N

N

Evolutionary Identification of Active Particle Systems

Bogdan Stanciulescu, Jean Louchet

» To cite this version:

Bogdan Stanciulescu, Jean Louchet. Evolutionary Identification of Active Particle Systems. The 8th
International Conference in Central Europe on Computers Graphics, Visualization and Interactive
Digital Media ’2000 in cooperation with EUROGRAPHICS and IFIP WG 5.10, Feb 2000, Plzen,
Czech Republic. hal-01798632

HAL Id: hal-01798632
https://hal.science/hal-01798632
Submitted on 25 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01798632
https://hal.archives-ouvertes.fr

EVOLUTIONARY IDENTIFICATION OF ACTIVE PARTICLE
SYSTEMS

Bogdan Stanciulescu, Jean Louchet

Ecole Nationale Supérieure de Techniques Avancées
32 boulevard Victor
75739 Paris cedex15, France
e-mail: stanciul @ensta.fr
http://www.ensta.fr/~stanciul

ABSTRACT

This paper presents how it is possible to introduce active motricity into particle-bond systems used in
applications such as image animation. We chose to add into some neural network capabilities over the
classical approach, in order to obtain a system able to model a larger class of behaviour. Therefore a new
type of binary bond enriched with a neural-based command ability is proposed and tested in this paper. This
“active” bond acts like a controlled muscle in order to produce motricity.

An Evolutionary Strategy is used to optimise the particle-bond system parameters through evolving
parameter sets. We tested our method both on artificially generated data and on data collected from real-life

motion.

Results and comparisons between our method and other approaches show the advantage of using active

particle-bond systems for image animation applications.

Keywords: computer animation, computer graphics, physically based motion modelling, particle-based
modelling, evolutionary strategies, motion analysis, neural networks, neural controllers

1 INTRODUCTION

1.1 PARTICLE MODELS

Particle models have been introduced in the
Seventies in the fields of Simulation and Image
Synthesis, in order to simulate a variety of physical
phenomena, such as explosions, flames, smokes
[Desbrun96].

In the same framework, image analysis and
synthesis give us a set of examples of particle-based
models. Some of them are used in simulations of
elastic or deformable objects; this is the case of
bond-particle networks [Luciani91].

Pattern Recognition is also a field of applications in
which the particle-based models could be applied.
Man-machine interaction and their applications in
virtual reality is another field involving spring-mass
models; particularly the GROPE project of
University of North Carolina, in which a system of
gestural control using a force feedback is used,
offers the possibility of real time modelling in
molecular chemistry.

The DEXTER model, developed by E. Cohen at
ArSciMed, is an example of a system allowing to
develop various models fitted on real physical
problems.

1.2 THE PHYSICAL MODEL

We have chosen here the particle-bond paradigm as
physical model [Louchet96a]. The particles are
characterized through their masses. The bonds are
couples of generalised springs and dampers. They
model interactions between two or more particles.
The generalised springs can be unary, binary,
ternary springs depending on the number of
particles involved.

e Unary springs are interactions between one
particle and the global environment, for instance
external fields, gravitational, electrical etc. In this
case the force value may depend on the particle
position.

e Binary springs [Luciani91] are the ordinary
springs and they describe interactions between two
particles.

e Ternary springs introduced by [Louchet96a]
are interactions between three particles, the force
value in this case is proportional with the cosine of
the angle formed. They model flexion.

Dampers are introduced in a similar manner:

e Unary dampers are dissipative interactions
between a particle and its environment, the
corresponding force depends on particle velocity.

e Binary dampers model two-particle dissipative
interactions, the force is a function of their relative
velocity.

1.3 BUILDING A REALISTIC MODEL

The most important difficulty is to find the optimal
values of all the parameters involved in the model
in order to get a given behaviour.

One approach has been developed by Nicolas Szilas
[Szilas95]. He established a correspondence
between mass-spring systems and recurrent neural
networks, applying the theory of formal neural
networks in physical modelling. He wused the
supervised recurrent neural networks to determine
the values for the mass-spring model. First he tested
the Back Propagation Through Time algorithm
(BPTT) and then, Real Time Recurrent Learning
(RTRL). He also used mechanical constraints to
design new algorithms (coupling, half-coupling and
coupling-decoupling algorithms). He concluded that
RTRL algorithms encounter many difficulties in
succeeding, especially parameters as speed, position
may become infinite. The BPTT has better results
and also a good speed of convergence. In contrast
with RTRL the model here is stable and the values
taken by the parameters do not diverge.

