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Riccati Observer Design for Pose, Linear Velocity and Gravity Direction
Estimation using Landmark Position and IMU Measurements

Minh-Duc Hua, Guillaume Allibert

Abstract— This paper revisits the problem of estimating the
pose (i.e. position and attitude) of a robotic vehicle by combining
landmark position measurements provided by a stereo camera
with measurements of an Inertial Measurement Unit. The
distinguished features with respect to similar works on the
topic are two folds: First, the vehicle’s linear velocity is not
measured neither in the body frame nor in the inertial frame;
Second, no prior knowledge on the gravity direction expressed
in the inertial frame is required. Instead both the linear velocity
and the gravity direction are estimated together with the pose.
Another innovative feature of the paper relies on the idea of
over-parametrizing the gravity direction vector evolving on the
unit 2-sphere S2 by an element of SO(3) so that the error
system in first order approximations can be written in an
“elegant” linear time-varying form. The proposed deterministic
observer is accompanied with an observability analysis that
points out an explicit observability condition under which local
exponential stability is granted. Reported simulation results
further indicate that the observer’s domain of convergence is
large.

I. INTRODUCTION

A robust and reliable pose (i.e. position and orientation)
estimator is a key requirement for robust and efficient au-
tonomous navigation of robotic vehicles. The problem of
full pose estimation of a rigid body moving in a three-
dimensional space is highly nonlinear, essentially due to its
orientation (i.e. attitude) that lives in the compact Lie group
SO(3) encoded in the larger group SE(3) of 3D rigid trans-
formation. But high nonlinearity is not the unique source of
complexity. Indeed, topological obstructions associated with
all groups containing rotations impede to exactly linearize
the equations of motion evolving on these groups and also
exclude the possibility of designing continuous estimators on
these groups that allow for global asymptotic stability of the
zero estimation errors [7].

Classical approaches for state estimation are typically
based on filtering techniques such as extended Kalman
filters (EKF), unscented Kalman filters or particle filters.
However, nonlinear observers have increasingly become an
alternative to these classical techniques, starting with the
work of Salcudean on attitude observer [20] and subsequent
contributions by other researchers [1], [5], [6], [8], [10],
[15]–[19]. Full pose observer design has recently attracted
some particular attention [2]–[4], [9], [11], [13]–[15], [21]–
[23]. Depending on the nature of measurements, several
research directions have been investigated. For instance, in
the case where the complete pose is measured together with
the linear and angular velocities, two observers posed on
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SE(3) have been proposed by Baldwin et al. [3], achieving
almost global asymptotic stability of the estimation errors.
In the same context an invariant observer on SO(3) × R3

has been derived by Barczyk et al. [4] on the basis of a
recently elaborated theory on invariant observer [8]. On the
other hand, pose estimation from the observations of known
source points (or landmarks) is significantly more challeng-
ing than the previously mentioned case. As long as bearing
measurements in the body frame of known landmarks are
concerned, the pose estimation problem is classically referred
to as Perspective-n-Point (PnP) problem that is typically
associated with the use of a monocular perspective camera
for bearing measurements. Even though the PnP problem
has been much studied with algebraic approaches [12], it
has seldom been addressed by nonlinear observer design
techniques [2], [11]. Noteworthily, in the excellent recent
work of Hamel and Samson [11] some Riccati observers for
this PnP problem have been derived on the basis of a Riccati
observer design framework developed in the same paper. A
noticeable conclusion of this work is that, by contrast with
static PnP solutions, the body motion is not only allowed
but also used as a source of information to improve the
estimation performance. In particular, in the case where the
linear velocity expressed in the inertial frame is measured,
the body motion with sufficient persistence of excitation is
instrumental for pose estimation from bearing measurements
of a solitary landmark.

