al. [21, 16], exclud-
ing the critical cases and treating also the case where β ∈ (0, 1) that they call Obukhov-Richardson
phase. Actually, in this last case, as already mentioned, the duration of the Bessel excursion is no
longer integrable and Barkai, Aghion and Kessler introduce some Bessel bridges. The result in [1]
consists of an explicit expansion formula involving generalized hypergeometric functions.

As we will see, the situation when β ∈ (0, 1) is actually rather simple, because at least at the
informal level, the Bessel process with dimension δ = 1 − β > 0 is not stuck when it reaches 0, so
that one can simply approximate the velocity process by a true (symmetrized) Bessel process with
dimension δ.

1.3. Our strategy. We found another way, which is more qualitative and even more probabilistic,
making use of the connections (or similarities) between Bessel and stable processes, see Section 2. We
provide a rather concise proof, that moreover allows us to deal with slightly more general forces of
the form (6) below. We also hope that this approach is more robust and may apply to other models.

The core of the paper (when β ≤ 5, which is the most interesting case) consists in making precise
the following informal arguments. For (Wt)t≥0 a Brownian motion and for τt the inverse of the time

change At = (β + 1)−2
∫ t

0
|Ws|−2β/(β+1)ds, the process Yt = Wτt should classically solve, see e.g.

Revuz-Yor [23, Proposition 1.13 page 373], Yt = (β + 1)
∫ t

0
|Ys|β/(β+1)dBs, for some other Brownian

motion (Bt)t≥0. Hence, still informally, Vt = sgn(Yt)|Yt|1/(β+1), where sgn is the sign function with
the convention that sgn(0) = 0, should solve, by the Itô formula,

(5) dVt = dBt −
β

2

sgn(Vs)

|Vs|
ds.

This is a rough version of the initial equation (1) with Φ(v) = − β
2v and it should describe, as explained

in the previous subsection, the large time behavior of the solution to (1) with Φ(v) = − βv
2(1+v2) , after

rescaling.

We recognize in (5) the S.D.E. (4) of a (symmetrized) Bessel process of dimension δ = 1− β.

If β ∈ (0, 1), i.e. δ > 0, such a (symmetric) Bessel process is well-defined and non-trivial, see also
Definition 5 below. Thus it is not surprising that we will find that Xt/ε, rescaled by ε3/2 converges to
and integrated symmetric Bessel process (Theorem 2-(e) below).

If β ∈ (1, 5), i.e. δ ≤ 0, it is well-known that Vt will remain stuck at 0. But it actually appears
that At is infinite and, in some sense to be made precise, proportional to the local time L0

t of (Wt)t≥0.
Hence, up to correct rescaling,

Xt =

∫ t

0

Vsds

'
∫ t

0

sgn(Wτs)|Wτs |1/(β+1)ds

=

∫ τt

0

sgn(Ws)|Ws|1/(β+1)dAs

=(β + 1)−2

∫ τt

0

sgn(Ws)|Ws|(1−2β)/(β+1)ds.

Since (τt)t≥0 is proportional to the inverse of the local time of (Wt)t≥0, we know from Biane-Yor [4]
that (Xt)t≥0 is an α-stable Lévy process, with α = (β + 1)/3. See Theorem 4 below for a precise
statement and a few explanations. These arguments are completely informal. In particular, we always
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have Wτt = 0, so that the equality
∫ t

0
sgn(Wτs)|Wτs |1/(β+1)ds =

∫ τt
0

sgn(Ws)|Ws|1/(β+1)dAs is far
from being fully justified.

All this requires some work to be justified, but does not rely on deep computations involving special
functions, unless one wants to know the value of the diffusion constant. This is why we say that our
proof is qualitative.

The simplicity of our arguments allow us to treat all the values of β > 0, including the critical
cases, and to deal with slightly more general forces. Also, it allows us to treat the multidimensional
case, with possible asymmetries in the force, in a (much more technical) companion paper [9].

To summarize, we believe the main interest of the present paper is to provide a qualitative proof
of the results of [21, 7, 16] and [1], with sufficiently simple arguments to treat all the values of β > 0,
including the critical cases, and with a possible (tedious) extension to the multidimensional case and
maybe to other models (e.g. involving jump processes).

1.4. Assumptions and notation. We consider the force field Φ = −β2F , for some β > 0 on some
F : R→ R satisfying

(6) F = −Θ′

Θ
, for some even Θ : R→ (0,∞) of class C2 satisfying lim|v|→∞ |v|Θ(v) = 1.

The typical example we have in mind is F (v) = v/(1 + v2), as mentioned in the previous paragraphs,
and corresponds to Θ(v) = (1 + v2)−1/2.

For β > 0, we introduce the measure µβ , unique solution (up to multiplicative constants) of the

equation 1
2µ
′′
β + β

2 (Fµβ)′ = 0 in the sense of distributions, defined by

µβ(dv) = cβ [Θ(v)]βdv,

and we choose c−1
β =

∫
R[Θ(v)]βdv <∞ if β > 1 and cβ = 1 if β ∈ (0, 1].

We finally define, for each β ≥ 1, the diffusion constant σβ > 0 as follows:

• σ2
β = 8cβ

∫∞
0

Θ−β(v)[
∫∞
v
uΘβ(u)du]2dv if β > 5,

• σ2
5 = 4c5/27,

• σαβ = 31−2α2α−1cβπ/[(Γ(α))2 sin(πα/2)], where α = (β + 1)/3, if β ∈ (1, 5),

• σ2/3
1 = 22/33−5/6π/[Γ(2/3)]2.

1.5. P.D.E. statement. We consider the following kinetic Fokker-Planck equation

(7) ∂tft(x, v) + v∂xft(x, v) =
1

2
∂vvft(x, v) +

β

2
∂v[F (v)ft(x, v)], t ≥ 0, x ∈ R, v ∈ R.

For E = R or R×R, we endow the set of probability measures P(E) on E with the weak convergence
topology, using bounded and continuous functions as test functions.

For f ∈ P(R×R) and a, b > 0, we abusively denote by (ab)−1f(a−1x, b−1v) the probability measure
fa,b on R× R defined by

fa,b(A) =

∫
R×R

1{(ax,bv)∈A}f(dx, dv)

for all Borel subset A of R × R. Similarly, for ρ ∈ P(R) and a > 0, we denote by a−1ρ(a−1x) the
probability measure ρa on R defined by ρa(A) =

∫
R 1{ax∈A}ρ(dx) for all Borel subset A of R.

Theorem 1. Assume (6). For any β > 0 and any f0 ∈ P(R × R), there exists a solution (ft)t≥0 ∈
C([0,∞),P(R× R)), in the sense of distributions, to (7) starting from f0 and enjoying the following
properties.
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(a) If β > 5, then for all t > 0,

lim
ε→0

ε−1/2fε−1t(ε
−1/2x, v) = gt ⊗ µβ in P(R× R),

where gt is the Gaussian density with variance σ2
βt, characterized by

∫
R gt(x)eiξxdx = exp(−t|σβξ|2/2).

(b) If β = 5, then for all t > 0,

lim
ε→0

ε−1/2| log ε|1/2fε−1t(ε
−1/2| log ε|1/2x, v) = gt ⊗ µβ in P(R× R),

where gt is the Gaussian density with variance σ2
5t characterized by

∫
R gt(x)eiξxdx = exp(−t|σ5ξ|2/2).

(c) If β ∈ (1, 5), setting α = (β + 1)/3, it holds that for all t > 0,

lim
ε→0

ε−1/αfε−1t(ε
−1/αx, v) = gt ⊗ µβ in P(R× R),

where gt is the stable law characterized by
∫
R gt(x)eiξxdx = exp(−t|σβξ|α).

(d) If β = 1, setting ρt(dx) =
∫
v∈R ft(dx, dv), it holds that for all t > 0,

lim
ε→0
|ε log ε|−3/2ρε−1t(|ε log ε|−3/2x) = gt in P(R),

where gt is the symmetric stable law characterized by
∫
R gt(x)eiξxdx = exp(−t|σ1ξ|2/3).

(e) If β ∈ (0, 1), then there is (ht)t≥0 ∈ C([0,∞),P(R× R)) such that for all t > 0,

lim
ε→0

ε−2fε−1t(ε
−3/2x, ε−1/2v) = ht in P(R× R).

Moreover, (ht)t≥0 is symmetric in the sense that ht(−x,−v) = ht(x, v) for all t ≥ 0, has no trivial part
in the sense that ht(R× {0}) = 0 for all t > 0, and solves (7) with h0 = δ(0,0) and F (v) = v−11{v 6=0}
in the following (very) weak sense: for all ϕ ∈ C2

c (R× R∗), all t ≥ 0,∫
R×R

ϕ(x, v)ht(dx,dv)=ϕ(0, 0)+

∫ t

0

∫
R×R

[
v∂xϕ(x, v) +

1

2
∂vvϕ(x, v)− β

2v
∂vϕ(x, v)

]
hs(dx, dv)ds.(8)

It is likely that the weak solution (ft)t≥0 to (7), given f0, is unique. We did not address this
question and refer to [21] when f0 is a L1-function and F (v) = v

1+v2 .

In points (a), (b), (c), we recover and slightly generalize the results of [21, 7, 16]. Observe that in
point (d), which is new, it does not seem easy to treat both the position and velocity, because µβ is
not integrable, so that it is not possible to get gt ⊗ µβ as limiting probability.

Point (e) is very different from the other cases: while in (a)-(b)-(c)-(d), gt depends only on x and
solves a (possibly fractional) autonomous heat equation, there is no autonomous equation for the
position process in (e), meaning that this process is not Markov.