In the second approach developed by one of the
authors of this paper, an Evolutionary Strategy (ES)
is used for parameter optimisation [Louchet96a].
For this purpose a cost function has been assigned
to each model proposed and it measures a
mathematical distance between the initial trajectory
and the one produced by the model.

The word “trajectory” means the entire collection of
positions and velocities for all system’s particles
and all time steps.

The advantage of using ES is that they are not
imposing any condition over the cost function, such
as continuity, continuity for the derivatives etc.
Once a structure is given the algorithm searches for
the values which minimise the cost function. Among
the differences between this method and
conventional ES, a short-term cost function has
been introduced, which measures the quadratic
difference between the real point on the trajectory
and the one predicted using the speed and the
position at the previous time step [Louchet96a].
Another innovation was the introduction of the local
cost function, which splits the cost function into a
sum of local terms associated with each particle.
This function directly acts in the mutation and
crossover computation. It is based on the
assumption that at a given moment the phase of a
particle only depends on the phases of their
neighbours. A consequence is that the number of
generations needed by the algorithm to converge
does not depend on the number of variables or

object’s complexity but it depends on his average
connectivity [Louchet96a].

These two methods have some limits; the first one is
that we do not know how to identify particles’
masses (which were a priori considered as input
data), and in both cases mentioned before the
absence of motricity restrains their applicability to a
limited class of trajectories.

2 ACTIVE ELEMENTS: MUSCLES

The connection between two different particles was
modelled until now as a association of spring-
damper.

This approach inspired directly from physics, gives
very good results in modelling physical phenomena
but it fails when we try to identify the motion of a
living creature, especially the animal walk. In the
ENSTA team, Teisserenc [Teisserenc97] studied
the horse walk and concluded that the springs are
not sufficient when one tries to model the horse
walk, so he decided to introduce the dampers, in
order to make the motion more realistic. He
obtained better results using this kind of
connections, but only when he took into
consideration some particular parts such as legs,
head, bend.

The further step in particle-spring modelling was
the introduction of generalised springs
[Delnondedieu93]. Unfortunately all these elements
mentioned above act as passive devices, incapable
to inject energy into the system. Therefore, the
necessity of introducing active control elements, in
order to have all the elements involved in a natural
animal movement, has been raised as the next step.
These active elements able to generate motion
(“muscles™), will also have to fulfil the role of co-
ordinating the motion of different autonomous body
parts.

3 MUSCLE MODELLING

31 MUSCLE REPRESENTATION

Looking for a way to implement the muscles in
designing our system brought us several ideas worth
to be outlined here.

e The first idea was to develop an analogy of a
laser medium, as a collection of individual
oscillators, spatially distributed together with the
possibility to excite them with a moving wave. The
second choice could be the study of coupled
oscillators, in a more general framework, where
damping and forcing over the system are both
present. This approach led us to a system of coupled
differential equations, which requires a numerical
resolution. Unfortunately the computation required

is high, due to the great number of variables (force,
spring parameters).

® Another approach could be the control of the
damping coefficients by a command system i.e. a
control over the energetic flux in the mass-spring
network. This effect is very similar with the
transistor effect, where the gate potential controls
the current between the other two electrodes. This
idea requires an additional command system able to
decide to increase or decrease the damping

coefficients.

The mechanical-neural bond architecture
Figure 1

e The last solution envisaged is to use neural
networks as a command system for all the springs in
our model. We proposed to associate with every
spring a neuron, which has the task to observe the
evolution of all the other springs, which are
components in the mechanical system. The process
of observation consists in monitoring for each
spring the relative speed and position (Fig. 1). The
output of the neuron will be a function that depends
on all the phases in the system. If the output
function is activated, the activation is the exact
amount of excitability which will be applied over its
associated spring.

This last proposal is the one adopted in this paper,
due to its interesting interconnection properties.

A neuron input is a weighted sum of all relative
speeds and positions for the other springs, except
the one it is associated with.

Each neuron has its own threshold, and the
difference between the input and its threshold
represents the variable of its output function. We
chose the hyperbolic tangent as output function.

A suitable way for neural implementation is to
modify the structure of binary springs, adding the
extra parameters required by a neuron. The new
binary spring will be the old one plus all the
connexions associated with the other springs, and
the neuron’s threshold.

