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Hyperspectral Unmixing With Spectral Variability
Using Adaptive Bundles and Double Sparsity

Tatsumi Uezato , Mathieu Fauvel, Senior Member, IEEE, and Nicolas Dobigeon , Senior Member, IEEE

Abstract— Spectral variability is one of the major issues
when conducting hyperspectral unmixing. Within a given image
composed of some elementary materials (herein referred to as
endmember classes), the spectral signatures characterizing these
classes may spatially vary due to intrinsic component fluctuations
or external factors (illumination). These redundant multiple
endmember spectra within each class adversely affect the perfor-
mance of unmixing methods. This paper proposes a mixing model
that explicitly incorporates a hierarchical structure of redundant
multiple spectra representing each class. The proposed method
is designed to promote sparsity on the selection of both spectra
and classes within each pixel. The resulting unmixing algorithm is
able to adaptively recover several bundles of endmember spectra
associated with each class and robustly estimate abundances.
In addition, its flexibility allows a variable number of classes
to be present within each pixel of the hyperspectral image to be
unmixed. The proposed method is compared with other state-of-
the-art unmixing methods that incorporate sparsity using both
simulated and real hyperspectral data. The results show that
the proposed method can successfully determine the variable
number of classes present within each class and estimate the
corresponding class abundances.

Index Terms— Endmember variability, hyperspectral imaging,
sparse unmixing, spectral unmixing.

I. INTRODUCTION

HYPERSPECTRAL analysis has received an increasing
attention because of its high spectral resolution, which

enables a variety of objects to be identified and classified [1].
Mixed pixels caused by the presence of multiple objects
within a single pixel adversely affect the performance of
hyperspectral analysis [2]. To address this problem, a wide
variety of spectral unmixing methods have been developed
over the last decades [3]–[6]. Spectral unmixing methods
aim at decomposing a mixed spectrum into a collection of
reference spectra (known as endmembers) characterizing the
macroscopic materials present in the scene and their respective
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proportions (known as abundances) in each image pixel [2].
Despite the large number of developed spectral unmixing
methods, there are still major challenges for accurate estimates
of endmember signatures and abundances [3]. Among these
challenges, endmember variability may lead to large amounts
of errors in abundance estimates [7]. It results from the fact
that each endmember can rarely be represented by a unique
spectral signature. Conversely, it is subject to so-called spectral
variability, e.g., caused by variations in the acquisition process,
the intensity of illumination, or other physical characteristics
of the materials [8], [9]. Taking this endmember variability
into account during the spectral unmixing process is one of
the keys for successful application of spectral unmixing [10].

The methods that incorporate endmember variability can be
categorized into two main approaches (see [7], [10], [11] for
recent overviews). The first approach relies on the definition of
a set of multiple spectral signatures, referred to as endmember
bundles, to characterize each endmember class. Endmember
bundles can be collected from field campaign or can be
extracted from data itself using endmember bundle extraction
methods [9], [12], [13]. The advantage of this approach is
the simple representation of the endmember variability nei-
ther assuming any particular distribution nor adding addi-
tional terms describing this variability. This can be achieved
by simply selecting physically possible spectral signatures
from prior information (i.e., endmember bundles). Endmem-
ber bundles can be validated by experts in order to pro-
vide accurate representation about endmember variability [12].
Although traditional methods incorporating endmember bun-
dles (see [14]) are known to be computationally expensive,
more efficient methods have been recently developed and
have shown great potential [15]–[18]. However, as pointed
out in [19], it is unlikely that the endmember bundles com-
pletely represent endmember variability present in an image.
Such incomplete endmember bundles may lead to poor esti-
mates of abundances. The second approach uses physical or
statistical descriptions of the endmember variability. More
precisely, these methods describe the endmember variability
thanks to a statistical distribution [20] or by incorporating
additional variability terms in the mixing model [21]–[23].
This approach can potentially incorporate endmember bun-
dles as supervised methods (see [24], [25]). The advantage
of this approach results from the adaptive learning of the
endmember variability. Indeed, state-of-the-art methods such
as those recently introduced in [21]–[23] enable endmember
spectra to spatially vary within each pixel in order to describe
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endmember variability. This is important since the endmem-
ber spectra to be used for the abundance estimation can
be different between pixels. However, estimating endmember
variability is a challenging task, especially when large amounts
of endmember variability are present in an image. In addition,
the statistical distribution or additional terms used in these
methods may be overly simplified to represent endmember
variability.

Both approaches demonstrate benefits and drawbacks.
A natural question arises: is it possible to combine the
strong advantages of both approaches to robustly represent
endmember variability? This paper addresses the question and
introduces a novel spectral unmixing method that bridges
the gap between the aforementioned two approaches with
the help of a double sparsity-based method inspired by
Rubinstein et al. [26]. Specifically, the proposed method aims
at adaptively recovering endmember spectra within each pixel
to describe endmember variability while preserving simple
representation. The proposed method is closely related to the
existing methods. Thus, the main contributions of this paper
are threefold: 1) to propose a novel spectral unmixing method
that incorporates adaptive endmember bundles through double
sparsity representation; 2) to give a systematic review of
related work and show the relationship between the proposed
method and existing methods; and 3) to provide compari-
son between the proposed method and other sparsity-based
methods.

This paper is organized as follows. Section II describes
related works and existing methods, while highlighting their
inherent drawbacks. In Section III, a novel mixing model
that incorporates endmember variability is proposed and its
relationships with existing methods are discussed. Section IV
introduces an associated unmixing algorithm designed to
recover the endmember classes, adaptive bundles, and abun-
dances. Sections V and VI show experimental results obtained
from simulated data and real hyperspectral images. Finally,
the conclusion is drawn in Section VII.