We are not certain that the conditions in (e) (symmetry, absence of trivial part and validity of
(8) for all ϕ ∈ C2

c (R × R∗)) are sufficient to characterize uniquely (ht)t≥0. This might be a difficult
question. But this is not really an issue, since, as we will see, ht can be characterized as the law

of (
∫ t

0
U

(1−β)
s ds, U

(1−β)
t ), this last object being uniquely defined in Definition 5 below. In particular,

(ht)t≥0 does not depend on the initial condition f0.

Actually, something like (e) holds true for any β > 0, but we believe that when β ≥ 1, the only
possible solution to (8) should be ht = δ(0,0) for all t ≥ 0, so that the scaling is not relevant.

1.6. Probabilistic statements. Theorem 1 will be deduced from the study of the following one-
dimensional stochastic kinetic model. We assume (6) and consider, for some β > 0,

(9) Vt = V0 +Bt −
β

2

∫ t

0

F (Vs)ds and Xt = X0 +

∫ t

0

Vsds.
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Here (Bt)t≥0 is a Brownian motion independent of the initial condition (X0, V0). The drift F being
C1, (9) classically has a pathwise unique (possibly local) strong solution, and we will see that it is
global. The velocity process (Vt)t≥0 is Markov and its invariant measure is µβ , see Subsection 1.4.

For E = R or R× R and for a family ((Zεt )t≥0)ε≥0 of E-valued processes, we write

(Zεt )t≥0
f.d.−→ (Z0

t )t≥0

if for all finite subsets S ⊂ [0,∞), the vector (Zεt )t∈S converges in law to (Z0
t )t∈S , in ES , as ε → 0.

We write

(Zεt )t≥0
d−→ (Z0

t )t≥0

if (Zεt )t≥0 converges in law to (Z0
t )t≥0 in C([0,∞), E), endowed with the uniform convergence on

compact time intervals. This second notion of convergence is strictly stronger than the first one. Our
main result writes as follows.

Theorem 2. Assume (6), fix β > 0 and consider the solution (Xt, Vt)t≥0 to (9). Let (Wt)t≥0

be a Brownian motion, let (S
(α)
t )t≥0 be a symmetric stable process with index α ∈ (0, 2) such that

E[exp(iξS
(α)
t )] = exp(−t|ξ|α) and let (U

(δ)
t )t≥0 be a symmetric Bessel process of dimension δ ∈ (0, 1),

see Definition 5.

(a) If β > 5,

(ε1/2Xt/ε)t≥0
f.d.−→ (σβWt)t≥0.

(b) If β = 5,

(ε1/2| log ε|−1/2Xt/ε)t≥0
f.d.−→ (σ5Wt)t≥0.

(c) If β ∈ (1, 5), setting α = (β + 1)/3,

(ε1/αXt/ε)t≥0
f.d.−→ (σβS

(α)
t )t≥0.

(d) If β = 1,

(|ε log ε|3/2Xt/ε)t≥0
f.d.−→ (σ1S

(2/3)
t )t≥0.

(e) If β ∈ (0, 1),

(ε3/2Xt/ε, ε
1/2Vt/ε)t≥0

d−→
(∫ t

0

U (1−β)
s ds, U

(1−β)
t

)
t≥0

.

This result provides convergence of processes and in that is slightly stronger than Theorem 1 and
than the statements of [21, 7, 16, 1]. The convergence in (e) is stronger than in the other cases. Still in
(e), it is natural to state a result for the joint law of the position and the velocity, because in this sole
case, the limit position process alone is not Markov, while the limit of the couple (position, velocity)
is Markov.

From that result we will deduce the following decoupling between the position and the velocity.
We now deal with the convergence in law in R×R of the (rescaled) random variable (Xt, Vt) for large
t, and no longer with the convergence of processes.

Theorem 3. Fix β > 1, adopt the same notation as in Theorem 2 and consider a µβ-distributed
random variable V̄ independent of everything else.

(a) If β > 5, for each t > 0,

(ε1/2Xt/ε, Vt/ε)
d−→ (σβWt, V̄ ).

(b) If β = 5, for each t > 0,

(ε1/2| log ε|−1/2Xt/ε, Vt/ε)
d−→ (σ5Wt, V̄ ).
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(c) If β ∈ (1, 5), for each t > 0, setting α = (β + 1)/3,

(ε1/αXt/ε, Vt/ε)
d−→ (σβS

(α)
t , V̄ ).

We excluded the case β = 1 because the invariant measure µ1 is not integrable, so it is not possible
to define a µ1-distributed random variable V̄ .

1.7. Plan of the paper. In the next section, we recall some facts about the family of local times of
a Brownian motion and give explicit expressions, in terms of a Brownian motion, of the symmetric
stable process and of what we call a symmetric Bessel process. Section 3, which starts with a detailed
plan of the strategy, is devoted to the proof of Theorems 2, 3 and 1.

2. Brownian motion’s local times, Stable and Bessel processes

In this section, we first recall the definition and elementary properties of the family of local times
of the Brownian motion. We next provide an explicit formulation of the symmetric α-stable process in
terms of a Brownian motion. Finally, we explain what we call a symmetric Bessel process of dimension
δ ∈ (0, 2). We recall that we denote by sgn : R→ {−1, 0, 1} the function sgn(x) = 1{x>0} − 1{x<0}.

2.1. Local times. Local times are discussed in details in Revuz-Yor [23] for general semimartingales.
Let us summarize the results of [23, Chapter VI, Section 1] that we will use. For (Wt)t≥0 a Brownian
motion and for each x ∈ R, each t ≥ 0, we introduce

Lxt = |Wt − x| − |x| −
∫ t

0

sgn(Ws − x)dWs.

Since the second derivative of | · | is twice the Dirac mass, the Itô formula tells us that, informally,

Lxt =
∫ t

0
δWs=xds. It indeed holds true that for any t ≥ 0, any x ∈ R,

Lxt = lim
ε→0

1

2ε

∫ t

0

1{|Ws−x|<ε}ds a.s.

The process (Lxt )t≥0 is a.s. continuous and nondecreasing and is called the local time of W at x.
Let us mention that the (random) nonnegative measure dLxt on [0,∞) is a.s. carried by the set
{t ≥ 0 : Wt = x}. We will use the famous occupation times formula, see [23, Corollary 1.6 page 224],
that asserts that for any t ≥ 0, any Borel function ϕ : R→ R+, a.s.,∫ t

0

ϕ(Ws)ds =

∫
R
ϕ(x)Lxt dx.

We will finally use [23, Corollary 1.8 page 226]: the map x 7→ Lxt is a.s. Hölder continuous of order θ
for any θ ∈ (0, 1/2), uniformly on every compact time interval.

2.2. Stable processes. The following representation theorem of Biane-Yor [4] is crucial for our study.
Similar results were already present in Itô-McKean [11, page 226] and Jeulin-Yor [13] when α ∈ (0, 1).

For any α ∈ (0, 2), it provides an explicit expression, in terms of a Brownian motion and its local
time at 0, of the symmetric α-stable process. We recall that a Lévy process (St)t≥0 is said to be a
symmetric α-stable process if there is some constant κ > 0 such that E[exp(iξSt)] = exp(−κt|ξ|α)
for all t ≥ 0 and all ξ ∈ R. The value of κ > 0 is not very important, since we can modify it by
multiplying (St)t≥0 by some positive deterministic constant.

Theorem 4 (Biane-Yor). Fix α ∈ (0, 2). Consider a Brownian motion (Wt)t≥0, its local time (L0
t )t≥0

at 0 and its right-continuous generalized inverse τt = inf{u ≥ 0 : L0
u > t}. For η > 0, let

Kη
t =

∫ t

0

sgn(Ws)|Ws|1/α−21{|Ws|≥η}ds.
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Then (Kη
t )t≥0 a.s. converges, uniformly on compact time intervals, to some process (Kt)t≥0, as η → 0.

Moreover, (Kτt)t≥0 is a symmetric α-stable process such that for all t ≥ 0, all ξ ∈ R,

E[exp(iξKτt)] = exp(−καt|ξ|α), where κα =
2απα2α

2α[Γ(α)]2 sin(πα/2)
.

Observe that when α ∈ (0, 1), we simply have Kt =
∫ t

0
sgn(Ws)|Ws|1/α−2ds, since this integral is

a.s. absolutely convergent. Observe also that since (L0
t )t≥0 is a.s. constant on many time intervals, its

generalized inverse (τt)t≥0 has many jumps. Actually, (τt)t≥0 is itself a Lévy process (more precisely,
it is a 1/2-stable nondecreasing process, see Revuz-Yor [23, p 240]).

Let us mention that Theorem 4 is very natural and easy to verify, so long as we are not interested
in the exact value of κα. Indeed, τt is a stopping-time, with Wτt = 0, for each t ≥ 0. Hence the strong
Markov property implies that the process Zϕt =

∫ τt
0
ϕ(Ws)ds is Lévy, for any reasonable function

ϕ : R → R. If ϕ is odd, it is furthermore of course symmetric, in the sense that for all t ≥ 0,
Zϕt has the same law as −Zϕt . Finally, if one wants Zϕt to satisfies the scaling property of α-stable

processes, i.e. Zϕt
d
= c−1/αZϕct for all c > 0 and all t > 0, there is no choice for ϕ: it has to be

ϕ(z) = sgn(z)|z|1/α−2, because of the scaling of the Brownian motion and its local time, which tells
us that

((τt)t≥0, (Wt)t≥0)
d
= (c−2τct, c

−1Wc2t).

