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RESUME. Dans cette étude, le clustering, une technique d'apprentissage automatique non supervisée, est utilisée 
pour segmenter un parc de bâtiments en groupes homogènes en termes d'attributs descriptifs et de performance 
énergétique. Un parc virtuel de bâtiments résidentiels a été généré pour tester une méthode de clustering. Il est 
constitué de géométries diverses (forme et taille) qui permettent d’identifier différentes morphologies types. Les 
attributs des bâtiments utilisés pour le clustering sont séparés en deux parties : l’espace de décision des attributs 
descriptifs, et l’espace objectif des performances énergétiques. 

La méthode de clustering qui est développée cherche à satisfaire le critère d’homogénéité dans les deux espaces. 
L’interaction entre deux espaces a été réalisée par la réduction de la dimension utilisant LDA et l’auto-supervision 
utilisant l'indice de Rand ajusté (ARI). L’analyse des résultats permet de valider l’approche de la méthode. Les 
clusters de bâtiments obtenus sont plus ou moins éloignés des typologies traditionnelles.  

MOTS-CLÉS : parcs de bâtiments, clustering, rénovation énergétique 

 

 
ABSTRACT. In this study, clustering, an unsupervised machine learning technique, is used to segment a building 
stock into homogeneous groups in terms of descriptive attributes and energy performance. A virtual stock of 
residential buildings has been generated to test a developed clustering method. It consists of various geometries 
(shape and size) that identify different types of. The attributes of the buildings used for clustering are separated into 
two parts: the decision space of descriptive attributes, and the objective space of energy performance. 

The developed clustering method seeks to satisfy the homogeneity criterion in the two spaces. The interaction 
between two spaces has been achieved by dimensionality reduction using linear discriminant analysis (LDA) and 
self-supervision using the adjusted Rand index (ARI). The analysis of the results makes it possible to validate the 
approach of the method. The obtained clusters of buildings are more or less distant from the traditional typologies 
(for example in terms of morphology). 

KEYWORDS : building stock, clustering, energy retrofit 

 

1. INTRODUCTION 
To achieve the energy transition, the French government has set a target of 50% reduction in final 

energy consumption by 2050 compared to 2012 in the Loi de transition énergétique pour la croissance 
verte (LTECV) in 2015. In the building industry, responsible for nearly 40% of global energy 
consumption, the thermal regulation for new buildings alone cannot bring about sufficiently rapid and 
large changes in the entire stock. Retrofit of existing buildings is therefore strategic. 
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While accurate measurement and efficiency estimation of energy retrofit actions are possible for an 
individual building, it is necessary to segment the buildings into groups of homogeneous buildings to 
work on a building stock scale. For this purpose, several descriptive attributes, such as construction 
periods, building types, and climate zones, have been used to create typologies. The 
TABULA/EPISCOPE project provided standard typologies for the European building stocks (TABULA 
Project Team 2012). A study showed that these types of typology might be useful to guess the global 
final energy demand of a building stock pointing out notable differences by energy usages and sources 
(Mata, Sasic Kalagasidis, and Johnsson 2014). Although useful for certain purposes, these typologies 
are not always relevant for characterizing the energy retrofit actions on buildings. 

2. METHODOLOGY  

2.1. THE GENERATION OF A VIRTUAL BUILDING STOCK 
2.1.1. Background 

While “real building stock” data from actual building diagnoses have reliable values, the comparison 
between before and after energy retrofit of buildings in a large building stock is hardly possible. Since 
building energy data with both pre-retrofit and post-retrofit status were rare, only scores of buildings 
could be available in studies (Deb and Lee 2018). Alternatively, a virtual building stock saves the effort 
and the resource required for collecting the data (Nikolaou et al. 2009). In this study, a virtual building 
was generated with three attribute groups, i.e. morphology of buildings, energy features such as envelope 
and energy system, and energy performance.  

2.1.2. Morphology  
Various different typologies based on the morphology have been proposed depending on research 

interests, and historical and regional contexts. LSE and EIFER adopted five types related to the urban 
context (LSE Cities and EIFER 2014). Regarding the energy features, the previously mentioned 
TABULA/EPISCOPE project harmonized different typologies of member countries (Stein et al. 2014). 
In France, several morphological typologies were compared focusing on the urban forms and the solar 
gains (Gauthier 2014).  