II. RELATED WORKS AND ISSUES RAISED

BY EXISTING METHODS

A. Conventional (Variability-Free) Linear Mixing Model

Let yi ∈ RL×1 denote the L-spectrum measured at the i th
pixel of a hyperspectral image. According to the linear mixing
model (LMM), the observed spectrum of the i th pixel yi is
approximated by a weighted linear combination of endmember
spectra and abundance fractions

yi =Mai + ni (1)

where M ∈ RL×K is the matrix of the spectral signatures asso-
ciated with the K endmember classes, ai = [a1i , . . . , aK i ]T ∈
RK×1 is the abundance fractions of the pixel, and ni ∈
RL×1 represents noise and modeling error. LMM is generally
accompanied by abundance nonnegativity constraint (ANC)
and the abundance sum-to-one constraint (ASC)

∀k,∀i, aki ≥ 0, and ∀i,
K∑

k=1

aki = 1 (2)

where aki is the abundance fraction of the kth class in
the i th pixel. This model implicitly relies on the following
assumption: each endmember class in M is described by
a unique spectrum and commonly used to unmix all the
pixels of a given image. In other words, LMM does not
account for spectral variability. However, as discussed pre-
viously, this is likely unrealistic because spectral variability is
naturally observed in hyperspectral images, e.g., because of
variations in illumination or physical intrinsic characteristics
of materials [19].

B. Linear Mixing Models Incorporating Endmember Bundles

LMMs that consider endmember bundles have been devel-
oped. Endmember bundles can be extracted manually using
the method developed in [12] or the ENVI software as done
in [19]. Several methods that automatically extract endmem-
ber bundles have also been developed [9], [13], [27]. The
automated endmember bundle extraction method proposed
in [13] sequentially generates a number of subsets represent-
ing randomly selected pixels and extracts endmembers from
each subset. Then, bundles are generated by grouping the
extracted multiple endmembers. More recently, endmember
bundle extraction methods that consider both spatial and spec-
tral information have been developed [9], [27]. Endmember
bundles can be potentially estimated by LMMs incorporating
spectral variability [21]–[23]. These methods explicitly add a
term representing endmember variability and, thus, estimate
variable endmember spectra within each class. The estimated
endmember spectra of each class can be subsequently grouped
into endmember bundles. Although endmember bundles can
be extracted by the above methods, in this paper, we assume
that endmember bundles are a priori available and have
been previously identified. This prevents unmixing results to
be affected by the performance of the endmember bundle
extraction step and enables fair comparison.

Multiple endmember spectral mixture analysis
(MESMA) [14] allows the variability of the endmember
spectrum representative of each class and a varying
number of endmember classes present within each pixel.
Although MESMA has been widely used for a variety of
applications [14], [28], it owns several major limitations.

1) It is highly computationally expensive because MESMA
needs to test a large number of combinations of end-
member spectra [29].

2) MESMA tends to select an overestimated number of
endmember classes because it uses the reconstruction
error to select the appropriate combination of endmem-
ber spectra [30].

3) The performance of MESMA may significantly decrease
when endmember spectra (or bundles) within each class
do not completely represent the spectral variability [19].

To overcome these limitations, recent works have proposed
a new class of methods that incorporate all endmember bundles
defined as [15], [16]

E = [E1|E2| · · · |EK ] (3)

where Ek ∈ RL×Nk represents a set of endmember spectra
(i.e., bundle) characterizing the kth class, Nk is the number of
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endmember spectra in the kth class, and N is the total number
of endmember spectra of all classes with N = ∑K

k=1 Nk .
Generalizing LMM in (1), those methods first model a given
observed pixel spectrum with respect to (w.r.t.) all spectra in
endmember bundles and corresponding multiple abundances

yi = Eri + ni (4)

where ri ∈ RN×1 is multiple abundance fractions corre-
sponding to each spectrum of the endmember bundles E.
As for LMM, ASC or ANC can also be imposed to ri .
As a second step, multiple abundance fractions ri are summed
within each class to generate a single abundance fraction for
each class

ai = GT ri (5)

with

G =

⎡
⎢⎢⎢⎣

1N1 0N1 · · · 0N1

0N2 1N2 · · · 0N2
...

...
. . .

...
0NK 0NK · · · 1NK

⎤
⎥⎥⎥⎦ (6)

where 1Nk ∈ RNk×1 is a column vector of ones and 0Nk ∈
RNk×1 represent an Nk -dimensional vector whose components
are zeros. While these two steps are conducted separately
in [15] and [16], they can also be considered jointly within
a multitask Gaussian process framework [17], [19]. Even if
these methods have been shown to be effective, a large
number of endmember spectra within each class may be redun-
dant. In such case, following a model selection inspiration,
Veganzones et al. [15] introduce a complementary sparsity
regularization on the multiple abundance vectors

min
ri

1

2
‖Eri − yi‖22 + λr‖ri‖1

s.t. ∀i, ri � (7)

where � represents the element-wise comparison, ‖ · ‖2 is
the �2-norm, and ‖ · ‖1 is the �1-norm which is known to
promote sparsity. Once the multiple abundance vector ri has
been estimated, it is normalized in order to reduce the effects
of multiplicative factors and satisfy ASC. Following the same
approach, further sparsity can be imposed using �p-norm [31]
or reweighted �1-approaches [32], [33]. Overall, this sparsity
property allows the selection of a smaller number of endmem-
ber spectra. However, it may not lead to the selection of a
smaller number of endmember classes. Conversely, to promote
sparsity on the number of endmember classes, one strategy
consists in formulating the unmixing problem through a sparse
group lasso [34]

min
ri

{
1

2
‖

K∑
k=1

Ek(gk � ri )− yi‖22

+ λg

K∑
k=1

‖gk � ri‖2 + λr‖ri‖1
}

s.t. ∀i, ri � 0 (8)

where gk is the kth column of G, � is the element-wise
product, and thus, gk�ri extracts the elements in ri belonging

to the kth class. This approach has the great advantage of
promoting sparsity in both the number of endmember spectra
and the number of endmember classes. Another strategy relies
on the concept of “social sparsity” that can exploit the struc-
ture of endmember bundles more explicitly [18]. The method
assumes that ri can be partitioned into K groups representing
each endmember class, leading to the optimization problem

