L. Hirsch, N. Jette, A. Frolkis, T. Steeves, and T. Pringsheim, The Incidence of Parkinson's Disease: A Systematic Review and Meta-Analysis, Neuroepidemiology, vol.46, issue.4, pp.292-300, 2016.
DOI : 10.1159/000445751

W. Dauer and S. Przedborski, Parkinson's Disease, Neuron, vol.39, issue.6, pp.889-909, 2003.
DOI : 10.1016/S0896-6273(03)00568-3

. Moustafa, A computational model of altered gait patterns in parkinson's disease patients negotiating narrow doorways Computational model of precision grip in Parkinson's disease: a utility based approach, Front Comput Neurosci Front Comput Neurosci, vol.7, issue.7, pp.190-172, 2013.

T. G. Brown, On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, The Journal of Physiology, vol.48, issue.1, pp.18-46, 1914.
DOI : 10.1113/jphysiol.1914.sp001646

A. Guertin, Central Pattern Generator for Locomotion: Anatomical, Physiological, and Pathophysiological Considerations, Frontiers in Neurology, vol.3, 2013.
DOI : 10.3389/fneur.2012.00183

URL : http://journal.frontiersin.org/article/10.3389/fneur.2012.00183/pdf

E. Amrollah and P. Henaff, On the Role of Sensory Feedbacks in Rowat???Selverston CPG to Improve Robot Legged Locomotion, Frontiers in Neurorobotics, vol.4, 2010.
DOI : 10.3389/fnbot.2010.00113

URL : https://hal.archives-ouvertes.fr/hal-00552103

O. Kiehn and K. Dougherty, Locomotion: Circuits and Physiology, Neuroscience in the 21st Century, pp.1209-1236, 2013.
DOI : 10.1007/978-1-4614-1997-6_42

E. Marder, D. Bucher, P. A. Guertin, P. Nassour, F. Hénaff et al., The mammalian central pattern generator for locomotion Learning algorithms for oscillatory networks with gap junctions and membrane currents Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion Central pattern generators for locomotion control in animals and robots: A review Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning Programmable central pattern generators: an application to biped locomotion control Oscillatory Mechanisms in Pairs of Neurons Connected with Fast Inhibitory Synapses Musculoskeletal Model for Simulation of Walking ? Human Motion and Control Laboratory Optimality principles for model-based prediction of human gait The Heat of Shortening and the Dynamic Constants of Muscle Dynamic sensorimotor interactions in locomotion, 13. A. J. Ijspeert Proceedings 2006 IEEE International Conference on Robotics and Automation 19. M. Ackermann and A. J. van den Bogert Proceedings of the Royal Society of London B: Biological Sciences, pp.986-996, 1938.