In parallel with the PnP problem that exploits landmark
bearing measurements, the problem of pose observer design
using landmark position measurements in the body frame has
also been increasingly investigated [13], [14], [22], [23], with
motivations strongly related to robotic vision applications
that involve a stereo camera or a Kinect sensor. For instance,
an observer posed on SO(3) × R3 that ensures almost
global asymptotic stability of the estimation errors has been
developed by Vasconcelos et al. [22]. In some prior works
[13], [14] of one of the authors of this paper, gradient-like
nonlinear observers on SE(3) have been designed directly
on output spaces, achieving either local exponential stability
or almost global asymptotic stability. In [23] a hybrid tech-
nique has been incorporated in some observers designed on
SE(3), allowing one to overcome the topological obstruction
associated with this group so that global asymptotic stability
is provable. It is interesting to note that the availability of
linear velocity measurements in either the inertial frame or
the body frame is also an important source of the variety of
existing pose observers. As a matter of fact, most existing
pose observers relying on landmark position measurements



necessitate not only position measurements of at least three
non-aligned landmarks but also (biased) measurements of
the linear and angular velocities. Whereas three non-aligned
landmarks guarantees that the pose is observable, velocities
measurements on the other hand allow one to address the
observer design uniquely with kinematic equations. How-
ever, this latter technical convenience is often hindered by
some practical issues in many robotic applications. Indeed,
whereas the angular velocity can be easily measured at
high frequency and precision with low-price (or reasonable-
price) MEMS gyrometers, linear velocity measurements in
either the inertial frame or the body frame are by contrast
more difficult (or even impossible) to obtain for various
reasons. For instance, the use of a GPS sensor to measure
the linear velocity in the inertial frame is simply excluded
in indoor or GPS-denied environments. On the other hand,
obtaining linear velocity measurements in the body frame
is often a “luxury”. Indeed, the current technologies have
not yet allowed for reliable, small-size and cost-affordable
body velocity sensors for mini aerial drone applications.
Moreover, Doppler velocity sensors such as Doppler Velocity
Log (DVL) commonly used for the navigation of autonomous
underwater vehicles are extremely expensive and difficult to
implement due to their size and weight. For those reasons, ac-
celerometer measurements have been recently exploited as an
alternative to linear velocity measurements for pose observer
design as proposed in [9], which relies on the assumption
that the gravity direction in the inertial frame is known a
priori. The latter assumption is, however, rather restrictive
from a practical point of view for some applications such
as stereo visual odometry where the reference keyframe is
regularly changed (and so are the inertial frame and the
gravity direction vector expressed in this frame) when the
number of point correspondences is dropped below a certain
threshold.

In the present paper the pose observer design from land-
mark position measurements in combination with gyrometer
and accelerometer readings is revisited, but here without
relying on the assumption on the gravity direction used in
[9]. The design of the proposed observer is inspired by
a recent deterministic Riccati observer design framework
[11] that relies on the solutions to the Continuous Riccati
Equation (CRE). Without using linear velocity measurements
and prior knowledge of the gravity direction in the inertial
frame increases significantly the complexity of observer
design and its associated convergence and stability analysis.
Interestingly, the existence of three non-aligned landmarks
is here again required to address the structural question of
observability that in turn ensures the exponential stability
of the proposed observer. Another innovative feature of the
proposed solution relies on the idea of over-parametrizing
the gravity direction vector evolving on the unit 2-sphere S2

by an element of SO(3) so that the error system in first order
approximations can be written in an “elegant” linear time-
varying (LTV) form that allows for direct application of a
modified version of the Riccati observer design framework
proposed in [11]. Since only local exponential stability

is demonstrated, simulation results are also provided as a
complement to show the large domain of attraction of the
proposed observer.

The paper is organized as follows. Notation, system
equations and measurements used for observer design are
specified in Section II. In the same section a few basic
definitions and conditions about uniform observability are
recalled, together with a modified version of the deterministic
Riccati observer design framework proposed in [11]. In
Section III the observer design is presented and an associated
observability and stability analysis is given in Section IV.
Simulation results illustrating the observer performance are
reported in Section V. A short concluding section then
follows.

