Skip to Main content Skip to Navigation
Journal articles

Monodromy dependence and connection formulae for isomonodromic tau functions

Abstract : We discuss an extension of the Jimbo–Miwa–Ueno differential 1-form to a form closed on the full space of extended monodromy data of systems of linear ordinary differential equations with rational coefficients. This extension is based on the results of M. Bertola, generalizing a previous construction by B. Malgrange. We show how this 1-form can be used to solve a long-standing problem of evaluation of the connection formulae for the isomonodromic tau functions which would include an explicit computation of the relevant constant factors. We explain how this scheme works for Fuchsian systems and, in particular, calculate the connection constant for the generic Painlevé VI tau function. The result proves the conjectural formula for this constant proposed by Iorgov, Lisovyy, and Tykhyy. We also apply the method to non-Fuchsian systems and evaluate constant factors in the asymptotics of the Painlevé II tau function.
Document type :
Journal articles
Complete list of metadata
Contributor : Inspire Hep Connect in order to contact the contributor
Submitted on : Tuesday, May 22, 2018 - 5:19:08 PM
Last modification on : Tuesday, January 11, 2022 - 5:56:10 PM

Links full text




A. Its, O. Lisovyy, A. Prokhorov. Monodromy dependence and connection formulae for isomonodromic tau functions. Duke Math.J., 2018, 167 (7), pp.1347-1432. ⟨10.1215/00127094-2017-0055⟩. ⟨hal-01797601⟩



Record views