All this classically implies that (Kτt)t≥0 is a symmetric α-stable process. The computation of κα is
rather tedious and involves special functions.

The above arguments are perfectly rigorous when α ∈ (0, 1), but there are some technical difficulties

when α ∈ [1, 2) because the integral
∫ t

0
sgn(Ws)|Ws|1/α−2ds is not absolutely convergent.

2.3. Bessel processes. Bessel processes are studied in details in Revuz-Yor [23, Chapter XI]. The
unfamiliar reader can start directly from Definition 5 below, since we will use nothing more. Let us

however briefly recall that, for δ ∈ N, a Bessel process (R
(δ)
t )t≥0 of dimension δ is the Euclidean norm

of a δ-dimensional Brownian motion. Its square T
(δ)
t = (R

(δ)
t )2 then satisfies the 1-dimensional S.D.E.

(10) T
(δ)
t = 2

∫ t

0

[T (δ)
s ]1/2dWs + δt,

for some (other) one-dimensional Brownian motion (Wt)t≥0. This S.D.E. makes sense and has a
unique nonnegative solution for any δ ∈ R+. Hence for any δ ∈ R+, one can define the Bessel process
with dimension δ as the square root of the solution to (10).

Bessel processes are nonnegative, and we need a signed symmetric version. Roughly, we would like
to take a Bessel process and to change the sign of each excursion, independently, with probability 1/2.
Inspired by Donati-Roynette-Vallois-Yor [8], we will rather use the following (equivalent) definition.
It would be sufficient, for our purpose, to study the case δ ∈ (0, 1).

Definition 5. Let δ ∈ (0, 2). Consider a Brownian motion (Wt)t≥0, introduce the time-change

Āt = (2− δ)−2

∫ t

0

|Ws|−2(1−δ)/(2−δ)ds

and its inverse (τ̄t)t≥0. We set

U
(δ)
t = sgn(Wτ̄t)|Wτ̄t |1/(2−δ)

and say that (U
(δ)
t )t≥0 is a symmetric Bessel process with dimension δ.

Since 2(1 − δ)/(2 − δ) < 1, E[Āt] < ∞ for all t ≥ 0. The map t 7→ Āt is a.s. continuous, strictly
increasing and Ā∞ =∞ a.s. by recurrence of (Wt)t≥0, so that (τ̄t)t≥0 is well-defined and continuous.
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Also, U
(1)
t = Wt (because then Āt = t, whence τ̄t = t, so that U

(1)
t = sgn(Wt)|Wt| = Wt): the

Brownian motion is the symmetric Bessel process of dimension 1.

To justify the terminology, let us mention that (|U (δ)
t |)t≥0 is a Bessel process with dimension δ.

Indeed, [8, Corollary 2.2] tells us that, for (R
(δ)
t )t≥0 a Bessel process with dimension δ ∈ (0, 2), there

exists a Brownian motion (Wt)t≥0 such that

R
(δ)
t = |WCt |1/(2−δ),

where Ct = (2− δ)2
∫ t

0
[R

(δ)
s ]2(1−δ)ds. But Ct = τ̄t, because

ĀCt = (2− δ)−2

∫ Ct

0

|Ws|−2(1−δ)/(2−δ)ds =

∫ t

0

|WCu |−2(1−δ)/(2−δ)[R(δ)
u ]2(1−δ)du = t.

As a conclusion, R
(δ)
t = |Wτ̄t |1/(2−δ) = |U (δ)

t |.

3. Proofs

Here is the strategy of the proof. In Subsection 3.1, we write down the explicit solution to (9),
when X0 = V0 = 0, using the classical theory of speed measures and scale functions, in terms of a
time changed Brownian motion. More precisely, we introduce some explicit (in terms of Θ) functions
Ψε : R→ R and σε : R→ (0,∞) such that, for (Wt)t≥0 a Brownian motion and for (τ εt )t≥0 the inverse
function of (Aεt)t≥0 defined by

Aεt =

∫ t

0

[σε(Ws)]
−2ds,

the processes (Vt/ε)t≥0 (where (Vt)t≥0 solves (9)) and (Ψε(Wτεt
))t≥0 have the same law.

In Subsection 3.2, we recall some facts about the convergence of (generalized) inverse functions.

In Subsection 3.3, we prove our main theorem when β ∈ (0, 1) and X0 = V0 = 0. We start from

(ε3/2Xt/ε, ε
1/2Vt/ε)t≥0

d
=
(∫ t

0

ε1/2Ψε(Wτεs
)ds, ε1/2Ψε(Wτεt

)
)
t≥0

.

We show that ε1/2Ψε(z) resembles sgn(z)|z|1/(1+β) and that σε(z) resembles (β+1)|z|β/(β+1). Recalling
Definition 5 with δ = 1− β, we thus have

Aεt ' (β + 1)−2

∫ t

0

|Ws|−2β/(β+1)ds = Āt, whence τ εt ' τ̄t,

so that

ε1/2Ψε(Wτεt
) ' sgn(Wτ̄t)|Wτ̄t |1/(β+1) = U

(1−β)
t and ε3/2Xt/ε '

∫ t

0

U (1−β)
s ds.

We study the case β ∈ [1, 5) (and X0 = V0 = 0 again) in Subsection 3.4. Up to a logarithmic
correction when β = 1, we write, with α = (β + 1)/3,

(ε1/αXt/ε)t≥0
d
=
(
ε1/α−1

∫ t

0

Ψε(Wτεs
)ds
)
t≥0

=
(
ε1/α−1

∫ τεt

0

Ψε(Ws)[σε(Ws)]
−2ds

)
t≥0

.

We first show, using the occupation times formula, that

Aεt ' L0
t , whence τ εt ' τt,

where (τt)t≥0 is the generalized inverse of (L0
t )t≥0. We also verify that

ε1/α−1Ψε(z)[σε(z)]
−2 ' sgn(z)|z|(1−2β)/(1+β) = sgn(z)|z|1/α−2.
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All in all, we deduce that

(ε1/αXt/ε)t≥0
d'
(∫ τt

0

sgn(Ws)|Ws|1/α−2ds
)
t≥0

,

which is a symmetric α-stable process by Theorem 4. This part is rather technical and some constants
actually appear everywhere, but we indicate the points of the proof required to understand the case
β ∈ (1, 2), which is the less involved.

In Subsection 3.5, we quickly check Theorem 2 in the normal diffusive case β > 5, still when
X0 = V0 = 0. This enters the classical theory of limit theorems for stochastic processes that can be
found in Jacod-Shiryaev [12, Chapter VIII, Section 3f]. We also study the case β = 5, making use of
some other material checked in Subsection 3.4.

We extend the above results to all initial conditions in Subsection 3.6 and the last subsection is
devoted to the proof of Theorem 3 concerning the kinetic Fokker-Planck equation.

3.1. Scale function and speed measure. We introduce some notation, closely linked with the
theory of scale function and speed measure. This is a classical way to solve explicitly one-dimensional
S.D.E.s. The reason why we introduce h, σ and φ below will appear clearly in the proof of Lemma
6. The goal is to rewrite (Xt)t≥0 in such a way that it resembles the objects appearing in Theorem 4
and Definition 5.

Recall our conditions on Θ, see (6) and that F = −Θ′/Θ. First, the function from R to R

h(v) = (β + 1)

∫ v

0

[Θ(u)]−βdu

is odd, increasing, bijective, solves h′′ = βFh′, and we have the asymptotics

h(v)
|v|→∞∼ sgn(v)|v|β+1 and h−1(z)

|z|→∞∼ sgn(z)|z|1/(β+1).

Next, the function on R
σ(z) = h′(h−1(z))

is even, bounded below by some constant c > 0 and

σ(z)
|z|→∞∼ (β + 1)|z|β/(β+1).

The function from R to R
φ(z) = h−1(z)/σ2(z)

is odd and

φ(z)
|z|→∞∼ (β + 1)−2sgn(z)|z|(1−2β)/(β+1).

When β = 5, we define for subsequent use the function on R

ψ(z) = [g′(h−1(z))]2/σ2(z),

where g′(v) = 2Θ−5(v)
∫∞
v
uΘ5(u)du

|v|→∞∼ 2|v|2/3. Observe that g′ is even, because Θ is even and∫
R uΘ5(u)du = 0. The function ψ is even, bounded and

ψ(z)
|z|→∞∼ 1/(81|z|).

Lemma 6. Fix β > 0, ε > 0 and aε > 0. Consider a Brownian motion (Wt)t≥0. Define

Aεt = εa−2
ε

∫ t

0

[σ(Ws/aε)]
−2ds
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and its inverse (τ εt )t≥0, which is a continuous increasing bijection from [0,∞) into itself. Set

V εt = h−1(Wτεt
/aε) and Xε

t = Hε
τεt

where Hε
t = a−2

ε

∫ t

0

φ(Ws/aε)ds.

For (Xt, Vt)t≥0 the unique solution of (9) starting from (0, 0), we have

(Xt/ε, Vt/ε)t≥0
d
= (Xε

t , V
ε
t )t≥0.

The result holds for any value of aε > 0, but in each situation, we will choose it judiciously, in such
a way that (Aεt)t≥0 a.s. converges, as ε→ 0, to the desired limit time-change.