II. PRELIMINARY MATERIAL

A. Notation

• {e1, e2, e3} denotes the canonical basis of R3 and [·]×
denotes the skew-symmetric matrix associated with the cross
product, i.e. [x]×y = x×y,∀x,y ∈ R3. The identity matrix
of Rn×n is denoted as In and πx , I3 − xx>, ∀x ∈ S2, is
the projection operator onto the plane orthogonal to x. Note
that πx = −[x]2×, ∀x ∈ S2.
• {I} and {B} denote, respectively, an inertial frame at-
tached to the Earth and a body-fixed frame attached to the
vehicle.
• ξ ∈ R3 denotes the vehicle’s position expressed in {I}.
Its attitude is represented by a rotation matrix R ∈ SO(3) of
the frame {B} relative to {I}.
• V ∈ R3 and Ω ∈ R3 are the vectors of coordinates of
the vehicle’s linear and angular velocities expressed in {B}.
Its linear velocity expressed in {I} is denoted as v ∈ R3 so
that v = RV.
• γ̊ ∈ S2 and γ ∈ S2 denote the gravity direction vectors
expressed in {I} and {B}, respectively. One has γ = R>γ̊.

B. System equations and measurements

The vehicle kinematic equations are{
ξ̇ = RV

Ṙ = R[Ω]×

(1a)

(1b)

Assume that the vehicle is equipped with an Inertial Mea-
surement Unit that consists of a 3-axis gyrometer to measure
the angular velocity Ω ∈ R3 and a 3-axis accelerometer to
measure the so-called specific acceleration aB ∈ R3, ex-
pressed in {B}. Using the flat non-rotating Earth assumption,
one has [8]

V̇ = −[Ω]×V + aB + gγ (2)

where g is the gravity constant. In this work, we consider
the case where both γ̊ and γ are not known.

We further assume that the vehicle is equipped with a
stereo camera that provides the position measurements pi,
i ∈ {1, · · · , N}, expressed in {B} of N landmarks whose
positions p̊i expressed in {I} are also known a priori. One
verifies that

pi = R>(p̊i − ξ) (3)



C. Recalls of observability definitions and conditions

The following definitions and conditions are recalled for
the sake of completeness. Consider a LTV system{

ẋ = A(t)x + B(t)u
y = C(t)x

(4)

with x ∈ Rn the system state vector, u ∈ Rl the system
input vector, and y ∈ Rm the system output vector.

Definition 1 (uniform observability) System (4) is uniformly
observable if there exist δ, µ > 0 such that ∀t ≥ 0

W(t, t+δ) ,
1

δ

∫ t+δ

t

Φ>(t, s)C>(s)C(s)Φ(t, s)ds ≥ µIn (5)

with Φ(t, s) the transition matrix associated with A(t), i.e.
such that d

dtΦ(t, s) = A(t)Φ(t, s) with Φ(t, t) = In.

W(t, t + δ) is called the observability Gramian of Sys-
tem (4). When (5) is satisfied one also says that the pair
(A(t),C(t)) is uniformly observable. The following useful
condition points out a sufficient condition for uniform ob-
servability.

Lemma 1 (see [21]) If there exists a matrix-valued function
M(·) of dimension (p×n) (p ≥ 1) composed of row vectors
of N0 = C, Nk = Nk−1A+ Ṅk−1, k = 1, · · · such that for
some positive numbers δ̄, µ̄ and ∀t ≥ 0

1

δ̄

∫ t+δ̄

t

M>(s)M(s)ds ≥ µ̄In (6)

then the observability Gramian of System (4) satisfies con-
dition (5).

D. A modified version of an existing Riccati observer design
framework

The proposed observer design is based on the following
modified version of the deterministic observer design frame-
work developed in [11]. Although some modifications are
made, the proof for this version proceeds analogously to the
proof of [11, Theorem 3.1]. Consider the nonlinear system{

ẋ = A(x, t)x + u +O(|x|2) +O(|x||u|)
y = C(x, t)x +O(|x|2)

(7)

with x = [x>1 ,x
>
2 ]>, x1 ∈ Bn1

r (the closed ball in Rn1 of
radius r), x2 ∈ Rn2 , y ∈ Rm, C(x, t) a continuous matrix-
valued function uniformly bounded with respect to (w.r.t.) t
and uniformly continuous w.r.t. x, and A(x, t) of the form1

A(x, t) =

[
A1,1(t) 0

A2,1(x, t) A2,2(x1, t)

]
with A1,1(t) and A2,2(x1, t) continuous matrix-valued func-
tions uniformly bounded w.r.t. t and uniformly continuous
w.r.t. x1, and A2,1(x, t) verifying

A2,1(x, t)x1 = Ā2,1(x1, t)x1 +O(|x1||x2|)

1In fact, 2 modifications w.r.t. the observer design framework reported in
[11] are made. First, it is not necessary that n1 = n2 and r = 1. Second,
in [11] A is a matrix-valued function of x1 and t, i.e. A(x1, t), with the
matrices A2,1 and A2,2 of the form A2,1(x1, t) and A2,2(t).

with Ā2,1(x1, t) a continuous matrix-valued function uni-
formly bounded w.r.t. t and uniformly continuous w.r.t. x1.