In the following we will be calling this new kind of
binary bonds “mechanical-neural” bonds. Thus, a
neural control system is created in parallel with our
mechanical system, in a way similar to what can be
found in all basic living creatures.

3.2 SYSTEM PARAMETERS
IDENTIFICATION

In this research we have chosen to extend the model
identification method which had already been
developed in our team for simpler particle-bond
systems [Louchet96b], to the mechanical-neural
bond architecture presented in Section 3.1 .

3.2.1 EVOLUTIONARY STRATEGY

The identification method is based on an
Evolutionary Strategy (ES). The reason of our
choice was based on ES efficiency in parameter
optimisation, especially in problems out of the reach
of deterministic algorithms. In our case, the system
of coupled equations describing the system’s
behaviour cannot be solved directly. Another
advantage is that the same optimisation technique is
used for finding all types of parameters included in
a mechanical-neural binary spring.

Each model is an individual in our ES, and is
represented by a chromosome, which contains all
the values for springs, dampers and neural
networks’ weights and thresholds.

We start with a population of models and we let
them evolve using genetic operators.

The cost function represents an accurate
mathematical expression of our problem. It
associates a numerical value for each model, a
smaller value corresponds to a better data
reconstruction.

This cost function measures a generalised distance
in the state space, between the trajectory predicted
by the model being evaluated, and the real given
trajectory.

The model which has the lowest cost function, is the
one from which emerges a trajectory as close as
possible to the trajectory wanted. That means that
its mechanical system and also its neural control
system are the best fitted simulating our data.

We introduced a local cost function [Louchet96a]
which exploits the topological properties of our
system: the position of a particle at a given time
only depends on the recent history of its
neighbourhood. The first neighbours of a particle
are defined as the particles sharing a bond in
common with it: the force received by this particle
at time ¢ (and therefore its position at the next time
step t+1) depends on the speeds of its neighbours at
the time step ¢. This led us to split the global-cost
function into the sum of each particle’s

contribution. We call these contributions, attached
to individual particles, the “local cost functions”.
The local cost functions play a key role in the
identification algorithm. The local cost function
corresponding to the extremities of one bond will be
more relevant than the global cost function to
evaluate the estimation quality of this bond by the
model.

The algorithm designed here is self-adaptive in the
meaning that the mutation probabilities are
controlled by input data. To this end, every
individual contains in addition of his parameters,
the variances for all mutations applied over the
genes. We are calling these parameters mutabilities.
They also obey to all the genetic operators in the
ES, in order to guide the population to a global
optimum. These parameters are adjusted
automatically all the time during the run, giving a
dynamically evolving trade-off between parameter
exploration and numerical precision [Back95]. It is
worth to remark that the computation complexity
here is not affected, due to the fact that in our cost
function only model parameters are involved, not
their mutabilities. As the cost-function dominates in
terms of computing-time, mutabilities do not
introduce any adverse effect on computation time.

3.2.2 EVOLUTIONARY OPERATORS

The mutation operator is implemented here in four
concurrent variants, as in [Louchet96b] but
extended in order to include the neural parameters
into the evolution process. The mutability
parameters control the variance of mutations, while
the mutability parameters themselves are subject to
mutations too.

The crossover operator is a multi-parent crossover.
For each occurrence of a bond type, all the particles
which are at an extremity of this bond are
examined. A parent is chosen randomly, with a bias
in the favour of locally good ones (relative to this
particle). The new values of parameters for the gene
corresponding to the current bond type, are
calculated as the mean values of all the
corresponding parameters taken from all the parents
chosen for this bond type.

The selection process used here is a random choice
on the population, biased in favour of the globally
best individuals (with the lowest global cost
function values), and implemented in such a way
that the population count remains constant. In order

to ensure the cost function of the best individual
does not increase, the 10% best individuals in the
population are protected against selection (‘elitist
selection’).

4 EXPERIMENTAL RESULTS

The model proposed in this paper has been tested
with two trajectories.

4.1 AN ARTIFICIALLY GENERATED
TRAJECTORY

The first type is represented by a trajectory
artificially generated using a standard particle-bond
system, in which the bonds are viscoelastic but do
not contain any neural controller.

The test consists in comparing the evolution of both
methods, the standard one based only on particle-
bond structure without motricity, and the new one,
based on generalized bonds.