Remark 7. For any β > 0, the solution (Vt)t≥0 to (9) is global, regular and recurrent. Indeed,
choosing ε = aε = 1 in Lemma 6, we see that the solution (Vt)t≥0 to (9) with V0 = 0 has the same
law as (h−1(Wτt))t≥0, for some Brownian motion (Wt)t≥0, some (random) continuous bijective time
change τt : [0,∞)→ [0,∞) and some continuous bijective function h : R→ R. Hence (Vt)t≥0 is non-
exploding and thus global, and it is regular and recurrent (when starting from any initial condition).

Proof of Lemma 6. We fix β > 0, ε > 0 and aε > 0 and set σε(w) = ε−1/2aεσ(w/aε), so that

Aεt =

∫ t

0

[σε(Ws)]
−2ds.

Since σε is bounded below, t 7→ Aεt is a.s. continuous and strictly increasing. By recurrence of the
Brownian motion, we also have Aε∞ = ∞ a.s. Hence τ εt is well-defined, continuous, bijective from
[0,∞)→ [0,∞) and Y εt = Wτεt

classically solves, see e.g. Revuz-Yor [23, Proposition 1.13 page 373],

Y εt =

∫ t

0

σε(Y
ε
s )dBεs,

for some Brownian motion (Bεt )t≥0. We then set ϕε(y) = h−1(y/aε) and use the Itô formula to write

V εt = ϕε(Y
ε
t ) =

∫ t

0

ϕ′ε(Y
ε
s )σε(Y

ε
s )dBεs +

1

2

∫ t

0

ϕ′′ε (Y εs )σ2
ε (Y εs )ds.

But the functions σε and ϕε, built from σ and h, have been precisely designed in such a way that
ϕ′ε(y)σε(y) = ε−1/2 and ϕ′′ε (y)σ2

ε (y) = −βε−1F (ϕε(y)).

Indeed, using that (h−1)′ = 1/σ, we find

ϕ′ε(y)σε(y) =
1

aεσ(y/aε)
ε−1/2aεσ(y/aε) = ε−1/2.

And since σ′ = [h′(h−1)]′ = (h−1)′h′′(h−1) = h′′(h−1)/h′(h−1) = βF (h−1),

ϕ′′ε (y)σ2
ε (y) =

−σ′(y/aε)
a2
εσ

2(y/aε)
ε−1a2

εσ
2(y/aε) = −ε−1σ′(y/aε) = −βε−1F (h−1(y/aε)) = −βε−1F (ϕε(y)).

We end with

V εt =
1√
ε
Bεt −

β

2ε

∫ t

0

F (ϕε(Y
ε
s ))ds =

1√
ε
Bεt −

β

2ε

∫ t

0

F (V εs )ds.

Next, starting from (9) (with V0 = 0), we find

Vt/ε = Bt/ε −
β

2

∫ t/ε

0

F (Vs)ds =
1√
ε
(
√
εBt/ε)−

β

2ε

∫ t

0

F (Vs/ε)ds.

Hence (V εt )t≥0 and (Vt/ε)t≥0 are two solutions of the same well-posed S.D.E., driven by different

Brownian motions, namely (Bεt )t≥0 and (
√
εBt/ε)t≥0. They thus have the same law.
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Since Xt/ε =
∫ t/ε

0
Vsds = ε−1

∫ t
0
Vs/εds, we conclude that

(Xt/ε, Vt/ε)t≥0
d
=
(
ε−1

∫ t

0

V εs ds, V εt

)
t≥0

.

But using the substitution u = τ εs , i.e. s = Aεu, whence ds = [σε(Wu)]−2du, we find

ε−1

∫ t

0

V εs ds = ε−1

∫ t

0

ϕε(Wτεs
)ds = ε−1

∫ τεt

0

ϕε(Wu)

[σε(Wu)]2
du = a−2

ε

∫ τεt

0

φ(Wu/aε)du = Hε
τεt
.

as desired. We used that

ε−1[σε(w)]−2ϕε(w) = a−2
ε [σ(w/aε)]

−2h−1(w/aε) = a−2
ε φ(w/aε). �

3.2. Inverting time-changes. We recall the following classical and elementary results.

Lemma 8. Consider, for each n ≥ 1, a continuous increasing bijective function (ant )t≥0 from [0,∞)
into itself, as well as its inverse (rnt )t≥0.

(a) Assume that (ant )t≥0 converges pointwise to some (nondecreasing) function (at)t≥0 such that
limt→∞ at =∞, denote by rt = inf{u ≥ 0 : au > t} its right-continuous generalized inverse and set

J = {s ∈ [0,∞) : rt− < rt}.
For all t ∈ [0,∞) \ J , we have limt→∞ rnt = rt.

(b) If (ant )t≥0 converges locally uniformly to some strictly increasing function (at)t≥0 such that
limt→∞ at =∞, then (rnt )t≥0 converges locally uniformly to (rt)t≥0, the (classical) inverse of (at)t≥0.

3.3. The integrated Bessel regime. We can now give the

Proof of Theorem 2-(e) when X0 = V0 = 0. Let β ∈ (0, 1) be fixed. It suffices to verify that

(11) (ε1/2Vt/ε)t≥0
d−→ (U

(1−β)
t )t≥0.

This will indeed imply that

(ε3/2Xt/ε, ε
1/2Vt/ε)t≥0 =

(∫ t

0

(ε1/2Vs/ε)ds, ε
1/2Vt/ε

)
t≥0

d−→
(∫ t

0

U (1−β)
s ds, U

(1−β)
t

)
t≥0

,

because we deal with the uniform convergence on compact time intervals.

We consider a Brownian motion (Wt)t≥0 and, as in Definition 5 with δ = 1−β ∈ (0, 1), we introduce
the a.s. continuous strictly increasing bijective time-change

Āt = (β + 1)−2

∫ t

0

|Ws|−2β/(β+1)ds,

its inverse (τ̄t)t≥0 and the symmetric Bessel process with dimension 1− β

U
(1−β)
t = sgn(Wτ̄t)|Wτ̄t |1/(β+1).

We now apply Lemma 6 with the choice aε = ε(β+1)/2: with the same Brownian motion as above,
we consider, for each ε > 0, the time-change

Aεt = ε−β
∫ t

0

[σ(Ws/ε
(β+1)/2)]−2ds,

its inverse τ εt , and the process

V εt = h−1(Wτεt
/ε(β+1)/2).

Since V0 = 0, (Vt/ε)t≥0
d
= (V εt )t≥0 by Lemma 6. Since our goal is (11), it suffices to prove that

(12) lim
ε→0

sup
[0,T ]

∣∣ε1/2V εt − U (1−β)
t

∣∣ = 0 a.s., for all T ≥ 0.
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Since σ(z)
|z|→∞∼ (β + 1)|z|β/(β+1), whence σ−2(z) ≤ C|z|−2β/(β+1) (because σ(x) ≥ c > 0),

lim
ε→0

sup
[0,T ]

|Aεt − Āt| ≤ lim
ε→0

∫ T

0

∣∣∣ε−β [σ(Ws/ε
(β+1)/2)]−2 − [(β + 1)|Ws|β/(β+1)]−2

∣∣∣ds = 0 a.s.

by dominated convergence. Indeed, we have supε>0 ε
−β [σ(Ws/ε

(β+1)/2)]−2 ≤ C|Ws|−2β/(β+1), and∫ T
0
|Ws|−2β/(β+1)ds <∞ a.s. because 2β/(β + 1) < 1.

By Lemma 8-(b), we deduce that a.s., for all T ≥ 0,

lim
ε→0

sup
[0,T ]

|τ εt − τ̄t| = 0,

whence, by continuity of (Wt)t≥0,

(13) lim
ε→0

sup
[0,T ]

|Wτεt
−Wτ̄t | = 0 a.s. for all T > 0.

We next claim that for all M > 0,

κε(M) = sup
|z|≤M

|ε1/2h−1(z/ε(β+1)/2)− sgn(z)|z|1/(β+1)| → 0.

Indeed, since h−1 is C1 with h−1(0) = 0, since β > 0 and since h−1(z)
|z|→∞∼ sgn(z)|z|1/(β+1) the

function

γ(z) =
h−1(z)

sgn(z)|z|1/(β+1)
− 1 (with γ(0) = −1)

is continuous on R and lim|z|→∞ γ(z) = 0. Hence,

κε(M) = sup
|z|≤M

|z|1/(β+1)|γ(z/ε(β+1)/2)|

≤ε1/4||γ||∞ +M1/(β+1) sup
|z|≥ε(β+1)/4

|γ(z/ε(β+1)/2)|

=ε1/4||γ||∞ +M1/(β+1) sup
|z|≥ε−(β+1)/4

|γ(z)|,

which tends to 0 as ε→ 0.

All in all, denoting by MT = sup[0,T ] supε∈(0,1) |Wτεt
|, which is a.s. finite by (13),

sup
[0,T ]

|ε1/2V εt − U
(1−β)
t | = sup

[0,T ]

|ε1/2h(Wτεt
/ε(β+1)/2)− sgn(Wτ̄t)|Wτ̄t |1/(β+1)|

≤κε(MT ) + sup
[0,T ]

∣∣∣sgn(Wτεt
)|Wτεt

|1/(β+1) − sgn(Wτ̄t)|Wτ̄t |1/(β+1)
∣∣∣→ 0

a.s., by (13) and by continuity of w → sgn(w)|w|1/(β+1). This shows (12) and completes the proof. �

3.4. The Lévy regime. Here we treat the case β ∈ [1, 5) and by the way prepare the case β = 5. We
start with the following crucial lemma, that will allow us to pass to the limit in the explicit expression
of the solution to (9) written in Lemma 6 and to find as limit the stable process of Theorem 4.