min
ri

⎧⎪⎨
⎪⎩

1

2
‖Eri − yi‖22 + λr

(
K∑

k=1

‖gk � ri‖qp
) 1

q

⎫⎪⎬
⎪⎭

s.t. ∀i, ∀n, ri � 0,

N∑
n=1

rni = 1 (9)

where ‖ · ‖p is the �p-norm and rni is the nth multiple
abundance fraction of the i th pixel. Finally, abundances asso-
ciated each endmember class can be obtained by summing the
multiple abundances within each class as in (5). This method
can be considered as a generalized model, since by adjusting
the values of (p, q), it boils down to the group lasso (2, 1),
the elitist lasso (1, 2), or the fractional case (1, q) where q ∈ N

and 0 < q < 1 [18]. The fractional case promotes sparsity of
the selection of both endmember classes and spectra within
each class. The aforementioned methods that incorporate all
endmember bundles can potentially recover pixel-wise end-
member variability, at the price of a thorough postprocessing
analysis. More precisely, the pixel-wise endmember variability
can be estimated by a weighted combination of all possible
endmember spectra within each class, e.g., as done in [35].

All of the aforementioned sparsity-based methods still suffer
from the following limitations.

1) Interpretation of the Models: The models are designed
to estimate multiple abundance fractions r corresponding
to each spectrum in endmember bundles. Although the
models can implicitly consider abundances for each
class or endmember spectra for each pixel, they cannot
independently describe pixel-wise endmember spectra.
In order to generate pixel-wise endmember spectra,
a thorough postprocessing analysis is required using a
normalization technique [35].

2) Adaptability to Describe Endmember Variability: ASC
imposed on ri does not allow a consistent description of
the endmembers within each pixel. In addition, it cannot
explicitly capture adaptive and hierarchical structure of
endmember spectra for each pixel.

To overcome these two shortcomings, this paper capitalizes
on this abundant literature to design a new multiple endember
mixing model introduced in Section III.

III. MULTIPLE ENDMEMBER MIXING MODELS

A. MEMM
The proposed model relies on three main ingredients,

namely, endmember bundles, bundling coefficients, and abun-
dances. According to this model, each endmember bundle is
mixed to provide a suitable and adaptive endmember spectrum
used to unmix a given pixel. The proposed multiple endmem-
ber mixing model (MEMM) is defined as

yi = EBi ai + ni (10)
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where Bi ∈ RN×K gathers so-called bundling coefficients
of the i th pixel which decompose the endmember signatures
according to the endmember bundles for the considered pixel.
To enforce the bundle structure, the bundling coefficients
Bi associated with the pixel is defined as the following
block-diagonal matrix:

Bi =

⎡
⎢⎢⎢⎣

b1i 0N1 · · · 0N1

0N2 b2i · · · 0N2
...

...
. . .

...
0NK 0NK · · · bK i

⎤
⎥⎥⎥⎦ (11)

where bki ∈ RNk×1 is the bundling coefficients for the kth
class at the i th pixel. Each bundling coefficient must be
nonnegative, and the bundling vector bki is expected to be
sparse. Indeed, multiple endmember spectra within each class
are usually redundant and only a few endmember spectra
within each class should be enough to unmix a pixel. This
property can be induced by considering the following bundling
constraints:

∀i, Bi � 0 and ‖Bi‖0 =
K∑

k=1

‖bki‖0 ≤ s (12)

where ‖ · ‖0 is the �0-norm that counts the number of nonzero
elements and s is the maximum number of nonzero elements
in Bi , i.e., the maximum number of endmembers to be used
within each class to describe the pixel. The ANC and the ASC
are usually imposed. In addition, in this paper, complementary
sparsity is imposed on each abundance vector, i.e.,

∀k,∀i, aki ≥ 0, and ∀i,
K∑

k=1

aki = 1, ‖ai‖0 ≤ v (13)

where v is the number of endmember classes to be used to
decompose the image pixel.

B. MEMMs

The sparsity constraint (12) applied to B can be slightly
modified to obtain another meaningful set of constraints

∀i, Bi � 0 and ∀k,∀i, ‖bki‖0 ≤ 1. (14)

The resulting model, referred to as MEMMs in what follows,
is designed to generate at most one scaled endmember spec-
trum for each class. Details on the optimization of MEMMs

are available in [36].

C. Relationships Between MEMM and Existing Models

1) MEMMs and MESMA: When the sparsity constraint
on the abundances ‖ai‖0 ≤ v in (13) is not considered,
the optimization problem associated with the MEMMs model
described in Section III-B is equivalent to MESMA and sparse
MESMA [37]. Unlike MESMA that considers the reconstruc-
tion error to determine the optimal combination of endmember
classes within each pixel, MEMMs incorporates the sparsity
constraint to select the optimal combination. This prevents a
larger number of endmember classes to be selected for each
pixel.

2) MEMM and Pixel-Wise Endmember Variability Models:
By denoting M̃i = EBi , the equivalent endmember matrix
associated with the i th pixel, MEMM models the observed
pixel spectra as

yi = M̃i ai + ni (15)

where M̃i can be interpreted as a set of K spatially varying
endmember spectra. This approach has also been adopted in
recent works to incorporate endmember variability as additive
factors [22], multiplicative factors [21], [38], or a combina-
tion of additive and multiplicative factors [23]. In particular,
when N1 = . . . , Nk = 1 in (3), the endmember bun-
dles E1, . . . , EK are reduced to unique endmember spectra
characterizing each class. The associated bundling coefficient
matrix B = diag[b1, . . . , bK ] is diagonal, where each coef-
ficient bk scales the corresponding endmember spectrum
Ek (k = 1, . . . , K ). Thus, MEMM generalizes the recently
introduced extended LMM [21].