Apply
u = −PC>Q̄(t)y (8)

with P ∈ R(n1+n2)×(n1+n2) a symmetric positive definite
matrix solution to the following CRE:

Ṗ = AP + PA> −PC>Q̄(t)CP + V̄(t) (9)

with P(0) ∈ R(n1+n2)×(n1+n2) a symmetric positive definite
matrix, Q̄(t) ∈ Rm×m bounded continuous symmetric pos-
itive semidefinite, and V̄(t) ∈ R(n1+n2)×(n1+n2) bounded
continuous symmetric positive definite.

Lemma 2 Consider System (7) and apply the input u cal-
culated according to (8) and (9) with the matrices Q̄(t) and
V̄(t) chosen larger than some positive matrices. If the pair
(A?(t),C?(t)), with A?(t) , A(0, t) and C?(t) , C(0, t),
is uniformly observable, then x = 0 is locally exponentially
stable.

The proof of this lemma proceeds identically to the one of
Theorem 3.1 and Corollary 3.2 in [11].

III. OBSERVER DESIGN

Let ξ̂ ∈ R3, R̂ ∈ SO(3), V̂ ∈ R3 and γ̂ ∈ S2 denote the
estimates of ξ, R, V and γ, respectively. The form of the
proposed observer is given by

˙̂
ξ = R̂V̂ − σξ

˙̂
R = R̂[Ω]× − [σR]×R̂

˙̂
V = −[Ω]×V̂ + aB + gγ̂ − σV

(10a)

(10b)

(10c)

where σξ,σR,σV ∈ R3 are innovation terms to be designed
and, in particular, the design of γ̂ will be thoroughly dis-
cussed thereafter.

For this application we need to make the following tech-
nical (but non-restrictive) assumption.

Assumption 1 The vehicle’s position ξ, linear velocity v,
angular velocity Ω and angular acceleration Ω̇ are bounded
for all time.

Defining the observer errors

ξ̃ , ξ − ξ̂, R̃ , RR̂>, Ṽ , V − V̂, γ̃ , γ − γ̂

then the design objective is the exponential stability of
(ξ̃, R̃, Ṽ, γ̃) = (0, I3,0,0). From (1), (2) and (10) one
verifies that

˙̃
ξ = (R̃− I3)R̂V̂ + R̃R̂Ṽ + σξ

˙̃R = R̃[σR]×
˙̃V = −[Ω]×Ṽ + g(γ − γ̂) + σV

(11a)

(11b)

(11c)

The next step consists in defining the dynamics of γ̂ and
working out first order approximations of the error system
complemented with first order approximations of the mea-
surement equations. The application to these approximations



of the Riccati observer design framework reported in Sec-
tion II-D will then provide us with the expressions of the
innovation terms.

In the case where the gravity direction vector expressed in
the inertial frame (i.e. γ̊) is known a priori, the estimate γ̂
of γ may be written as γ̂ = R̂>γ̊ (recalling that γ = R>γ̊)
and, thus, the observer design objective can only focus on the
exponential stability of (ξ̃, R̃, Ṽ) = (0, I3,0). However, we
address here a more challenging problem with γ̊ unknown.

The first thing one may ask for is a suitable parametriza-
tion for γ and γ̂. Bearing in mind that the Riccati observer
design framework [11] here employed involves a stage of
first order approximations of the error system, one quickly
figures out that all minimal parametrization techniques for
elements on S2 such as spherical coordinate system lead to
very complex and highly nonlinear equations. For instance,
one needs to develop first order approximations of the term
γ − γ̂ on the right-hand side of (11c). However, when the
spherical coordinate system is made use so that

γ =

sin θ cosφ
sin θ sinφ

cos θ

 , γ̂ =

sin θ̂ cos φ̂

sin θ̂ sin φ̂

cos θ̂


the first order approximations of γ − γ̂ (i.e. first order
functions of θ̃ , θ− θ̂ and φ̃ , φ− φ̂) are very complex for
observer design purposes. Moreover, the derivative equations
of θ̃ and φ̃ are not simple either.

