The first passage sets of the 2D Gaussian free field: convergence and isomorphisms

Abstract : In a previous article, we introduced the first passage set (FPS) of constant level −a of the two-dimensional continuum Gaussian free field (GFF) on finitely connected domains. Informally, it is the set of points in the domain that can be connected to the boundary by a path along which the GFF is greater than or equal to −a. This description can be taken as a definition of the FPS for the metric graph GFF, and it justifies the analogy with the first hitting time of −a by a one-dimensional Brownian motion. In the current article, we prove that the metric graph FPS converges towards the continuum FPS in the Hausdorff metric. This allows us to show that the FPS of the continuum GFF can be represented as a union of clusters of Brownian excursions and Brownian loops, and to prove that Brownian loop soup clusters admit a non-trivial Minkowski content in the gauge r → | log r|^1/2 r^2. We also show that certain natural interfaces of the metric graph GFF converge to SLE4 processes.
Type de document :
Pré-publication, Document de travail
37 pages, 5 figures. 2018
Liste complète des métadonnées

Littérature citée [61 références]  Voir  Masquer  Télécharger
Contributeur : Titus Lupu <>
Soumis le : jeudi 24 mai 2018 - 02:10:58
Dernière modification le : lundi 18 mars 2019 - 16:00:21
Document(s) archivé(s) le : samedi 25 août 2018 - 13:11:39


  • HAL Id : hal-01798812, version 1


Juhan Aru, Titus Lupu, Avelio Sepúlveda. The first passage sets of the 2D Gaussian free field: convergence and isomorphisms. 37 pages, 5 figures. 2018. 〈hal-01798812〉



Consultations de la notice


Téléchargements de fichiers