L. Hirsch, N. Jette, A. Frolkis, T. Steeves, and T. Pringsheim, The Incidence of Parkinson's Disease: A Systematic Review and Meta-Analysis, Neuroepidemiology, vol.46, issue.4, pp.292-300, 2016.
DOI : 10.1159/000445751

W. Dauer and S. Przedborski, Parkinson's Disease, Neuron, vol.39, issue.6, pp.889-909, 2003.
DOI : 10.1016/S0896-6273(03)00568-3

V. Muralidharan, P. P. Balasubramani, V. S. Chakravarthy, S. J. Lewis, and A. A. Moustafa, A computational model of altered gait patterns in parkinson's disease patients negotiating narrow doorways, Frontiers in Computational Neuroscience, vol.7, p.190, 2014.
DOI : 10.3389/fncom.2013.00190

A. Gupta, P. P. Balasubramani, and V. S. Chakravarthy, Computational model of precision grip in Parkinson's disease: a utility based approach, Frontiers in Computational Neuroscience, vol.7, p.172, 2013.
DOI : 10.3389/fncom.2013.00172

URL : http://journal.frontiersin.org/article/10.3389/fncom.2013.00172/pdf

T. G. Brown, On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, The Journal of Physiology, vol.48, issue.1, pp.18-46, 1914.
DOI : 10.1113/jphysiol.1914.sp001646

P. A. Guertin, Central Pattern Generator for Locomotion: Anatomical, Physiological, and Pathophysiological Considerations, Frontiers in Neurology, vol.3, 2013.
DOI : 10.3389/fneur.2012.00183

URL : http://journal.frontiersin.org/article/10.3389/fneur.2012.00183/pdf

E. Amrollah and P. Henaff, On the Role of Sensory Feedbacks in Rowat???Selverston CPG to Improve Robot Legged Locomotion, Frontiers in Neurorobotics, vol.4, 2010.
DOI : 10.3389/fnbot.2010.00113

URL : https://hal.archives-ouvertes.fr/hal-00552103

O. Kiehn and K. Dougherty, Locomotion: Circuits and Physiology, Neuroscience in the 21st Century, pp.1209-1236, 2013.
DOI : 10.1007/978-1-4614-1997-6_42

E. Marder and D. Bucher, Central pattern generators and the control of rhythmic movements, Current Biology, vol.11, issue.23, pp.986-996, 2001.
DOI : 10.1016/S0960-9822(01)00581-4

URL : https://doi.org/10.1016/s0960-9822(01)00581-4

P. A. Guertin, The mammalian central pattern generator for locomotion, Brain Research Reviews, vol.62, issue.1, pp.45-56, 2009.
DOI : 10.1016/j.brainresrev.2009.08.002

P. F. Rowat and A. I. Selverston, Learning algorithms for oscillatory networks with gap junctions and membrane currents, Network: Computation in Neural Systems, vol.41, issue.1, pp.17-41, 1991.
DOI : 10.1162/neco.1989.1.2.270

URL : http://pelican.ucsd.edu/~peter/Papers/Rowat1991.pdf

I. A. Rybak, N. A. Shevtsova, M. Lafreniere-roula, and D. A. Mccrea, Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion, The Journal of Physiology, vol.94, issue.2, pp.617-639, 2006.
DOI : 10.1152/jn.00991.2004

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2006.118703/pdf

A. J. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review, Neural Networks, vol.21, issue.4, pp.642-653, 2008.
DOI : 10.1016/j.neunet.2008.03.014

J. Nassour, P. Hénaff, F. Benouezdou, and G. Cheng, Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots, Biological Cybernetics, vol.79, issue.2, pp.291-303, 2014.
DOI : 10.1007/s004220050468

URL : https://hal.archives-ouvertes.fr/hal-01111244

P. Manoonpong, T. Geng, T. Kulvicius, B. Porr, and F. Wörgötter, Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning, PLoS Computational Biology, vol.4, issue.6, p.134, 2007.
DOI : 10.1371/journal.pcbi.0030134.sv002

URL : https://doi.org/10.1371/journal.pcbi.0030134

L. Righetti and A. J. Ijspeert, Programmable central pattern generators: an application to biped locomotion control, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp.1585-1590, 2006.
DOI : 10.1109/ROBOT.2006.1641933

URL : https://infoscience.epfl.ch/record/142771/files/righetti06.pdf

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

A. Dovzhenok and L. L. Rubchinsky, On the Origin of Tremor in Parkinson???s Disease, PLoS ONE, vol.7, issue.7, p.41598, 2012.
DOI : 10.1371/journal.pone.0041598.t003

A. Pavlides, S. J. Hogan, and R. Bogacz, Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson???s Disease, PLOS Computational Biology, vol.35, issue.6, p.1004609, 2015.
DOI : 10.1371/journal.pcbi.1004609.t002

J. L. Contreras-vidal and G. E. Stelmach, A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement, Biological Cybernetics, vol.76, issue.5, pp.467-476, 1995.
DOI : 10.1212/WNL.41.9.1469

O. Röhrle, J. B. Davidson, and A. J. Pullan, A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function, Frontiers in Physiology, vol.3, 2012.
DOI : 10.3389/fphys.2012.00358

A. V. Hill, The Heat of Shortening and the Dynamic Constants of Muscle, Proceedings of the Royal Society B: Biological Sciences, vol.126, issue.843, pp.136-195, 1938.
DOI : 10.1098/rspb.1938.0050

D. G. Thelen, Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults, Journal of Biomechanical Engineering, vol.96, issue.1, pp.70-77, 2003.
DOI : 10.1113/jphysiol.1939.sp003756

M. Ackermann, A. J. Van-den, and . Bogert, Optimality principles for model-based prediction of human gait, Journal of Biomechanics, vol.43, issue.6, pp.1055-1060, 2010.
DOI : 10.1016/j.jbiomech.2009.12.012

URL : http://europepmc.org/articles/pmc2849893?pdf=render

P. F. Rowat and A. I. Selverston, Oscillatory Mechanisms in Pairs of Neurons Connected with Fast Inhibitory Synapses, Journal of Computational Neuroscience, vol.4, issue.2, pp.103-127, 1997.
DOI : 10.1023/A:1008869411135