Motivated by the above discussion, a more “elegant”
solution (i.e. parametrization) will be proposed next. The
underlying idea is to over-parametrize an element of S2

(dimension 2) by an element of SO(3) (dimension 3). More
precisely, we make use of a rotation matrix Q̂ ∈ SO(3) in
order to over-parametrize γ̂ ∈ S2 so that

γ̂ = Q̂>e3 (12)

Note also that there exist an infinity of matrices Q ∈ SO(3)
such that Q>e3 = γ. Then, the convergence of Q̂>e3 to
Q>e3 is clearly equivalent to the one of γ̂ to γ.

Now, let Q̃ , QQ̂> ∈ SO(3) denote the group error of
Q and Q̂ and let qQ̃ = (ηQ̃,νQ̃), with ηQ̃ ∈ B1

1 and νQ̃ ∈
B3

1 the real and imaginary parts, denote the Rodrigues unit
quaternion associated with Q̃. Rodrigues formula relating
qQ̃ to Q̃ is given by

Q̃ = I3 +2[νQ̃]×(ηQ̃I3 +[νQ̃]×) = I3 +[λQ̃]×+O(|λQ̃|
2)

with λQ̃ , 2sign(ηQ̃)νQ̃ ∈ B3
1 . One then deduces

γ − γ̂ = Q>e3 − Q̂>e3 = Q̂>(Q̃> − I3)e3

= Q̂>[e3]×λQ̃ +O(|λQ̃|2)

= λQ̃,1Q̂
>e2 − λQ̃,2Q̂

>e1 +O(|λQ̃|2)

(13)

with λQ̃,1, λQ̃,2 the first and second components of λQ̃, so
that in view of (11c) one obtains
˙̃V=−[Ω]×Ṽ+λQ̃,1gQ̂

>e2−λQ̃,2gQ̂
>e1+σV +O(|λQ̃|

2) (14)

Remark 1 In view of (13), the first order approximations
of γ − γ̂ only involve 2 components of λQ̃ (i.e. λQ̃,1,

λQ̃,2), which is quite remarkable and desirable. Indeed,
although we over-parametrize an element of S2 (i.e. γ̂) by
a 3 degrees-of-freedom element of SO(3) (i.e. Q̂), we end
up exploiting only a minimal number of parameters, in first
order approximations, for observer design. The remaining
degree of freedom related to the third component λQ̃,3 of
λQ̃ is, thus, left uninvolved.

We continue by developing first order approximations of
the dynamics of λQ̃,1 and λQ̃,2. Since γ = R>γ̊, the
dynamics of γ satisfies γ̇ = −[Ω]×γ, which allows one
to deduce the dynamics of Q as

Q̇ = Q[Ω]× (15)

From here, we propose the following dynamics of Q̂

˙̂
Q = Q̂[Ω]× − [σQ]×Q̂ (16)

with σQ ∈ R3 an innovation term to be designed thereafter.
One then deduces from (15) and (16) that

˙̃Q = Q̃[σQ]×

which in turn allows one to verify (see also [11]) that

λ̇Q̃ = σQ +O(|λQ̃||σQ|) (17)

Similarly, let qR̃ = (ηR̃,νR̃) be the Rodrigues unit
quaternion associated with R̃. One has

R̃ = I3 + [λR̃]× +O(|λR̃|
2)

with λR̃ , 2sign(ηR̃)νR̃ ∈ B3
1 . Then, in view of the

dynamics of ξ̃ and R̃ in (11a) and (11b) one verifies that

˙̃
ξ=−[R̂V̂]×λR̃+R̂Ṽ+σξ+O(|λR̃|

2)+O(|λR̃||Ṽ|) (18)

and
λ̇R̃ = σR +O(|λR̃||σR|) (19)

