HIGH-DIMENSIONAL ROBUST REGRESSION AND OUTLIERS DETECTION WITH SLOPE

Abstract : The problems of outliers detection and robust regression in a high-dimensional setting are fundamental in statistics, and have numerous applications. Following a recent set of works providing methods for simultaneous robust regression and outliers detection, we consider in this paper a model of linear regression with individual intercepts , in a high-dimensional setting. We introduce a new procedure for simultaneous estimation of the linear regression coefficients and intercepts, using two dedicated sorted-1 penalizations, also called SLOPE [5]. We develop a complete theory for this problem: first, we provide sharp upper bounds on the statistical estimation error of both the vector of individual intercepts and regression coefficients. Second, we give an asymptotic control on the False Discovery Rate (FDR) and statistical power for support selection of the individual intercepts. As a consequence, this paper is the first to introduce a procedure with guaranteed FDR and statistical power control for outliers detection under the mean-shift model. Numerical illustrations, with a comparison to recent alternative approaches, are provided on both simulated and several real-world datasets. Experiments are conducted using an open-source software written in Python and C++.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01798400
Contributeur : Agathe Guilloux <>
Soumis le : mercredi 23 mai 2018 - 14:26:30
Dernière modification le : vendredi 4 janvier 2019 - 17:33:38
Document(s) archivé(s) le : vendredi 24 août 2018 - 21:13:24

Fichier

slope.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01798400, version 1

Citation

Alain Virouleau, Agathe Guilloux, Stéphane Gaïffas, Malgorzata Bogdan. HIGH-DIMENSIONAL ROBUST REGRESSION AND OUTLIERS DETECTION WITH SLOPE. 2018. 〈hal-01798400〉

Partager

Métriques

Consultations de la notice

94

Téléchargements de fichiers

26