It might be helpful at first reading to look only at the proofs of (a) below when β > 1, of (b) below
when β ∈ (1, 2) and of Theorem 2-(c). This is sufficient to understand the proof when β ∈ (1, 2). The
other cases share the same spirit, with possibly important additional technical difficulties.

Lemma 9. Fix β ∈ [1, 5] and a Brownian motion (Wt)t≥0, denote by (L0
t )t≥0 its local time at 0 and

by (Kt)t≥0 the process defined in Theorem 4 with α = (β+1)/3. For each ε > 0, consider the processes
(Aεt)t≥0 and (Hε

t )t≥0 built in Lemma 6 with the choice

aε = ε/[(β + 1)cβ ] if β ∈ (1, 5] and aε = ε| log ε|/2 if β = 1
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and with the same Brownian motion (Wt)t≥0 as above.

(a) We always have a.s., for all T > 0,

lim
ε→0

sup
[0,T ]

∣∣Aεt − L0
t

∣∣ = 0.

(b) If β ∈ (1, 5), then a.s., for all T > 0,

lim
ε→0

sup
[0,T ]

∣∣ε1/αHε
t − (β + 1)1/α−2c

1/α
β Kt

∣∣ = 0.

(c) If β = 1, then a.s., for all T > 0,

lim
ε→0

sup
[0,T ]

∣∣|ε log ε|3/2Hε
t −Kt/

√
2
∣∣ = 0.

(d) If β = 5, then a.s., for all T > 0,

lim
ε→0

sup
[0,T ]

∣∣T εt − σ2
5L

0
t

∣∣ = 0, where T εt =
ε

a2
ε | log ε|

∫ t

0

ψ(Ws/aε)ds.

We recall that cβ = 1/[
∫
R[Θ(v)]βdv] (when β > 1), that σ2

5 = 4c5/27 that the functions h, σ, φ and
ψ were introduced at the beginning of Subsection 3.1.

Proof. Point (a) when β > 1. We set γ = (β + 1)cβ and recall that aε = ε/γ, whence

Aεt = γ2ε−1

∫ t

0

[σ(γWs/ε)]
−2ds.

Using the occupation times formula, see Revuz-Yor [23, Corollary 1.6 page 224], we may write

Aεt =

∫
R

γ2Lxt dx

εσ2(γx/ε)
=

∫
R

γL
εy/γ
t dy

σ2(y)
,

where (Lxt )t≥0 is the local time of (Wt)t≥0 at x. Observe now that∫
R

γdy

σ2(y)
=

∫
R

γdy

[h′(h−1(y))]2
=

∫
R

γdv

h′(v)
=

∫
R

γΘβ(v)dv

(β + 1)
=

γ

(β + 1)cβ
= 1.

Consequently,

sup
[0,T ]

|Aεt − L0
t | = sup

[0,T ]

∣∣∣γ ∫
R

L
εy/γ
t − L0

t

σ2(y)
dy
∣∣∣ ≤ γ ∫

R

sup[0,T ] |L
εy/γ
t − L0

t |
σ2(y)

dy,

which a.s. tends to 0 as ε → 0 by dominated convergence, since sup[0,T ] |L
εy/γ
t − L0

t | a.s. tends

to 0 for each fixed y by [23, Corollary 1.8 page 226], since sup[0,T ]×R L
x
t is a.s. finite and since∫

R σ
−2(y)dy <∞.

Point (b) when β ∈ (1, 2). This step is useless since included in the more general case β ∈ (1, 5)
below. Since it is much easier, we present it for the sake of pedagogy. We have aε = ε/γ with
γ = (β + 1)cβ . Recall that α = (β + 1)/3, whence 1/α − 2 = (1 − 2β)/(β + 1). Since α ∈ (0, 1), no
principal value is needed and it holds true that (recall that Kt and Kη

t were defined in Theorem 4)

Kt = lim
η→0

∫ t

0

sgn(Ws)|Ws|1/α−21{|Ws|≥η}ds =

∫ t

0

sgn(Ws)|Ws|1/α−2ds.

Recalling Lemma 6, we have

ε1/αHε
t = γ2ε1/α−2

∫ t

0

φ(γWs/ε)ds.
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Hence

lim
ε→0

sup
[0,T ]

|ε1/αHε
t − (β + 1)1/α−2c

1/α
β Kt|

≤ lim
ε→0

∫ T

0

∣∣∣γ2ε1/α−2φ(γWs/ε)− (β + 1)1/α−2c
1/α
β sgn(Ws)|Ws|1/α−2

∣∣∣ds = 0

a.s. by dominated convergence. Indeed, it suffices to use that

φ(z)
|z|→∞∼ (β + 1)−2sgn(z)|z|(1−2β)/(β+1) = (β + 1)−2sgn(z)|z|1/α−2,

whence

γ2ε1/α−2φ(γw/ε)→ γ1/α(β + 1)−2sgn(w)|w|1/α−2 = (β + 1)1/α−2c
1/α
β sgn(w)|w|1/α−2

by definition of γ, the bound |φ(z)| ≤ C|z|1/α−2 (recall that φ is continuous and that 1/α − 2 < 0
because α > 2/3 > 1/2) which implies that

sup
ε∈(0,1)

γ2ε1/α−2|φ(γWs/ε)| ≤ Cγ1/α|Ws|1/α−2

and the fact that, since 1/α− 2 > −1 (because α < 1),∫ T

0

|Ws|1/α−2ds <∞ a.s.

Point (a) when β = 1. Here aε = ε| log ε|/2. Also, σ(z) is bounded below and σ(z)
|z|→∞∼ 2|z|1/2,

from which

(14)

∫ x

−x

dz

σ2(z)

x→∞∼ log x

2
.

We now fix δ > 0 and write Aεt = Iε,δt + Jε,δt , where

Iε,δt =

∫ t

0

εds

a2
εσ

2(Ws/aε)
1{|Ws|≤δ} and Jε,δt =

∫ t

0

εds

a2
εσ

2(Ws/aε)
1{|Ws|>δ}.

There is c > 0 such that σ2(z) ≥ c(1 + |z|), from which one verifies, using only that

|Ws| > δ =⇒ σ2(Ws/aε) ≥ c(1 + δ/aε) ≥ cδ/aε,

that sup[0,T ] |J
ε,δ
t | ≤ Tε/(caεδ), which tends to 0 as ε → 0 because aε = ε| log ε|/2. We next use the

occupation times formula to write

Iε,δt =

∫ δ

−δ

εLxt dx

a2
εσ

2(x/aε)
=
(∫ δ

−δ

εdx

a2
εσ

2(x/aε)

)
L0
t +

∫ δ

−δ

ε(Lxt − L0
t )dx

a2
εσ

2(x/aε)
= rε,δL

0
t +Rε,δt ,

the last identity standing for a definition. But a substitution and (14) allow us to write

rε,δ =

∫ δ/aε

−δ/aε

εdy

aεσ2(y)

ε→0∼ ε log(δ/aε)

2aε
−→ 1

as ε→ 0 since aε = ε| log ε|/2. Recalling that Aεt = rε,δL
0
t +Rε,δt + Jε,δt , we have proved that a.s.,

for all δ > 0, lim sup
ε→0

sup
[0,T ]

|Aεt − L0
t | ≤ lim sup

ε→0
sup
[0,T ]

|Rε,δt |.

But
sup
[0,T ]

|Rε,δt | ≤ rε,δ × sup
[0,T ]×[−δ,δ]

|Lxt − L0
t |,

which implies that
lim sup
ε→0

sup
[0,T ]

|Aεt − L0
t | ≤ sup

[0,T ]×[−δ,δ]
|Lxt − L0

t |
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a.s. Letting δ → 0, using [23, Corollary 1.8 page 226], completes the proof.

Point (d). Here β = 5. This is very similar to point (a) when β = 1 and we only sketch the proof.

We set γ = 6c5 and recall that aε = ε/γ. Since ψ is bounded on R and satisfies ψ(z)
|z|→∞∼ |81z|−1,

(15)

∫ x

−x
ψ(z)dz

x→∞∼ 2 log x

81
.

Proceeding as previously, we can show rigorously that, for any δ > 0, uniformly in t ∈ [0, T ],

T εt =

∫ t

0

γ2ψ(γWs/ε)ds

ε| log ε|
'
∫ t

0

γ2ψ(γWs/ε)ds

ε| log ε|
1{|Ws|≤δ} =

∫ δ

−δ

γ2ψ(γx/ε)Lxt dx

ε| log ε|
,

whence

T εt '
( γ

| log ε|

∫ δγ/ε

−δγ/ε
ψ(x)dx

)(
L0
t ± sup

[0,T ]×[−δ,δ]
|Lxt − L0

t |
)
' 2γ

81

(
L0
t ± sup

[0,T ]×[−δ,δ]
|Lxt − L0

t |
)

by (15). We conclude by letting δ tend to 0, since 2γ/81 = 4c5/27 = σ2
5 .

Point (b), general case. Here β ∈ (1, 5) and aε = ε/γ with γ = (β+1)cβ . Recall that α = (β+1)/3,
whence 1/α− 2 = (1− 2β)/(β + 1). First, recalling that Kη

t was defined in Theorem 4 and using the
occupation times formula,

Kη
t =

∫
R

sgn(x)|x|(1−2β)/(β+1)1{|x|≥η}L
x
t dx =

∫
|x|≤ST

sgn(x)|x|(1−2β)/(β+1)1{|x|≥η}L
x
t dx,

where ST = supt∈[0,T ] |Wt|, since Lxt = 0 for all t ∈ [0, T ], all |x| > ST . By symmetry, we may write

Kη
t =

∫
|x|≤ST

sgn(x)|x|(1−2β)/(β+1)1{|x|≥η}(L
x
t − L0

t )dx.