However, MEMM is different from the aforementioned
methods since it resorts to a priori information (i.e., end-
member bundles) to model the endmember variability. More
precisely, MEMM describes the admissible variability within
an endmember class as the convex cone spanned by the cor-
responding bundles. As a consequence, per se, MEMM offers
an adaptive description of the spectral variability even when
predefined endmember bundles do not completely capture this
variability within each class.

Finally, when the existing methods impose ASC onto ai ,
they assume that mixed spectra belong to the simplex spanned
by the endmember bundles. In such case, pixel-wise end-
member spectra can be generated as convex combinations
of spectra within each bundle where the weight of each
bundling coefficient corresponds to a normalized abundance of
a spectrum in the bundle. However, this is a limited assumption
since observed spectra may be outside the simplex, e.g., when
affected by variations in illumination. MEMM imposes ASC
only onto the abundances ai of endmember classes and enables
the bundling coefficients Bi to scale the endmember signature,
e.g., to capture variability induced by varying illumination
(see experiments in Section VII).

3) MEMM and Sparsity-Based Unmixing Methods: By set-
ting ri = Bi ai , MEMM in (10) can be rewritten as

yi = Eri + ni (16)

similar to the existing models discussed in Section II. The
main difference is that MEMM enables the multiple abun-
dances ri to be decomposed into bundling coefficients Bi

within each class and abundances ai , resulting into a bilayer
description of the abundances. This hierarchical decompo-
sition has been also adopted by unmixing methods based
on multilayer nonnegative matrix factorization [39]. However,
each layer induced by MEMM (i.e., bundling matrix and
abundance vector) has a clear and meaningful role. In addition,
MEMM complements this bilayer hierarchy with a twofold
structured, physically-motivated sparsity imposed on the mul-
tiple abundance vector ri . This bilevel sparsity has the signif-
icant advantage of reducing overfitting, and one may expect a
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significant improvement of stability and interpretability of the
abundance estimates.

The intrinsic structure of MEMM is also similar to the
recently developed methods based on robust constrained
matrix factorization [40] and kernel archetypoid analysis [41].
These methods model a set Y = [y1, . . . , yP ] ∈ RL×P of P
pixel spectra as

Y = YCA+ N (17)

where C ∈ RP×K is a matrix gathering a set of coefficients,
A = [a1, . . . , aP ] ∈ RK×P is the abundance matrix and
N = [n1, . . . , nP ] ∈ RL×N is the error and noise matrix.
Sparsity (induced by ASC or the use of �0-pseudonorm)
and nonnegativity constraints are imposed onto each column
of C and YC can be interpreted as synthetic endmember
spectra. These methods use the subset of whole image pixels
to generate synthetic endmember spectra that are fixed within
each image. On the other hand, MEMM uses the subset of
endmember bundles to generate synthetic endmember spectra
that may be different for each pixel.

Finally, MEMM is closely related to the fractional
lasso-based method that has been recently proposed in [35].
Both methods impose sparsity for the selection of both end-
member classes and endmember spectra, in a similar manner
proposed in [34]. In addition, they can impose ASC and also
recover pixel-wise endmember spectra and abundances for
each endmember class. However, there are differences between
these two methods.

1) MEMM defines bundling coefficients and, thus, can
explicitly express pixel-wise endmember spectra M̃i

and abundances ai for each endmember class in the
unmixing model. On the other hand, the method
proposed in [35] is designed to estimate multiple
abundance fractions ri for each possible endmember
spectrum among endmember bundles in the unmix-
ing model. Abundances for each endmember class or
pixel-wise endmember spectra are subsequently recov-
ered by conducting postprocessing steps. In other words,
MEMM estimates the bundling coefficients indepen-
dently whereas in [35], they are computed from the
multiple abundance fractions.

2) While the bundling coefficients are only required to
be positive in MEMM, both positivity and sum-to-one
constraints are imposed by the model introduced in [35].
This leads to a different geometrical interpretation of
pixel-wise endmember spectra (see Fig. 1). Pixel-wise
endmember spectra derived by MEMM are inside the
conic hull defined by each endmember bundle. The conic
hull can also be interpreted as scaling factors discussed
in [15] and [21] which are important, e.g., to describe
varying illumination. On the other hand, the method
in [35] generates pixel-wise endmember spectra as the
convex combination of endmember spectra within each
endmember bundle. Note that, if MEMM considers a
sum-to-one constraint for each column in B, MEMM can
also consider the convex hull described by each end-
member bundle.

Fig. 1. Geometrical interpretation of potential endmember variability derived
by different methods. Different colors represent different endmember classes.
Points represent given endmember spectra within each class. Transparent
colors represent potential endmember variability generated by the methods.
(a) Potential endmember variability described by a line using MEMMs or
MESMA. (b) Potential endmember variability described by convex hull using
the fractional lasso-based method or other methods that imposes ASC on
r (see [16]). (c) Potential endmember variability described by convex cone
using the proposed MEMM.

IV. MEMM-BASED UNMIXING ALGORITHM

Unmixing according to the proposed MEMM can be for-
mulated as the minimization problem

min
Bi ,ai

1

2
‖EBi ai − yi‖22

s.t. ∀k,∀i, aki ≥ 0,

K∑
k=1

aki = 1, ‖ai‖0 ≤ v,

Bi � 0, ‖Bi‖0 ≤ s. (18)

