Skip to Main content Skip to Navigation
Journal articles

Numerical quadrature in the Brillouin zone for periodic Schrödinger operators

Eric Cancès 1, 2 Virginie Ehrlacher 1, 2 David Gontier 1, 3 Antoine Levitt 1, 2 Damiano Lombardi 4, 5 
CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique, Inria de Paris
5 REO - Numerical simulation of biological flows
SU - Sorbonne Université, Inria de Paris, LJLL (UMR_7598) - Laboratoire Jacques-Louis Lions
Abstract : As a consequence of Bloch's theorem, the numerical computation of the fermionic ground state density matrices and energies of periodic Schrodinger operators involves integrals over the Brillouin zone. These integrals are difficult to compute numerically in metals due to discontinuities in the integrand. We perform an error analysis of several widely-used quadrature rules and smearing methods for Brillouin zone integration. We precisely identify the assumptions implicit in these methods and rigorously prove error bounds. Numerical results for two-dimensional periodic systems are also provided. Our results shed light on the properties of these numerical schemes, and provide guidance as to the appropriate choice of numerical parameters.
Complete list of metadata
Contributor : Antoine Levitt Connect in order to contact the contributor
Submitted on : Monday, May 21, 2018 - 10:18:00 AM
Last modification on : Friday, August 5, 2022 - 12:02:02 PM

Links full text



Eric Cancès, Virginie Ehrlacher, David Gontier, Antoine Levitt, Damiano Lombardi. Numerical quadrature in the Brillouin zone for periodic Schrödinger operators. Numerische Mathematik, Springer Verlag, 2020, 144, pp.479-526. ⟨10.1007/s00211-019-01096-w⟩. ⟨hal-01796582⟩



Record views