But we know from [23, Corollary 1.8 page 226] that for all θ ∈ (0, 1/2), all T > 0,

Mθ,T = sup
[0,T ]×R

|x|−θ|Lxt − L0
t | <∞ a.s.

Since (1− 2β)/(β + 1) > −3/2 (because β < 5), we deduce that (Kη
t )t≥0 a.s. converges uniformly on

[0, T ], as η → 0, to

Kt =

∫
|x|≤ST

sgn(x)|x|(1−2β)/(β+1)(Lxt − L0
t )dx.

By oddness of φ (and since ε1/αa−2
ε = γ2ε1/α−2 = γ2ε(1−2β)/(β+1)), we can also write

ε1/αHε
t =γ2ε(1−2β)/(β+1)

∫ t

0

φ(γWs/ε)ds

=

∫
R
γ2ε(1−2β)/(β+1)φ(γx/ε)Lxt dx

=

∫
|x|≤ST

γ2ε(1−2β)/(β+1)φ(γx/ε)(Lxt − L0
t )dx.

Hence

sup
[0,T ]

|ε1/αHε
t − (β + 1)1/α−2c

1/α
β Kt|

≤
∫
|x|≤ST

∣∣∣γ2ε(1−2β)/(β+1)φ(γx/ε)− (β + 1)1/α−2c
1/α
β sgn(x)|x|(1−2β)/(β+1)

∣∣∣ sup
[0,T ]

|Lxt − L0
t |dx

≤Mθ,T

∫
|x|≤ST

∣∣∣γ2ε(1−2β)/(β+1)φ(γx/ε)− (β + 1)1/α−2c
1/α
β sgn(x)|x|(1−2β)/(β+1)

∣∣∣|x|θdx
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for any θ ∈ (0, 1/2). Using the equivalence φ(z)
|z|→∞∼ (β + 1)−2sgn(z)|z|(1−2β)/(β+1), we see that

γ2ε(1−2β)/(β+1)φ(γx/ε)→γ2+(1−2β)/(β+1)(β + 1)−2sgn(x)|x|(1−2β)/(β+1)

=(β + 1)1/α−2c
1/α
β sgn(x)|x|(1−2β)/(β+1).

Using furthermore the bound |φ(z)| ≤ C|z|(1−2β)/(β+1) and that (1 − 2β)/(β + 1) > −3/2, we may
choose θ ∈ (0, 1/2) such that θ+ (1− 2β)/(β + 1) > −1 and conclude by dominated convergence that

lim
ε→0

sup
[0,T ]

|ε1/αHε
t − (β + 1)−2Kt| = 0 a.s.

Point (c). Here β = 1, α = 2/3 and aε = ε| log ε|/2. No principal value is needed here and we have,
with the notation of Theorem 4,

Kt = lim
η→0

∫ t

0

sgn(Ws)|Ws|−1/21{|Ws|≥η}ds =

∫ t

0

sgn(Ws)|Ws|−1/2ds.

Also, we have

|ε log ε|3/2Hε
t = |ε log ε|3/2a−2

ε

∫ t

0

φ(Ws/aε)ds = 4|ε log ε|−1/2

∫ t

0

φ(2Ws/|ε log ε|)ds.

Using that φ(z)
|z|→∞∼ sgn(z)|z|−1/2/4, that |φ(z)| ≤ C|z|−1/2 and that

∫ T
0
|Ws|−1/2ds < ∞ a.s., one

verifies, by dominated convergence, that

lim
ε→0

sup
[0,T ]

∣∣∣|ε log ε|3/2Hε
t−Kt/

√
2
∣∣∣ ≤ lim

ε→0

∫ T

0

∣∣∣4|ε log ε|−1/2φ(2Ws/|ε log ε|)−sgn(Ws)|Ws|−1/2/
√

2
∣∣∣ds = 0

a.s., as desired. �

We now give the

Proof of Theorem 2-(c)-(d) when X0 = V0 = 0. Fix β ∈ [1, 5) and a Brownian motion (Wt)t≥0, denote
by (L0

t )t≥0 its local time and by τt = inf{u ≥ 0 : L0
u > t}. Consider the process (Kt)t≥0 defined in

Theorem 4 with α = (β + 1)/3.

For each ε > 0, consider the processes (Aεt)t≥0, (τ εt )t≥0, (V εt )t≥0 and (Hε
t )t≥0 built in Lemma 6

with the choice

aε = ε/[(β + 1)cβ ] if β ∈ (1, 5) and aε = ε| log ε|/2 if β = 1.

Since X0 = V0 = 0, we know that

(16) (Xt/ε)t≥0
d
= (Hε

τεt
)t≥0.

Point (c): β ∈ (1, 5). We want to prove that (ε1/αXt/ε)t≥0
f.d.→ (σβS

(α)
t )t≥0. By (16), it is sufficient

to verify that for each t ≥ 0 fixed,

∆t(ε) = |ε1/αHε
τεt
− (β + 1)1/α−2c

1/α
β Kτt | → 0 a.s.

Indeed, Theorem 4 tells us that S
(α)
t := σ−1

β (β+ 1)1/α−2c
1/α
β Kτt is a symmetric α-stable process with

E[exp(iξS
(α)
t )] = exp(−καt|σ−1

β (β + 1)1/α−2c
1/α
β ξ|α) = exp(−t|ξ|α)

by definition of σβ and κα, see Subsections 1.4 and 2.2.
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By Lemma 9-(a), sup[0,T ] |Aεt − L0
t | → 0 a.s. Since (τt)t≥0, the generalized inverse of (L0

t )t≥0, has

no deterministic time of jump, we deduce from Lemma 8-(a) that τ εt → τt a.s. (for each deterministic
t ≥ 0 fixed). And by Lemma 9-(b),

(17) lim
ε→0

sup
[0,T ]

|ε1/αHε
t − (β + 1)1/α−2c

1/α
β Kt| = 0 a.s. for all T > 0.

All in all,

∆t(ε) ≤ |ε1/αHε
τεt
− (β + 1)1/α−2c

1/α
β Kτεt

|+ (β + 1)1/α−2c
1/α
β |Kτεt

−Kτt |,

which a.s. tends to 0: for the first term, we use that T = supε∈(0,1) τ
ε
t < ∞ a.s. and (17). For the

second one, we use that (Kt)t≥0 is a.s. continuous and that τ εt → τt a.s.

Point (d): β = 1. We want to verify that (|ε log ε|3/2Xt/ε)t≥0
f.d.→ (σ1S

(2/3)
t )t≥0. By (16), it is

sufficient to verify that for each t ≥ 0 fixed, a.s.,

∆′t(ε) =
∣∣∣|ε log ε|3/2Hε

τεt
−Kτt/

√
2
∣∣∣→ 0.

Indeed, Theorem 4 tells us that (S
(2/3)
t )t≥0 = (

√
2σ1)−1Kτt is a symmetric α-stable process with

E[exp(iξS
(2/3)
t )] = exp(−κ2/3t|(

√
2σ1)−1ξ|2/3) = exp(−t|ξ|2/3)

by definition of σ1 and κ2/3, see Subsections 1.4 and 2.2.

As in point (c), Lemmas 9-(a) and 8-(a) imply that |τ εt − τt| → 0 a.s. for each t ≥ 0, and

(18) lim
ε→0

sup
[0,T ]

||ε log ε|3/2Hε
t −Kt/

√
2| = 0 a.s. for all T > 0.

by Lemma 9-(d). Thus

∆′t(ε) ≤
∣∣∣|ε log ε|3/2Hε

τεt
−Kτεt

/
√

2
∣∣∣+ |Kτεt

−Kτt |/
√

2→ 0

since T = supε∈(0,1) τ
ε
t <∞ a.s. and by continuity of (Kt)t≥0. �

3.5. The diffusive case. This case is standard, see Jacod-Shiryaev [12, Chapter VIII, Section 3f].

Proof of Theorem 2-(a) when X0 = V0 = 0. We assume that β > 5. Since (Vt)t≥0 is a regular diffu-
sion, see Remark 7, and since µβ is a probability measure (because β > 1), we classically deduce, see
e.g. Kallenberg [14, Lemma 23.17 page 466 and Thm 23.14 page 464], that

(i) Vt tends in law to µβ as t→∞,

(ii) for all ϕ ∈ L1(R, µβ), limt→∞ t−1
∫ t

0
ϕ(Vs)ds =

∫
R ϕdµβ a.s.

The function

g(v) = 2

∫ v

0

Θ−β(x)

∫ ∞
x

uΘβ(u)dudx

is odd (since Θ is even and
∫
R uΘβ(u)dudx = 0) and solves the Poisson equation

g′′(v)− βF (v)g′(v) = −2v,

whence, by the Itô formula,

g(Vt) =

∫ t

0

g′(Vs)dBs −
∫ t

0

Vsds, i.e. Xt =

∫ t

0

g′(Vs)dBs − g(Vt).

Consequently, we have ε1/2Xt/ε = M ε
t − ε1/2g(Vt/ε), where M ε

t = ε1/2
∫ t/ε

0
g′(Vs)dBs.