This minimization problem is similar to the double
sparsity-inducing method proposed in [26]. Using an alterna-
tive formulation, the minimization problem can be written as
the following nonconvex minimization problem:

min
Bi ,ai

J (Bi , ai ) = { f (Bi , ai )+ h(Bi )+ g(ai)} (19)

with

f (Bi , ai ) = 1

2
‖EBi ai − yi‖22 (20)

h(Bi ) = ιR+(Bi )+ λb‖Bi‖0 (21)

g(ai ) = ιS(ai )+ λa‖ai‖0 (22)

where λa and λb are parameters which control the balance
between the data fitting term and the sparse regularizations,
ιC(x) is the indicator function on the set C [i.e., ιC(x) = 0
when x ∈ C whereas ιC(x) = ∞ when x /∈ C], and S is the
simplex defined by the ASC and ANC. Promoting the sparsity
of the solution through penalized regularizations rather than a
hard constraint allows the contribution of the sparsity term
to be adjusted w.r.t. the data-fitting term rather than directly
constraining the maximum number of classes. This flexibility
allows different numbers of selected endmember spectra or
classes to be selected for each pixel. Solving this optimization
problem is challenging since the regularization functions h and
g are nonconvex and nonsmooth. However, it can be tackled
thanks to the proximal alternating linearized minimization
(PALM) [42]. With guarantees to converge to a critical
point, PALM iteratively updates the parameters ai and Bi

by alternatively minimizing the objective function w.r.t. these
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Algorithm 1 Algorithm for MEMM-Based Unmixing
1: Input : yi , E
2: Initialization: a(0)

i and B(0)
i .

3: Set r(0)
i using an unmixing method (e.g. FCLS).

4: a(0)
i = GT r(0)

i
5: ∀k, b(0)

ik = (gk � r(0)
i )
 a(0)

ki
6: Main procedure:
7: while the stopping criterion is not satisfied do
8: b(t+1)

i ← proxh
ct/λb

(b(t)
i − 1

ct
∇bi f (b(t)

i , a(t)
i ))

9: B(t+1)
i = blkdiag(b(t+1)

i )

10: a(t+1)
i ← proxg

dt/λa
(a(t)

i − 1
dt
∇ai f (B(t+1)

i , a(t)
i ))

11: end while
12: Output : a(t+1)

i , B(t+1)
i

parameters, i.e., by solving the following proximal problems:
B(t+1)

i ∈ min
Bi

{
h(Bi )+

〈
Bi − B(t)

i ,∇Bi f
(
B(t)

i , a(t)
i

)〉
+ct

2

∥∥Bi − B(t)
i

∥∥2
2

}
a(t+1)

i ∈ min
ai

{
g(ai)+

〈
ai − a(t)

i ,∇ai f
(
B(t+1)

i , a(t)
i

)〉
+dt

2

∥∥ai − a(t)
i

∥∥2
2

}
. (23)

The pseudocode for MEMM is shown in Algorithm 1, and
these two steps are described in what follows.

A. Optimization w.r.t. Bi

To optimize only w.r.t. the diagonal entries in Bi ,
the objective function can be rewritten with the following
decomposition:

f (bi , ai ) = 1

2
‖Ui bi − yi‖22

h(bi ) = ιR+(bi )+ λb‖bi‖0 (24)

where

Ui = [E1a1i | · · · |EK aK i ]
bi =

[
bT

1i , bT
2i , · · · , bT

K i

]T
.

This leads to the following updating rule:

min
bi

{
h(bi )+ ct

2

∥∥∥∥bi −
(

b(t)
i −

1

ct
∇b f

(
b(t)

i , a(t)
i

))∥∥∥∥
2

2

}

where ∇bi f (b(t)
i , a(t)

i ) = UT
i (Ui bi − yi ). Using similar com-

putations as in [42], this can be conducted as

b(t+1)
i ∈ proxh

ct /λb

(
b(t)

i − 1
ct
∇bi f

(
b(t)

i , a(t)
i

))
(25)

where ct = γm‖UT
i Ui‖F represents a step size for each

iteration. The proximal operator associated with f can be com-
puted using the approach [42]. Finally, the bundling matrix Bi

can be reconstructed as Bi = blkdiag(bi ), where blkdiag(·)
generates the block diagonal matrix Bi from the vector bi .

B. Optimization With Respect to ai

To optimize w.r.t. ai , the objective function can be rewritten
using the decomposition

f (Bi , ai ) = 1
2‖M̃i ai − yi‖22 (26)

g(ai) = ιS(ai )+ λa‖ai‖0 (27)

where M̃i = EBi . Thus, updating the abundance vector can
be formulated as

min
ai

{
g(ai)+ dt

2

∥∥∥∥ai −
(

a(t)
i −

1

dt
∇ai f

(
B(t+1)

i , a(t)
i

))∥∥∥∥
2
}

where ∇ai f (B(t+1)
i , a(t)

i ) = M̃T
i (M̃i ai − yi ). Using the proxi-

mal operator, this can be written as

a(t+1)
i ∈ proxg

dt/λa

(
a(t)

i −
1

dt
∇ai f

(
B(t+1)

i , a(t)
i

))
(28)

where dt = γa‖M̃T
i M̃i‖F represents a step size for each

iteration. Moreover the proximal mapping associated with g
can be performed using the method developed in [43].
Details on the computation of these proximal operators are
available in [36].

C. Initialization and Stopping Rule

MEMM requires initial estimates a0
i and B0

i of the abun-
dance vector and bundling matrix, respectively. To do so,
first, MEMM estimates a multiple abundance vector r(0)

i using
the state-of-the-art LMM-based unmixing method [e.g., fully
constrained least squares (FCLS), see line 3]. Then, an initial
estimate of the single abundance vector a(0)

i is computed
according to (5) (see line 4). Finally, the bundling matrix B(0)

i
is arbitrarily initialized as the corresponding scaling factor
(see line 5, where 
 stands for the element-wise division).
Once initial estimates have been obtained, a(t+1)

i and b(t+1)

are iteratively updated in lines 8–10. The algorithm stops when
the difference between updated and previous values of the
objective function f (Bi , ai ) is smaller than a predetermined
threshold.

V. EXPERIMENTS USING SIMULATED DATA

First, the relevance of the proposed MEMM and its variant
MEMMs has been evaluated, thanks to experiments conducted
on simulated data sets.