Concerning the landmark position measurements, defining

p̂i , R̂>(p̊i − ξ̂), i ∈ {1, · · · , N} (20)

one then deduces from (3) and (20) that

pi − p̂i = R>(p̊i − ξ)− R̂>(p̊i − ξ̂)

= R̂>(R̃> − I3)(p̊i − ξ̂)− R̂>ξ̃

= R̂> [̊pi − ξ̂]×λR̃ − R̂>ξ̃ +O(|λR̃|2)

(21)

In view of (14), (17), (18), (19) and (21), by setting the
system output vector equal to

y =

 p1 − p̂1

...
pN − p̂N


one obtains LTV first order approximations in the form (7)
with





x =


λQ̃,1

λQ̃,2

λR̃

ξ̃

Ṽ

, x1 =

λQ̃,1

λQ̃,2

λR̃

, x2 =

[
ξ̃

Ṽ

]
,u =


σQ,1

σQ,2

σR

σξ

σV


A =

 05×1 05×1 05×3 05×3 05×3

03×1 03×1 −[R̂V̂]× 03×3 R̂

gQ̂>e2 −gQ̂>e1 03×3 03×3 −[Ω]×



C =

03×2 R̂> [̊p1 − ξ̂]× −R̂> 03×3

...
...

...
...

03×2 R̂> [̊pN − ξ̂]× −R̂> 03×3


(22)

From there the proposed observer is given by (10) and
(16) with γ̂ defined by (12) and with the innovation terms
σξ, σR, σV, σQ,1 and σQ,2 determined from the input u
calculated according to (8) and (9) with the matrices Q̄(t)
and V̄(t) chosen larger than some positive matrices.

Note that the third component σQ,3 of σQ is uninvolved
and is only required to be bounded for all time. For conve-
nience we simply set it equal to zero.

IV. OBSERVABILITY AND STABILITY ANALYSIS

According to [11, Corollary 3.2] and Lemma 2, good
conditioning of the solutions P(t) to the continuous Ric-
cati equation (9) and exponential stability of the proposed
observer rely on the uniform observability of the pair
(A?(t),C?(t)) obtained by setting x = 0 in the expressions
of the matrices A and C derived previously. In view of (22)
one has

A? =

 05×1 05×1 05×3 05×3 05×3

03×1 03×1 −[v]× 03×3 R
gQ?>e2 −gQ?>e1 03×3 03×3 −[Ω]×



C? =

03×2 R> [̊p1 − ξ]× −R> 03×3

...
...

...
...

03×2 R> [̊pN − ξ]× −R> 03×3


(23)

with Q? ∈ SO(3) satisfying Q?>e3 = γ.
According to Lemma 1 the pair (A?,C?) is uniformly

observable if ∃δ, µ > 0 such that

1

δ

∫ t+δ

t

M>(s)M(s)ds ≥ µI11, ∀t > 0 (24)

with M ,
[
N>0 N>1 N>2

]>
, N0 , C?, N1 , N0A

? +

Ṅ0, N2 , N1A
?+Ṅ1. The next step consists in specifying

a more explicit condition guaranteeing (24).
For observability reason the following assumption is made.

Assumption 2 Assume that N ≥ 3 and that there exist 3
distinct landmarks with indices i1, i2, i3 such that p̊i1 − p̊i2
and p̊i1 − p̊i3 are non-collinear.

From here the main result of the paper is stated next.

Proposition 1 Assume also that Assumptions 1 and 2 hold.
Then, condition (24) is satisfied. Consequently, the pair
(A?,C?) given by (23) is uniformly observable and the

equilibrium (ξ̂, R̂, V̂, Q̂>e3) = (ξ,R,V,γ) of the proposed
Riccati observer is (locally) exponentially stable.

Proof: One verifies that
N0 =

[
03N×2 N01 03N×3

]
N1 =

[
03N×2 N11 N12

]
N2 =

[
N21 N22

]
with

N01 ,

R> [̊p1 − ξ]× −R>

...
...

R> [̊pN − ξ]× −R>


N11 ,

−[Ω]×R> [̊p1 − ξ]× [Ω]×R>

...
...

−[Ω]×R> [̊pN − ξ]× [Ω]×R>


N12 ,

−I3

...
−I3


N21 ,

−gQ
?>e2 gQ?>e1

...
...