For each t ≥ 0, ε1/2g(Vt/ε) tends to 0 in probability: this follows from point (i) above. Here is why

we deal with finite-dimensional distributions: it is not clear that supt∈[0,1] |ε1/2g(Vt/ε)| tends to 0.
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We now show that (M ε
t )t≥0 tends in law (in the usual sense of continuous processes) to (σβWt)t≥0,

and this will complete the proof. It suffices, see e.g. Jacod-Shiryaev [12, Theorem VIII-3.11 page 473],
to verify that for each t ≥ 0, limε→0〈M ε〉t = σ2

βt in probability. But

〈M ε〉t = ε

∫ t/ε

0

[g′(Vs)]
2ds,

which a.s. tends to σ2
βt by point (ii). Indeed, using a symmetry argument,∫

R
[g′(v)]2µβ(dv) = 8

∫ ∞
0

[
Θ−β(v)

∫ ∞
v

uΘβ(u)du
]2
µβ(dv) = 8cβ

∫ ∞
0

Θ−β(v)
[ ∫ ∞

v

uΘβ(u)du
]2

dv = σ2
β ,

recall Subsection 1.4. This value is finite, since Θ−β(v)[
∫∞
v
uΘβ(u)du]2 ∼ (β − 2)−2v4−β as v → ∞

by (6) and since β > 5. �

Remark 10. When β = 5, our goal is to prove that (ε1/2| log ε|−1/2Xt/ε)t≥0
f.d.−→ (σ5Wt)t≥0. We can

use exactly the same proof, provided we can show that for each t ≥ 0, in probability, as ε→ 0,

(19)
ε

| log ε|

∫ t/ε

0

[g′(Vs)]
2ds −→ σ2

5t.

Proof of Theorem 2-(b) when X0 = V0 = 0. Here β = 5 and our goal is to verify (19) or equivalently,
that for each t ≥ 0,

Jεt = | log ε|−1

∫ t

0

[g′(V εs )]2ds −→ σ2
5t,

where V εt = h−1(Wτεt
/aε) and where (τ εt )t≥0, the inverse of Aεt = εa−2

ε

∫ t
0
[σ(Ws/aε)]

−2ds, were intro-
duced in Lemma 6. We choose aε = ε/[6c5], as prescribed by Lemma 9.

As usual,

Jεt =

∫ t

0

[g′(h−1(Wτεs
/aε))]

2

| log ε|
ds =

∫ τεt

0

ε[g′(h−1(Wu/aε))]
2

a2
ε | log ε|[σ(Wu/aε)]2

du =
ε

a2
ε | log ε|

∫ τεt

0

ψ(Wu/aε)du = T ετεt

with the notation of Lemma 9.

By Lemma 9-(a), sup[0,T ] |Aεt − L0
t | → 0 a.s. Since (τt)t≥0, the generalized inverse of (L0

t )t≥0, has

no deterministic time of jump, we deduce from Lemma 8-(a) that τ εt → τt a.s. (for each deterministic
t ≥ 0 fixed). And by Lemma 9-(d),

(20) sup
[0,T ]

|T εt − σ2
5L

0
t | → 0 a.s. for all T > 0.

All in all, for t ≥ 0 fixed,

|Jεt − σ2
5t| ≤ |T ετεt − σ

2
5L

0
τεt
|+ |σ2

5L
0
τεt
− σ2

5L
0
τt |+ |σ

2
5L

0
τt − σ

2
5t|

which a.s. tends to 0: for the first term, we use that T = supε∈(0,1) τ
ε
t is a.s. finite and (20). For the

second one, we use that (L0
t )t≥0 is a.s. continuous and that τ εt → τt a.s.. For the last one, we use that

(for t ≥ 0 fixed) L0
τt = t a.s. �

3.6. Conclusion. We have proved Theorem 2 when X0 = V0 = 0. It remains to check the following.

Lemma 11. If Theorem 2 holds when X0 = V0 = 0 a.s., then it holds for any initial condition.

Proof. We divide the proof into three steps.

Step 1. We first verify that for any β > 0 (we will use only the case β ≥ 1), there is a constant
C > 0 such that, for (Vt)t≥0 the solution to (9) with V0 = 0, for all t ≥ 0,

E[V 2
t + |Vt|β+1] ≤ C(1 + t).
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To this aim, we introduce the even function

`(v) = 2

∫ v

0

Θ−β(x)

∫ x

0

Θβ(u)dudx,

which solves the Poisson equation `′′(v)− βF (v)`′(v) = 2. Hence

E[`(Vt)] = `(V0) +

∫ t

0

E
[1

2
`′′(Vs)−

1

2
βF (Vs)`

′(Vs)
]
ds = t

by the Itô formula and since `(V0) = `(0) = 0. Using (6), we see that there is a constant c > 0 such
that, as |v| → ∞,

`(v) ∼ c|v|β+1 if β > 1, `(v) ∼ c|v|2 log |v| if β = 1 and `(v) ∼ cv2 if β ∈ (0, 1).

Thus in any case, we can find a constant C such that v2 + |v|β+1 ≤ C(`(v) + 1) for all v ∈ R, whence

E[V 2
t + |Vt|β+1] ≤ C(1 + E[`(Vt)]) = C(1 + t).

Step 2. We prove the lemma when β ≥ 1, i.e. in the cases (a)-(b)-(c)-(d) of Theorem 1. Assume
that for some fixed β ≥ 1, Theorem 2 holds when starting from (0, 0) and consider the solution
(Xt, Vt)t≥0 to (9) starting from some (X0, V0). We introduce

τ = inf{t ≥ 0 : Vt = 0},
which is a.s. finite by recurrence, see Remark 7. Then

(X̂t, V̂t) = (Xτ+t −Xτ , Vτ+t)

solves (9), starts from (0, 0), and is independent of τ by the strong Markov property. We thus

know that (v
(β)
ε X̂t/ε)t≥0

f.d.→ (X
(β)
t )t≥0, where v

(β)
ε → 0 and (X

(β)
t )t≥0 are the rate and limit process

appearing in Theorem 2. We now prove that for each t ≥ 0, v
(β)
ε |Xt/ε − X̂t/ε| → 0 in probability, and

this will complete the proof.

We introduce D1 = |X0|+
∫ 2τ

0
|Vs|ds and D2,ε

t = 1{t/ε≥τ}
∫ t/ε
t/ε−τ |V̂s|ds and observe that

|Xt/ε − X̂t/ε| ≤ D1 +D2,ε
t ,

because if t/ε ≤ τ , then

|Xt/ε − X̂t/ε| ≤ |Xt/ε|+ |Xτ+t/ε −Xτ | ≤ |X0|+
∫ t/ε

0

|Vs|ds+

∫ τ+t/ε

τ

|Vs|ds ≤ D1,

while if t/ε > τ , then

|Xt/ε − X̂t/ε| = |Xτ + X̂t/ε−τ − X̂t/ε| ≤ |X0|+
∫ τ

0

|Vs|ds+

∫ t/ε

t/ε−τ
|V̂s|ds ≤ D1 +D2,ε

t .

Of course, v
(β)
ε D1 a.s. tends to 0, because D1 is finite. And using Step 1,

E[v(β)
ε D2,ε

t |Fτ ] ≤ 1{t/ε≥τ}Cv
(β)
ε

∫ t/ε

t/ε−τ
(1 + s)1/(β+1)ds ≤ Cτv(β)

ε (1 + t/ε)1/(β+1),

which a.s. tends to 0 for all values of β ≥ 1. Hence v
(β)
ε D2,ε

t tends to 0 in probability.

Step 3. We finally prove the lemma when β ∈ (0, 1). First,

(ε1/2Vt/ε)t≥0
d−→ (U

(1−β)
t )t≥0 =⇒ (ε3/2Xt/ε, ε

1/2Vt/ε)t≥0
d−→
(∫ t

0

U (1−β)
s ds, U

(1−β)
t

)
t≥0

,

simply because ε3/2Xt/ε = ε3/2X0 +
∫ t

0
(ε1/2Vs/ε)ds and because we deal with uniform convergence on

compact time intervals.



22 NICOLAS FOURNIER AND CAMILLE TARDIF

We assume that (ε1/2Vt/ε)t≥0
d−→ (U

(1−β)
t )t≥0 holds true when V0 = 0, consider any other solution

(Vt)≥0, introduce τ = inf{t ≥ 0 : Vt = 0} and V̂t = Vτ+t as previously. We will check that, in
probability, for all T > 0,

∆ε
T = ε1/2 sup

[0,T ]

|Vt/ε − V̂t/ε| → 0

and this will complete the proof, since we know that (ε1/2V̂t/ε)t≥0
d−→ (U

(1−β)
t )t≥0.

It holds that ∆ε
T ≤ ∆1,ε + ∆2,ε

T , where

∆1,ε = 2ε1/2 sup
[0,2τ ]

|Vs| and ∆2,ε
T = sup

[0,T ]

ε1/2|V̂(t+ετ)/ε − V̂t/ε|,

because if t ∈ [0, T ] and t/ε ≤ τ , then

ε1/2|Vt/ε − V̂t/ε| ≤ ε1/2|Vt/ε|+ ε1/2|Vτ+t/ε| ≤ ∆1,ε,

while if t ∈ [0, T ] and t/ε > τ , then

ε1/2|Vt/ε − V̂t/ε| = ε1/2|V̂t/ε−τ − V̂t/ε| ≤ ∆2,ε
T .