Figure 2 shows the the difference between the two
evolutions.

The standard one converges better during the first
generations, but it is overpassed after few thousands
generations by the new one. The following two
examples depicted in the figure 3 and figure 4 are a
similar comparison of the same two algorithms. We
observe the results are almost the same. The
population size used here is 1000 individuals.
Analysing the weights found for the neurons, we
conclude that adding the neural system over our
mechanical structure is an acceptable way to
introduce spring and damper control. The neural
network weights have small values around zero,
which indicates that all neurons are active. A great
value for one or more weights means a neuron
pulled into the saturation mode (output + 1), due to
its transfer function. The mechanical effect is that
the neuron forces constantly a connection between
two particles, pumping the same amount of force at
each time step.

The opposite case where one or more weights are
zero means that a connection between two springs
is missing, that they have an independent evolution
from one another, or in terms of mechanics that
they are not mutually coupled.

2,344

2,343
E — Seriest
8]

e Garies2
2,342
2,341

1 1338 2875 4012 5340 6636 8023 0360

generation

Standard (Series 1) and new (Series 2) algorithms
(10,000 generations, 1000 individuals)

Figure 2
235
¥ X —Seriest
8 Series?
IR ~ Geries
2,34
11307 2613 3919 6226 6631 7837 9143
generation

Standard (Series 1) and new (Series 2) algorithms
(10,000 generations, 1000 individuals)
Figure 3

2,343
—Seriest
E 2,342
5] e Geries?
2,34
1 1338 2675 4012 5340 6686 8023 0360
generation

Standard (Series 1) and new (Series 2) algorithms
(10,000 generations, 1000 individuals)
Figure 4

In figure 5 we did the same comparison using the
same population size over 30.000 generations. The
same tendency is maintained: the standard method
is better at the start, but the new method is definitely
better on the long term, though the difference is
small. This can be explained by the fact that our test
trajectory was built upon a standard particle-bond
system, therefore it is not surprising that the cost
function for both methods converge to zero.

2,348

2,347 -
v — Series]
Q
L S R B p— Serjes?

2,345

2,343

1 4105 8208 12313 16417 20521 24625 28728
generation

Standard (Series 1) and new (Series 2) algorithms
(30,000 generations, 1000 individuals)
Figure 5

4.2 A REAL-LIFE TRAJECTORY

The second type of trajectory we chose to test our
method is taken from real life, and represents the

trajectory of three points located on a horse at the
trot (Fig. 6) .

The points used for recording the trajectory, located
on a horse body
Figure 6

Our trajectory data were obtained placing thirty five
markers on a horse body, motion was recorded
using a 50 Hz sampling frequency [Teisserenc97].
There are 53 frames recorded containing our data.
The first point is located at the mouth, the second
point is located on the upper extremity of one leg,
and the last point represents a foot (Fig. 7).

a1

I3

The points chosen for algorithm comparison
Figure 7

! Horse data kindly provided by Ecole Veterinaire,
Maisons Alfort (France) and Ecole Nationale
d’Equitation, Saumur (France).

We used the ten forts frames of the trajectory. We
modelled the two-particle interaction using binary
spring and dampers. Over this structure the same
control structure, composed of feed-forward
neurons is built.

Therefore we identified the parameters in both cases
(mechanical and mechanical-neural systems). Here
we can find three examples of algorithm
comparison, made on different populations and with
a different number of generations. In Figure 8 both
algorithms use a population size of 500 individuals
and 50.000 generations.

In this case the aim is to better approximate all the
trajectories physically implementable. The first test
was to verify the self-consistency of our algorithms
by testing a 100% solvable problem. As one can
notice here the difference between the two
evolutions is much greater in this case of a real-life
trajectory than in our first test. This shows that the
new model is performing better than the standard
one. Rather obviously the additional neural
“muscle” system enriches the system’s modelling
capabilities.

25

20

\ — Seriest

Cast

N Series2

14031 2081 12001 16121 20151 24481 28211

generation

Standard (Series 1) and new (Series 2) algorithms
(50,000 generations, 500 individuals)
Figure 8

25

Cost

— Series

\\\\\\\\\\\ Series?

