D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Processing Magazine, vol.30, issue.3, pp.83-98, 2013.
DOI : 10.1109/MSP.2012.2235192

URL : http://arxiv.org/pdf/1211.0053.pdf

F. Lozes and A. Elmoataz, Nonlocal Difference Operators on Graphs for Interpolation on Point Clouds, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.309-316, 2017.
DOI : 10.1109/TIP.2010.2101610

G. Puy, S. Kitic, and P. Pérez, Unifying local and nonlocal signal processing with graph CNNs, 1702.

S. Velasco-forero and J. Angulo, Nonlinear Operators on Graphs via Stacks, Geometric Science of Information , Proceedings, pp.654-663, 2015.
DOI : 10.1007/978-3-319-25040-3_70

URL : https://hal.archives-ouvertes.fr/hal-01110976

J. Serra, Image analysis and mathematical morphology, 1982.

I. Bloch, H. J. Heijmans, and C. Ronse, Mathematical Morphology, Handbook of Spatial Logics, pp.857-944, 2007.
DOI : 10.1007/978-1-4020-5587-4_14

URL : https://hal.archives-ouvertes.fr/hal-00556180

H. J. Hejmans, P. Nacken, A. Toet, and L. Vincent, Graph morphology, Journal of Visual Communication and Image Representation, vol.3, issue.1, pp.24-38, 1992.
DOI : 10.1016/1047-3203(92)90028-R

L. Najman and J. Cousty, A graph-based mathematical morphology reader, Pattern Recognition Letters, vol.47, pp.3-17, 2014.
DOI : 10.1016/j.patrec.2014.05.007

URL : https://hal.archives-ouvertes.fr/hal-00986191

P. Salembier, Study on nonlocal morphological operators, 2009 16th IEEE International Conference on Image Processing (ICIP), pp.2269-2272, 2009.
DOI : 10.1109/ICIP.2009.5414374

URL : http://upcommons.upc.edu/bitstream/2117/8832/1/StudyonNonlocal.pdf

S. Velasco-forero and J. Angulo, On Nonlocal Mathematical Morphology, International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp.219-230, 2013.
DOI : 10.1007/978-3-642-38294-9_19

URL : https://hal.archives-ouvertes.fr/hal-00834641

G. L. Litvinov, Maslov dequantization, idempotent and tropical mathematics: A brief introduction, Journal of Mathematical Sciences, vol.10, issue.2, pp.426-444, 2007.
DOI : 10.1090/conm/377/07002

URL : http://arxiv.org/pdf/math/0507014

B. A. Carré, An Algebra for Network Routing Problems, IMA Journal of Applied Mathematics, vol.7, issue.3, pp.273-294, 1971.
DOI : 10.1093/imamat/7.3.273

P. Del, M. Moral, and . Doisy, Maslov idempotent probability calculus. II, Theory of Probability & Its Applications, pp.319-332, 2000.

B. Burgeth and J. Weickert, An Explanation for the Logarithmic Connection between Linear and Morphological System Theory, International Journal of Computer Vision, vol.10, issue.3, pp.157-169, 2005.
DOI : 10.1007/3-540-44935-3_54

P. Maragos, Chapter Two -Representations for morphological image operators and analogies with linear operators, of Advances in Imaging and Electron Physics, pp.45-187, 2013.
DOI : 10.1016/b978-0-12-407702-7.00002-4

URL : http://cvsp.cs.ntua.gr/publications/jpubl+bchap/Maragos_OperatorRepresentations_BookChapter_AEIP_2013.pdf

J. Angulo, Chapter One -Convolution in (max,min)algebra and its role in mathematical morphology, of Advances in Imaging and Electron Physics, pp.1-66, 2017.
DOI : 10.1007/978-3-319-18720-4_41

S. Gaubert, Methods and applications of (max,+) linear algebra, 14th Annual Symposium on Theoretical Aspects of Computer Science (STACS), 1997.
DOI : 10.1007/BFb0023465

URL : https://hal.archives-ouvertes.fr/inria-00073603

M. Akian, R. Bapat, and S. Gaubert, Max-plus algebra, Handbook of linear algebra (Discrete Mathematics and its Applications), pp.10-14, 2006.
DOI : 10.1201/b16113-39

S. C. Kleene, Representation of Events in Nerve Nets and Finite Automata, Tech. Rep, 1951.
DOI : 10.1515/9781400882618-002

C. Ronse, Why mathematical morphology needs complete lattices, Signal Processing, vol.21, issue.2, pp.129-154, 1990.
DOI : 10.1016/0165-1684(90)90046-2

G. Peyré, The Numerical Tours of Signal Processing, Computing in Science & Engineering, vol.13, issue.4, pp.94-97, 2011.
DOI : 10.1109/MCSE.2011.71

J. Tournier, F. Calamante, D. G. Gadian, and A. Connelly, Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution, NeuroImage, vol.23, issue.3, pp.1176-1185, 2004.
DOI : 10.1016/j.neuroimage.2004.07.037