Riccati Observer Design for Pose, Linear Velocity and Gravity Direction Estimation using Landmark Position and IMU Measurements

Abstract : This paper revisits the problem of estimating the pose (i.e. position and attitude) of a robotic vehicle by combining landmark position measurements provided by a stereo camera with measurements of an Inertial Measurement Unit. The distinguished features with respect to similar works on the topic are two folds: First, the vehicle's linear velocity is not measured neither in the body frame nor in the inertial frame; Second, no prior knowledge on the gravity direction expressed in the inertial frame is required. Instead both the linear velocity and the gravity direction are estimated together with the pose. Another innovative feature of the paper relies on the idea of over-parametrizing the gravity direction vector evolving on the unit 2-sphere S2 by an element of SO(3) so that the error system in first order approximations can be written in an "elegant" linear time-varying form. The proposed deterministic observer is accompanied with an observability analysis that points out an explicit observability condition under which local exponential stability is granted. Reported simulation results further indicate that the observer's domain of convergence is large.
Type de document :
Communication dans un congrès
2018 IEEE Conference on Control Technology and Applications, 2018, Copenhagen, Denmark. 2018
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01799278
Contributeur : Minh Duc Hua <>
Soumis le : dimanche 10 juin 2018 - 00:12:23
Dernière modification le : mardi 10 juillet 2018 - 01:18:56
Document(s) archivé(s) le : mardi 11 septembre 2018 - 18:35:12

Fichier

PoseEstimation_V2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01799278, version 1

Collections

Citation

Minh-Duc Hua, Guillaume Allibert. Riccati Observer Design for Pose, Linear Velocity and Gravity Direction Estimation using Landmark Position and IMU Measurements. 2018 IEEE Conference on Control Technology and Applications, 2018, Copenhagen, Denmark. 2018. 〈hal-01799278〉

Partager

Métriques

Consultations de la notice

40

Téléchargements de fichiers

37