−gQ?>e2 gQ?>e1


N22 ,

∆ΩR> [̊p1 − ξ]× −∆ΩR> 2[Ω]×
...

...
...

∆ΩR>[̊pN − ξ]× −∆ΩR> 2[Ω]×



(25)

and ∆Ω , −[Ω̇]× + [Ω]2×. Subsequently, one deduces

N>0 N0 =

02×2 02×6 02×3

06×2 N>01N01 06×3

03×2 03×6 03×3


N>1 N1 =

02×2 02×6 02×3

06×2 N>11N11 N>11N12

03×2 N>12N11 N>12N12


N>2 N2 =

[
N>21N21 N>21N22

N>22N21 N>22N22

]
where N>12N12 = NI3 and N>21N21 = Ng2I2, which are
positive definite. According to Lemma 3 (see Appendix A),
the resulting matrix of N>01N01 is also positive definite (i.e.
∃α0 > 0 such that N>01N01 ≥ α0I6) under Assumption 2.
From here, the following matrix

∆1 ,

[
N>01N01 06×3

03×6 03×3

]
+

[
N>11N11 N>11N12

N>12N11 N>12N12

]
is also positive definite (i.e. ∃α1 > 0 such that ∆1 ≥ α1I9)
according to Lemma 4 (see Appendix A). Using again
Lemma 4, one deduces that there exists α2 > 0 such that

M>M = N>0 N0 + N>1 N1 + N>2 N2

=

[
02×2 02×9

09×2 ∆1

]
+

[
N>21N21 N>21N22

N>22N21 N>22N22

]
≥ α2I11

which in turn guarantees the satisfaction of the uniform
observability condition (24). The remainder of the proof
follows.



V. SIMULATION RESULTS
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Fig. 1. Estimated and real attitude represented by roll, pitch and yaw Euler
angles (deg) versus time (s) (LEFT) and zooms (RIGHT)
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Fig. 2. Estimated and real position expressed in {I} versus time (s)
(LEFT) and zooms (RIGHT)
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Fig. 3. Estimated and real linear velocity (m/s) expressed in {B} versus
time (s) (LEFT) and zooms (RIGHT)

In this section the performance of the proposed observer
is illustrated by simulation results. The reported simulations
are conducted on a model of a ducted-fan aerial drone,
which is controlled to follow a circular reference trajectory
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Fig. 4. Gravity estimation error given by arccos(γ>γ̂) versus time (s)

given by ξr = [15 cos(αt), 15
√

3
2 sin(αt) − 10, 15

2 sin(αt) +

10
√

3]>(m), with α = π/10. Due to aerodynamic and
centripetal forces acting on the vehicle, its attitude and
linear acceleration vary quickly and in large proportions.
We assume that the drone is equipped with a stereo camera
that provides the position measurements expressed in {B}
of three known landmarks, whose coordinates in {I} are
respectively given by p̊1 = [2, −

√
3/2, −1/2]>(m), p̊2 =

[−3,
√

3, 1]>(m), p̊3 = [−3, −
√

3/2, −1/2]>(m). The
gravity direction in {I} is γ̊ = [0, −1/2,

√
3/2]>.

The observer is tuned analogously to Kalman-Bucy filters
where the matrices V̄ and Q̄−1 are interpreted as covariance
matrices of the additive noise on the system state and output
respectively. The following parameters are chosen for the
presented simulations: P(0) = diag(I2, I3, 1002I3, 1002I3),
Q̄ = 100I9 and V̄ = diag(0.01I2, 0.01I3, 0.01I3, I3). The
measurements (i.e. angular velocities, specific acceleration
and position measurements pi of the landmarks) are cor-
rupted by Gaussian zero-mean additive noises with standard
deviations reflecting the above choices of Q̄ [0.1(m) for pi]
and of V̄ [0.1(rad/s) for Ω and 1(m/s2) for aB].