A. Generation of Bundles

First, K = 10 spectra were selected from the USGS spectral
library. The ten spectra were chosen so that the minimum angle
between any two spectra was larger than 5◦. This pruning
prevented synthetic endmember bundles to overlap each other.
Second, endmember bundles Ek (k = 1, . . . , K ) were designed
by randomly generated Nk = 30 endmember spectra for each
endmember bundle using the approach proposed in [44]. These
bundles, depicted in Fig. 2, were used for generating the
following two simulated data.
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Fig. 2. Synthetically generated endmember bundles.

1) Simulated Data Set 1 (SIM1): The first data set, referred
to as SIM1 in what follows, was generated using MESMA.
A mixed spectrum was generated using the following five
steps. First, the number of endmember classes K was
randomly determined in the set ({1, . . . , 5}). Using weighted
random number, a smaller number is more likely to occur
in the set. Second, a random combination of endmember
classes was selected. Third, one spectrum within each selected
endmember class was randomly chosen. Fourth, the abun-
dances of the selected endmember classes were randomly
generated using a Dirichlet distribution to jointly ensure ANC
and ASC. Finally, a mixed spectrum was generated by a linear
combination of endmember spectra of the selected endmember
classes and the randomly generated abundances. A set of
P = 100 mixed spectra were generated in this paper. Different
amounts of additive Gaussian noise with corresponding signal-
to-noise ratios (SNRs) of 50, 40, and 30 dB were considered
to the mixed spectra. A complementary scenario with lower
SNR (20 dB) is considered in [36].

2) Simulated Data Set 2 (SIM2): SIM2 was generated using
MEMM. A mixed spectrum was generated similarly as done
in SIM1. The main difference is the bundling coefficients
in MEMM. In order to generate the bundling coefficients,
the number of spectra Nk was randomly chosen in the
set ({1, . . . , 5}). The bundling coefficients of the randomly
selected spectra were generated from a Dirichlet distribution.
A mixed spectrum was generated by a linear combination of
spectra, the bundling coefficients, and the abundances. As for
SIM1, P = 100 mixed spectra were generated and different
amounts of Gaussian noise were also added to SIM2.

3) Simulated Data Set 3 (SIM3): For SIM3, each pixel is
generated by selecting and then scaling a unique endmember
spectrum belonging to a randomly chosen endmember class.
More precisely, the observed pixel spectra yi of SIM 3 can
be written as yi = ci eki ,ni , where eki ,ni is the endmember
spectrum defining the kth class and ci , ki , and ni are randomly

and uniformly drawn in the sets (0.8, 1), {1, . . . , K }, and
{1, . . . , Nk }, respectively. A set of P = 100 pixels were gen-
erated, and different levels of Gaussian noise were considered.
These pure pixel spectra may be mistakenly unmixed by mul-
tiple endmember classes if endmember variability affected by
the scaling factor is not correctly described by the considered
model. To correctly select a single endmember, strong sparsity
needs to be imposed while incorporating the scaling factor.

B. Compared Methods

MEMM and MEMMs were compared with other five
methods that incorporate endmember bundles and promote
sparsity: FCLS [45], sparse unmixing by variable splitting
and augmented Lagrangian (SUnSAL) [46], alternating angle
minimization (AAM) [47], and methods based on group lasso,
elitist lasso, and fractional lasso [18], [35]. Note that, FCLS
and SUnSAL can incorporate endmember bundles by consid-
ering the model in (4). Abundances estimated by SUnSAL
were normalized in order to be robust to the scaling factor
caused by illumination variations as discussed in [15] and [21].
FCLS and SUnSAL were chosen for comparing the proposed
methods with most widely used unmixing methods that pro-
mote sparsity. AAM was selected for comparison because it
is a latest variant of MESMA and it is more computationally
efficient than MESMA while achieving good performance.
Group lasso, elitist lasso, and fractional lasso were also
included for comparison because they can incorporate the
structure of endmember bundles as well as MEMM. Note that,
the fractional lasso is defined by using the �1,q-norm with
q = 0.1 to impose greater sparsity for the selection of
endmember classes, trying to mimic the �1,0-pseudo norm
as discussed in [35]. MEMM, MEMMs , and the methods
based on group lasso, elitist lasso, and fractional lasso
require initial estimates of abundances. In order to fairly
compare methods, this paper used abundances estimated by
FCLS for the initial estimates required for the methods.
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SUnSAL, the methods based on group lasso, elitist lasso,
and fractional lasso, and MEMMs require a parameter λr

or λa controlling sparsity regularization. MEMM requires
two parameters λb and λa . In order to fairly compare the
methods, these parameters were empirically determined in
the set (0.0001, 0.001, 0.01, 0.1, 1, 5) for each simulated data
so that the selected values produced the highest signal-
to-reconstruction error (SREa). Parameter sensitivity of the
proposed method is discussed in [36]. Finally, computation
time was also discussed.

C. Performance Criteria

The main objective of this experiment was to assess
the algorithm performance while selecting a combination
of endmember classes and spectra, and estimating abun-
dances corresponding to endmember classes and spectra. Three
criteria were chosen for quantitative validation of the methods.
To evaluate the quality of the reconstruction, one defines
the SRE per endmember class and per endmember spectrum
as [48]

SREa ≡ E[‖a‖22]/E
[‖a − â‖22

]
SREr ≡ E[‖r‖22]/E

[‖r − r̂‖22
]

(29)

where a and â are the actual and estimated abundance vectors
of all pixels, and r and r̂ are the actual and estimated multiple
abundance vectors of all pixels.

Second, the number of nonzero abundances were used to
evaluate the sparsity level per endmember class and per end-
member spectrum recovered by the methods (see [37], [48]).
In this paper, normalized sparsity level (nSL) is defined as

nSLa ≡ 1

P

P∑
i=1

‖âi‖0
‖ai‖0

nSLr ≡ 1

P

P∑
i=1

‖r̂i‖0
‖ri‖0 . (30)

As in [48], abundances smaller than 10−4 were considered as
zero abundances. When the number of nonzero values of esti-
mated abundances is equivalent to that of actual abundances,
the nSL value becomes 1.