First, ∆1,ε a.s. tends to 0. Next, it is not hard to check that ∆2,ε
T tends in probability to 0, using that

(ε1/2V̂t/ε)t≥0 tends in law, in C([0,∞),R), to the continuous process (U
(1−β)
t )t≥0. �

3.7. Decoupling. We now give the

Proof of Theorem 3. Let β > 1 be fixed, as well as the solution (Xt, Vt)t≥0 to (9), starting from
some given initial condition (X0, V0) and driven by some Brownian motion (Bt)t≥0. We introduce
Ft = σ(X0, V0, Bs, s ≤ t). We know that

(v(β)
ε Xt/ε)t≥0

f.d.→ (X
(β)
t )t≥0,

where v
(β)
ε → 0 and (X

(β)
t )t≥0 are the rate and limit process appearing in Theorem 2 (case (a), (b) or

(c)). We fix t > 0, ϕ ∈ C1
b (R) and ψ ∈ Bb(R), and our goal is to verify that, setting µβ(ψ) =

∫
R ψdµβ ,

∆ε =
∣∣∣E[ϕ(v(β)

ε Xt/ε)ψ(Vt/ε)]− E[ϕ(X
(β)
t )]µβ(ψ)

∣∣∣→ 0 as ε→ 0.

Step 1. We check here that for any fixed h ∈ (0, t),

δε,h = E
[∣∣∣E[ψ(Vt/ε)|F(t−h)/ε]− µβ(ψ)

∣∣∣]→ 0

as ε → 0. We use the common notation notation Ptψ(v) = Ev[ψ(Vt)] (although we still use E and P
without subscript when working with the initial condition V0). We introduce the total variation norm
|| · ||TV . By the Markov property,

δε,h = E[|Ph/εψ(V(t−h)/ε)− µβ(ψ)|] ≤ δ1
ε,h + δ2

ε,h,

where, introducing some µβ-distributed V̄ε,h such that P(V̄ε,h 6= V(t−h)/ε) = ||Law(V(t−h)/ε)− µβ ||TV ,

δ1
ε,h =E[|Ph/εψ(V(t−h)/ε)− Ph/εψ(V̄ε,h)|]
≤2||Ph/εψ||∞P(V̄ε,h 6= V(t−h)/ε)

≤2||ψ||∞||Law(V(t−h)/ε)− µβ ||TV ,
and

δ2
ε,h = E[|Ph/εψ(V̄ε,h)− µβ(ψ)|] =

∫
R
|Ph/εψ(v)− µβ(ψ)|µβ(dv).

But, by Remark (7) and [14, Lemma 23.17 page 466], ||Law(Vs)− µβ ||TV → 0 as s→∞. Hence δ1
ε,h

tends to 0 as ε → 0. We also have lims→∞ Psψ(v) = µβ(ψ) for all v ∈ R, so that δ2
ε,h tends to 0 by

dominated convergence.
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Step 2. For any h ∈ (0, t), we write ∆ε ≤ ∆1
ε,h + ∆2

ε,h + ∆3
ε,h + ∆4

ε,h, where

∆1
ε,h =

∣∣∣E[ϕ(v(β)
ε Xt/ε)ψ(Vt/ε)]− E[ϕ(v(β)

ε X(t−h)/ε)ψ(Vt/ε)]
∣∣∣,

∆2
ε,h =

∣∣∣E[ϕ(v(β)
ε X(t−h)/ε)ψ(Vt/ε)]− E[ϕ(v(β)

ε X(t−h)/ε)]µβ(ψ)
∣∣∣,

∆3
ε,h =

∣∣∣E[ϕ(v(β)
ε X(t−h)/ε)]µβ(ψ)− E[ϕ(X

(β)
t−h)]µβ(ψ)

∣∣∣,
∆4
ε,h =

∣∣∣E[ϕ(X
(β)
t−h)]µβ(ψ)− E[ϕ(X

(β)
t )]µβ(ψ)

∣∣∣.
By Theorem 2, limε→0 ∆3

ε,h = 0.

By Theorem 2 again, with C = ||ψ||∞(2||ϕ||∞ + ||ϕ′||∞)

lim sup
ε→0

∆1
ε,h ≤ C lim sup

ε→0
E[|v(β)

ε Xt/ε − v(β)
ε X(t−h)/ε| ∧ 1] = CE[|X(β)

t −X(β)
t−h| ∧ 1].

We also have ∆4
ε,h ≤ CE[|X(β)

t −X(β)
t−h| ∧ 1].

By Step 1, ∆2
ε,h ≤ ||ϕ||∞E[|E[ψ(Vt/ε)|F(t−h)/ε]− µβ(ψ)|]→ 0 as ε→ 0.

All in all,

lim sup
ε→0

∆ε ≤ 2CE[|X(β)
t −X(β)

t−h| ∧ 1]

for any h ∈ (0, t). Letting h ↓ 0 ends the proof, by dominated convergence and since the process

(X
(β)
t )t≥0 is a.s. continuous at t ≥ 0: a Lévy process is generally discontinuous but never has any

deterministic jump time. �

3.8. The kinetic Fokker-Planck equation. We end the paper with the proof of the P.D.E. state-
ment, which follows from Theorems 2 and 3.

Proof of Theorem 1. Fix β > 0 and f0 ∈ P(R × R), and consider the solution (Xt, Vt)t≥0 to (9)
starting from (X0, V0) ∼ f0. Denote, for each t ≥ 0, by ft the law of (Xt, Vt). By a.s. continuity of
t 7→ (Xt, Vt), it is clear that (ft)t≥0 ∈ C([0,∞),P(R × R)). A simple application of the Itô formula
shows that for all ϕ ∈ C2

c (R× R),

E[ϕ(Xt, Vt)] = E[ϕ(X0, V0)] +

∫ t

0

E
[
Vs∂xϕ(Xs, Vs) +

1

2
∂vvϕ(Xs, Vs)−

β

2
F (Vs)∂vϕ(Xs, Vs)

]
ds,

which may be written as∫
R×R

ϕ(x, v)ft(dx, dv) =

∫
R×R

ϕ(x, v)f0(dx,dv)(21)

+

∫ t

0

∫
R×R

[
v∂xϕ(x, v) +

1

2
∂vvϕ(x, v)− β

2
F (v)∂vϕ(x, v)

]
fs(dx, dv)ds.

In other words, (ft)t≥0 solves (7) in the sense of distributions.

Points (a), (b) and (c) then immediately follow from Theorem 3. For example concerning (c),
where β ∈ (1, 5), we know that for each t > 0, (ε1/αXt/ε, Vt/ε) converges in law, as ε → 0, to

(σβS
(α)
t , V̄ ), where α = (β + 1)/3, where E[exp(iξS

(α)
t )] = exp(−t|ξ|α) and where V̄ is µβ-distributed

and independent of S
(α)
t . In other words, the law of (σβS

(α)
t , V̄ ) is gt ⊗ µβ , where gt is characterized

by its Fourier transform
∫
R gt(x)eiξxdx = exp(−t|σβξ|α). Since finally the law of (ε1/αXt/ε, Vt/ε) is

ε−1/αfε−1t(ε
−1/αx, v), with the abuse of notation introduced before the statement of Theorem 1, we

conclude that indeed, for each t > 0,

lim
ε→0

ε−1/αfε−1t(ε
−1/αx, v) = gt ⊗ µβ in P(R× R).
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Similarly, point (d), where β = 1, follows from Theorem 2-(d).

We finally check (e), where β ∈ (0, 1). By Theorem 2-(e), we know that for each t > 0 fixed,

(ε3/2Xt/ε, ε
1/2Vt/ε) converges in law, as ε→ 0, to (

∫ t
0
U

(1−β)
s ds, U

(1−β)
t ). Denoting by ht ∈ P(R× R)

the law of this last random variable, we conclude that for each t > 0,

lim
ε→0

ε−2fε−1t(ε
−3/2x, ε−1/2v) = ht in P(R× R).

We of course have ht(−x,−v) = ht(x, v) for all t ≥ 0 and

ht(R× {0}) = P(U
(1−β)
t = 0) = 0 for all t > 0

by Definition 5 of U
(1−β)
t . It remains to check (8), i.e. that∫

R×R
ϕ(x, v)ht(dx, dv)=ϕ(0, 0)+

∫ t

0

∫
R×R

[
v∂xϕ(x, v)+

1

2
∂vvϕ(x, v)− β

2v
∂vϕ(x, v)

]
hs(dx, dv)ds(22)

for all t ≥ 0 and all ϕ ∈ C2
c (R × R∗). To this end, we use that ht is the limit, in P(R × R), of

f εt (x, v) = ε−2fε−1t(ε
−3/2x, ε−1/2v), where (ft)t≥0 is the weak solution to (7) with f0 = δ(0,0) and

F (v) = v/(1 + v2). Starting from (21) and using a change of variables, we find that∫
R×R

ϕ(x, v)f εt (dx, dv) = ϕ(0, 0)(23)

+

∫ t

0

∫
R×R

[
v∂xϕ(x, v) +

1

2
∂vvϕ(x, v)− β

2
Fε(v)∂vϕ(x, v)

]
f εs(dx, dv)ds

for all t ≥ 0, all ϕ ∈ C2
c (R× R), where

Fε(v) = ε−1/2F (ε−1/2v) =
v

ε+ v2
.

Letting ε→ 0 in (23), we conclude that (22) holds true if ϕ ∈ C2
c (R×R∗). There is no issue to check

that

lim
ε→0

∫ t

0

∫
R×R

Fε(v)∂vϕ(x, v)f εs(dx, dv)ds =

∫ t

0

∫
R×R

1

v
∂vϕ(x, v)hs(dx, dv)ds,

because since ϕ is supported in a compact subset of R× R∗, we have

lim
ε→0

sup
(x,v)∈R×R

|v−1 − Fε(v)||∂vϕ(x, v)| = 0,

and the function (x, v) 7→ v−1∂vϕ(x, v) is continuous and bounded on R× R. �
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