The following large initial estimation errors are consid-
ered: q̃(0) = [0.70, 0.56, 0.43,−0.09] (corresponding to
errors in roll, pitch, yaw Euler angles of 90(deg), 45(deg),
30(deg), respectively), ξ̃(0) = [10,−1.34, 22.3]>(m),
Ṽ(0) = [−5, 5,−5]>(m/s), arccos(γ>(0)γ̂(0)) = π

4 (rad).
The time evolutions of the estimated and real attitude

(represented by Euler angles) along with the estimated and
real position and linear velocity are shown in Figs. 1, 2
and 3, respectively. One easily observes that the estimate
trajectories converge near to the real ones after a short
transition period despite large initial estimation errors and
significant measurement noise. Fig. 4 shows that the gravity
direction estimation error (represented by the angle between
γ and γ̂) also quickly converges near to zero without
much oscillations. In overall we find the performance of the
proposed observer quite satisfactory.

VI. CONCLUSIONS

The problem of pose estimation from landmark position
measurements in combination with IMU measurements has
been addressed by a nonlinear Riccati observer that is
derived from a recent Riccati observer design framework.
The distinguished feature w.r.t. related works on the topic
is the non-requirement of linear velocity measurements and
of prior knowledge on the gravity direction in the inertial



frame. The proposed observer is supported by rigourous
observability and stability analysis together with convincing
simulation results. Owning to its simplicity in terms of sensor
suite and algorithm, the proposed solution provides a natural
plug-and-play capability for many robotic applications.
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APPENDIX

A. Technical lemmas

Lemma 3 Under Assumption 2, there exists a positive num-
ber α0 > 0 such that ∆0 , N>01N01 ≥ α0I6, with N01

defined in (25).

Proof: One verifies that

∆0 =

[−∑i [̊pi − ξ]2×
∑
i [̊pi − ξ]×

−
∑
i [̊pi − ξ]× NI3

]
Since ∆0 = N>01N01, it is symmetric and positive semi-
definite (i.e. ∆0 = ∆>0 ≥ 0). Thus, one only needs to prove
that its determinant is greater than a positive number. One
verifies that

det(∆0) = det
(
−N

∑
i [̊pi − ξ]2× + (

∑
i [̊pi − ξ]×)

2
)

= det
(
−
∑
i

∑
j<i [̊pi − p̊j ]

2
×
)

= det(∆̄0)

where ∆̄0 , −
∑
i

∑
j<i [̊pi− p̊j ]

2
× is a constant symmetric

positive semi-definite matrix. From there, one only needs to
prove that ∆̄0 is positive definite. According to Assumption
2 that ensures the existence of 3 distinct landmarks i1, i2, i3
such that p̊i1− p̊i2 and p̊i1− p̊i3 are non-collinear, one then
deduces

∆̄0 ≥ |̊pi1 − p̊i2 |2π p̊i1
−p̊i2

|̊pi1
−p̊i2

|
+ |̊pi1 − p̊i3 |2π p̊i1

−p̊i3
|̊pi1
−p̊i3

|
> 0

which allows one to conclude the proof.

Lemma 4 Consider the bounded matrices A ∈ Rl×n, B ∈
Rl×m, C ∈ Rn×n. Assume that there exist some positive
numbers αB , αC > 0 such that B>B ≥ αBIm, C ≥ αCIn.
Then, there exists a positive number α such that

D1 ,

[
C 0n×m

0m×n 0m×m

]
+

[
A>A A>B
B>A B>B

]
≥ αIn+m (26)

and

D2 ,

[
0m×m 0m×n
0n×m C

]
+

[
B>B B>A
A>B A>A

]
≥ αIn+m (27)

Proof: One only needs to prove (26). The proof for
(27) proceeds analogously. Let γA denote the upper-bound
of A. One rewrites

D1 =

[
C−β1A

>A 0n×m
0m×n

β1

1+β1
B>B

]
+

[
(1+β1)A>A A>B

B>A 1
1+β1

B>B

]
(28)

Then, using the fact that the second matrix on the right-hand
side of (28) is semi-positive definite and choosing β1 , αC

2γ2
A

,
one deduces

D1 ≥
[
C−β1A

>A 0n×m
0m×n

β1

1+β1
B>B

]
≥
[ αC

2 In 0n×m
0m×n

β1αB

1+β1
Im

]
≥ αIn+m

with α , min(αC

2 ,
β1αB

1+β1
).