Finally, to validate the performance in selecting a
relevant combination of endmember classes or spectra, one
defines the distance between the two actual and estimated
supports (DIST) [37], [49]

DISTa ≡ 1

P

P∑
i=1

max
(∣∣Sa

i

∣∣, ∣∣Ŝa
i

∣∣)− ∣∣Sa
i ∩ Ŝa

i

∣∣
max

(∣∣Sa
i

∣∣, ∣∣Ŝa
i

∣∣)
DISTr ≡ 1

P

P∑
i=1

max
(∣∣Sr

i

∣∣, ∣∣Ŝr
i

∣∣)− ∣∣Sr
i ∩ Ŝr

i

∣∣
max

(∣∣Sr
i

∣∣, ∣∣Ŝr
i

∣∣) (31)

where S and Ŝ are true and estimated support sets (i.e., indexes
of nonzero values), |S| represents the total number of elements
in the set S, and ∩ stands for the intersection operator. The
figures of DISTa and DISTr evaluated the distance between
two supports of endmember classes and the distance between
two supports of endmember spectra, respectively.

TABLE I

SRE PER ENDMEMBER CLASS (SREa ). THE SYMBOL (∞)
SHOWS PERFECT RECOVERY

TABLE II

SRE PER ENDMEMBER SPECTRUM (SREr )

D. Results

SRE per class was calculated for each method and is
reported in Table I. For SIM1 with 50 dB, AAM performed
best among all methods. The performance of AAM, however,
was degraded as SNR became lower. For data with 30 dB,
the results derived from AAM were worse than those derived
from other methods except MEMMs . In addition, AAM per-
formed poorly compared with other methods in SIM2. This
showed that the MESMA-based approach (AAM) was less
effective when given endmember bundles did not completely
represent endmember variability present in the data and SNR
of the data was low (<40 dB). This finding was also observed
in [19]. MEMM produced better results for SIM2 with 50 dB
than the other sparsity-methods and produced comparable
results with 40 and 30 dB. MEMMs performed poorly,
compared with all methods. In SIM3, MEMM outperformed
other methods as expected. This showed that MEMM could
successfully select the correct support and describe the vari-
ability caused by scaling effects while other methods failed to
describe the variability. SRE per spectrum was also calculated
from each method and is reported in Table II. Compared with
SRE per class, SRE per spectrum was very low for all methods.
This showed that the exact recovery of multiple abundances
ri was challenging under conditions where a large number of
endmember spectra were present within each class.

The nSL in ai and ri is shown in Tables III and IV,
respectively. For the number of nonzero abundances per class,
the nSLa values of MEMM were closer to 1 and performed
best among all methods for SIM1, SIM2, and SIM3. This
showed that the sparse constraint (the �0 norm) used in
MEMM successfully imposed greater sparsity and led to
the selection of smaller numbers of endmember classes. For
the number of nonzero abundances per spectrum, AAM and
MEMMs produced the smaller number of nonzero abundances
than other methods. This was because these methods selected
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TABLE III

NSL PER ENDMEMBER CLASS (NSLa )

TABLE IV

NSL PER ENDMEMBER SPECTRUM (NSLr )

TABLE V

DISTANCE BETWEEN ACTUAL AND ESTIMATED SUPPORTS
PER ENDMEMBER CLASS (DISTa )

TABLE VI

DISTANCE BETWEEN ACTUAL AND ESTIMATED SUPPORTS

PER ENDMEMBER SPECTRUM (DISTr )

at most one spectrum within each class and enforced greater
sparsity when selecting endmember spectra.

The errors in the support sets are shown in Tables V and VI.
When estimating the support set per class, MEMM out-
performed other methods for all data sets. Especially in
SIM3 where a single class is present for each pixel, MEMM
could perfectly recover the support in the data set for SNR
levels of 50 and 40 dB. This showed that the double sparsity
imposed by MEMM also led to the appropriate selection
of the combination of endmember classes for each pixel.
The performance of MEMM, however, was degraded when
estimating the support set per spectrum. Other methods also
performed poorly for the support set per spectrum. This shows

TABLE VII

COMPUTATION TIME FOR UNMIXING P = 100 PIXELS USING
ENDMEMBER BUNDLES OF N = 300 ENDMEMBER SPECTRA

Fig. 3. Real hyperspectral images. (a) MUESLI image. (b) AVIRIS image.

that when multiple highly correlated endmember spectra are
present within each class, the existing methods experience
difficulty to select an optimal combination of endmember
spectra.

These results also showed that better estimates in terms of
extracted support (reflected by the DIST or SL values) did not
necessarily lead to better SRE values. This is because even
if the support and number of nonzero values are correctely
recovered, estimated abundances in the correct support may
be different from the actual ones. This effect may result from
the auxiliary penalizations and constraints inherent to different
methods (sum-to-one, nonnegativity, and various formulations
of the structured sparsity).

Finally, the computation times of all methods are shown
in Table VII. MEMM was more computationally expensive
than FCLS, SUnSAL, group lasso, elitist lasso, and fractional
lasso. The proposed methods, however, were computationally
cheaper than AAM because they did not need to test a large
number of combinations of endmember spectra.

VI. EXPERIMENTS USING REAL DATA

A. Description of Real Hyperspectral Images

The methods were finally compared on two real hyperspec-
tral images. The first hyperspectral image was acquired in
June 2016, over the city of Saint-André, France, during the
MUESLI airborne acquisition campaign. The image was com-
posed of 415 spectral bands. The spectral bands affected by
noise (between 1.34–1.55 and 1.80–1.98 μm) were removed,
leading to L = 345 spectral bands. In the image scene,
spatially discrete objects were present. In this paper, each
spatially discrete region was assumed to be composed of a
single endmember class. Endmember bundles were extracted
from each region. As a consequence, large amounts of end-
member variability were expected to be present within each
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Fig. 4. (First row) Endmember bundles used for unmixing the MUESLI image. (Second row) Endmember bundles generated by MEMM.