1 1262 2823 3784 5045 6306 7567 Q028

generation

Standard (Series 1) and new (Series 2) algorithms
(10,000 generations, 200 individuals)
Figure 9

—— Seriest

Cost

e G eries2

14031 2081 12081 16121 20151 24181 28211

generation

Standard (Series 1) and new (Series 2) algorithms
(50,000 generations, 100 individuals)
Figure 10

Examples in Figs. 8-10 show that the same trend is
maintained for both methods.

5 CONCLUSION

The aim of this paper was to introduce motricity for
particle-spring systems in order to be able to model
better a larger class of physical trajectories.

We chose a feed-forward neural network-based
approach, which can be seen as a nervous system
added on a mechanical structure, performing a task
of co-ordinating the movement of its components.
From a mechanical point of view, we may consider
the neural connections between two springs in the
system as mutual coupling between two oscillators.

The amount of coupling and their co-operation act
as a control system over the spring-particle network.
Two steps were considered for the validation of our
approach. To test the self-consistency of the
algorithm we chose a trajectory from the class of
trajectories which can be fully identified by
standard particle-bond systems. The results
obtained were encouraging. The new approach,
based on mechanical-neural bonds, performs better
than the old one, though converging to the same
value. Furthermore we tested our new approach
over a real-life trajectory. Less surprisingly, in this
case the difference between the two methods was
greater, in favour of the new one.

In this paper we have shown how it is possible to
overcome one of the limitations of conventional
particle-bond systems in modelling complex motion
as encountered in living beings, by introducing
active mechanical-neural bonds. We showed that
the evolutionary identification method recently
developed for conventional bonds could be
extended successfully to mechanical-neural bonds
and allow the use of real-life kinematic data to train
the model.

However, it is still necessary to know the values of
masses and the structure of the particle-bond system
to enable the algorithm to identify the bonds’
mechanical and neural parameters. Current research
in our team aims at automatic identification of
masses and structures, using more elaborate
evolutionary schemes.

ACKNOWLEDGEMENTS
Thanks to J.L. Florens and the INPG/ACROE team
for their helpful advice and support.

REFERENCES

[Back95] Thomas Bick, Hans-Paul Schwefel:
Evolution Strategies I: Variants and their
computational implementation, Genetic Algorithms
in Engineering and Computer Science, John Wiley
& Sons, 1995.

[Delnondedieu93] Yves Delnondedieu, Annie
Luciani, Claude Cadoz: Physical FElementary
Component for Modelling The Sensory-Motricity:
The Primary Muscle, 4™ Eurographics Workshop
on Animation and Simulation, pp.193-207,
Barcelona September 1993

[Desbrun96] Mathieu Desbrun, Marie-Paule
Gascuel-Cani Smoothed Particles: A New
Approach for Animated Highly Deformable Bodies,

7™ Burographics Workshop on Animation and
Simulation, Poitiers, France, September 1996.

[House92] D.H. House, D.E. Breen, P.H. Getto: On
the Dynamic Simulation of Physically-Based
Particle-System Models, Proceedings of
EuroGraphics’92 Workshop on Animation and
Simulation, Cambridge England, 5-6 September
1992.

[Louchet96a] Jean Louchet: Self-Adaptive
Evolution to identify Structure from Motion,
ImageCom 1996, Bordeaux, France

[Louchet96b] J. Louchet, M. Boccara, D.
Crochemore, X. Provot, Building new tools for
synthetic image animation using evolutionary
techniques, Artificial Evolution 95, Brest,
September 95 Springer Verlag, 1996

[Luciani91] A. Luciani, S. Jimenez, C. Cadoz, J.L.
Florens, O. Raoult: Computational Physics: A
Modeler-Simulator for Animated Physical Objects,
EuroGraphics *91 conference, Elsevier Science.

[Reeves83] W.T.Reeves. Particle Systems- A
Technique for Modelling a Class of Fuzzy Objects,
Computer Graphics (Siggraph) voll7, no.3, pp 359-
376, June 1983

[Salford] Project of National Advanced Robotics
Research Centre, Salford University, UK
http://www.salford.ac.uk/

[Szilas95] Nicolas Szilas, Eric Ronco: Action for
learning in non-symbolic systems, Proc. of the
European Conference on Cognitive Science, pp.55-
63,Saint Malo, France, 4-7 April 1995.

[Teisserenc97] Patrick Teisserenc: Identification de
modeles d’animation de la locomotion équine,
ENSTA Research Report, 1997 (in french); see also
ENSTA/AMI activity report
http://www.ensta.fr/~louchet/ AMI/