Fig. 5. (First column) Endmember bundles used for unmixing the AVIRIS
image. (Second column) Endmember bundles generated by MEMM.

spatially discrete region associated with a particular class and
mixed pixels were expected to be located in the boundary of
these spatially discrete regions. Moreover, the scene of interest
was composed of two flight lines under significantly different
illumination conditions, as shown in Fig. 3(a). Thus, this
image (referred to as MUESLI image) was used to evaluate
whether the methods could accurately estimate abundances
when large amounts of endmember variability were present.
From this image, K = 6 endmember bundles composed of
a total of N = 180 spectral signatures representing spatially
discrete objects were extracted using the n-dimensional visu-
alizer provided by the ENVI software. Endmember bundle
extraction was done as follows. First, the N-dimensional
visualizer was used to identify and extract pixels located near

the vertices of the point clouds, as also done by state-of-the-
art methods [13], [27]. Multiple pixels near a particular vertex
were considered as an endmember bundle. Finally, noisy
pixels were removed from each endmember bundle. These
bundles are represented in Fig. 4(top). Some endmember
classes present in the studied area were affected by different
illumination conditions. Unlike simulated data, ground truth
was not available. Estimated abundances were qualitatively
validated by visual inspection of the abundance maps.

The second image was acquired over Moffett Field, CA,
USA, by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS). The image, depicted in Fig. 3(b), initially
comprised 224 spectral bands. After the noisy spectral bands
were removed, L = 178 spectral bands remained. The area
of interest, composed of a lake and a vegetated coastal area,
was considered in many previous studies, e.g., to assess the
performance of unmixing methods. Thus, this second image
(referred to as AVIRIS image) was used to test whether
the proposed method could perform at least as well as the
existing methods to analyze this widely used image scene.
As for the AVIRIS image, K = 3 endmember bundles were
extracted using the ENVI software and qualitative validation
was conducted because of the lack of ground truth. The
extracted bundles are depicted in Fig. 5(left).

B. Results

For both images, the proposed method was compared with
FCLS, SUnSAL, AAM, and the methods based on group
lasso, elitist lasso, and fractional lasso. The parameters (λr , λb

and λa) required for the methods were empirically determined
by qualitatively evaluating abundances derived from different
values of the parameters. Finally, synthetic endmember bun-
dles generated by MEMM were compared with endmember
bundles initially used for unmixing.

Abundance maps estimated by the eight methods on the
MUESLI image are depicted in Fig. 6. These maps show
that the abundances estimated by MEMM and fractional lasso
were more consistent at the boundary affected by different
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Fig. 6. MUESLI image: estimated abundance maps. (From top to bottom) Building, road, shrub, crop land 1, crop land 2, and grass.

Fig. 7. AVIRIS image: abundance maps. (From top to bottom) Vegetation, soil, and water.

illumination conditions. This showed that MEMM and frac-
tional lasso were more robust to different illumination con-
ditions than concurrent methods. The abundances estimated
by MEMM and fractional lasso were also high for each
endmember class and showed less noisy. This suggested that
MEMM and fractional lasso also promoted greater sparsity
than other methods.

Fig. 7 shows the abundance maps estimated for the
AVIRIS image. All methods except elitist lasso generated
similar abundances. Abundances estimated by elitist lasso
were different because it was designed to use a larger number

endmember classes for unmixing each pixel. MEMM produced
similar abundances when compared with FCLS, group lasso.
This showed that MEMM could perform at least as well
as other sparsity-based methods to unmix this well-studied
test site. MEMMs , however, generated more noisy abundance
maps. This showed that the initial estimates of abundances
used in MEMMs did not lead to an optimal combination of
endmember spectra and the optimal abundances. Although
MEMMs may be more restrictive than MEMM, it may be
important when at most one endmember spectrum from each
bundle needs to be selected for each pixel. The performance
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of MEMMs largely depends on initial estimates of multiple
abundances r. More accurate initial estimates are provided;
better performance can be achieved. Therefore, MEMMs

may achieve comparable performance in much shorter com-
putation time than the MESMA-based methods if accurate
initial abundances r can be estimated. This new insight is
important because most existing methods focus on the devel-
opment of efficient search of a combination of endmember
spectra [29], [47] or the development of spectral library prun-
ing methods to reduce computational complexity [50].

Finally, the endmember bundles recovered by MEMM were
compared with endmember bundles initially used to unmix
both hyperspectral images [see Figs. 4 and 5]. In Fig. 4,
the synthetic endmember bundles filled the gaps that were
present in the original endmember bundles. The extended
endmember bundles showed more detailed spectral variability
within each class in terms of both spectrum amplitudes and
shapes also in Fig. 5. This enabled MEMM to generate adap-
tive endmember spectra within each pixel and estimate more
accurate abundances even when initial endmember bundles did
not completely represent endmember variability.

VII. CONCLUSION

This paper proposed a MEMM that bridges the gap between
endmember bundle-based method and data driven-based meth-
ods. MEMM appeared to be superior to the existing methods as
follows: 1) it had explicit physical meaning and independently
describe pixel-wise endmember spectra and abundances of
each class and 2) it independently imposed double sparsity
for the selection of both endmember classes and endmember
spectra rather than considering structured sparsity. MEMMs
were tested and compared to the state-of-the-art methods
using simulated data and real hyperspectral images. MEMM
showed comparable results for estimating abundances while
it outperformed other methods in terms of selecting a set
of endmember classes within each pixel. This paper deeply
focused on sparsity constraints for both bundling coefficients
and abundances. However, other constraints (e.g., spatial con-
straints) can be easily incorporated in the proposed unmixing
framework. Future works also include the Bayesian interpreta-
tion and identifiability of the proposed model. Indeed, as most
of nonconvex problems, multiple solutions may arise from this
multilayer matrix factorization task in the case of overlaps
between convex cones spanned by the endmember classes.
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