Type Width (m) Length (m) L/W Stories Height (m) H/L Number 
MI Individual house 5-10 5-20 1.0-3.0 1-2 2.8-9.4 0.14-1.88 1000 
LC Small collective housing 7.5-25 15-80 1.0-10.7 3-21 9-39 0.5-2.0 1000 

LCT High-rise tower 7.5-30 15-50 1.0-6.7 5-33 30-100 2.0-6.7 1000 
LCB Low-rise block 7.5-25 16.7-150 1.0-20 3-13 9-39 0.26-0.5 1000 

Table 1 : The dimensions bounds set-up for the virtual building stock 
Based on these morphological analyses, four residential building types were selected for the virtual 

building stock shown in Table 1. The types were separated by the limits of dimensions (width, length, 
and the number of stories), and the aspect ratios, such as height-to-length (H/L) and width-to-length 
(L/W). Within the limits, 4000 buildings were generated in a uniformly random manner, using a 
cityGML modeling engine, Random3Dcity (Biljecki, Ledoux, and Stoter 2016). The generated building 
stock did not reproduce the real statistics where individual houses are more common than collective 
housings. 

2.1.3. Energy features 
 Focusing on the variation of the morphology of buildings, the thermal properties of exterior walls 

and openings and the energy system (natural ventilation, electric convectors for heating, and constant 
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lighting power) were assumed identical for all buildings. DHW system was not included because of the 
lack of information at the moment. Simplified formulae were utilized to determine features, such as 
heating demand (Delphine and Pierre 2016) and ventilation capacity (CSTB 2008). 

Aiming to be used for the management of energy retrofit, the virtual building stock requires the 
energy performance, such as energy demands and consumptions. The energy performance was 
simulated considering the features dealt with in the previous clauses, using COMETH, a calculation 
engine for the dynamic energy simulation developed by CSTB (Da Silva et al. 2016). 

  
(a) Compactness (exterior wall / floor area) (b) Total floor area 
Figure 1 : Primary energy consumption (Cep) of the generated buildings by building types 

2.2. CLUSTERING IN TWO SPACES  
2.2.1. Background  

 Clustering of buildings is quite recent research topic, and some studies compared different clustering 
algorithms (Geyer, Schlüter, and Cisar 2017). Concerning clustering in two spaces, clustering in a space 
of all features was formerly examined as a method (Lee et al. 2016). In this study, a new method for 
clustering in two spaces was designed as shown in Figure 2. This method comprises (1) constitution of 
objective and decision spaces, (2) clustering in the objective space, (3) dimensionality reduction of the 
decision space, (4) clustering in the decision subspaces, (5) pairwise comparison of objective and 
decision clusters, and (6) selection of final clusters.  

2.2.2. Objective space and decision space 
 The descriptive features, such as construction years, morphologies and functions, are comparatively 

easy to obtain by analyzing documents and conducting surveys. However, they are only restrictively 
capable of telling about the energy performance of the buildings. The energy performance itself, such 
as energy consumption, energy demand, or CO2 emission, is difficult to acquire as precise measurement 
or computational estimation are required.  

 These two groups of building features were named as decision features and objective features, 
respectively. Decision space comprises descriptive features, and they are usually available with the 
facility. On the other hand, an objective space consists of the rarely available energy performance. As 
the generated virtual buildings had very limited energy usages (heating and lighting) and source 
(electricity), three features associated with building shapes and two features of the energy performance 
were selected as the decision features and the objective features, respectively. The features were 
standardized to be used for the clustering application. 
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2.2.3. Objective clustering  
For the clustering, we adopted k-means algorithm 

which segments the objects into k clusters according to the 
distance between objects and centroids of clusters. The 
clusters are determined by iteration of (1) cluster 
assignment of objects to the nearest centroids, and (2) 
centroid update with the new assignment until the 
convergence. To determine the number of clusters k in 
advance, the Silhouette coefficient was calculated for 
various k’s. 

 In the developed clustering method, the 3-dimensional 
decision space was reduced into multiple 1-dimensional 
decision subspaces which can reproduce the best each 
objective cluster. Consequently, every objective cluster 
would have a corresponding decision subspace. Then 
decision clustering was performed in each decision 
subspace with all buildings in the stock. In the decision 
clustering, k-means algorithm and the silhouette 
coefficient were used as well. 

2.2.4. Evaluation of clusters and selection of final 
clusters 

Rand index is the ratio between the number of agreed 
pairs of objects and the total number of pairs of objects. 
The agreed pairs mean that the objects are either in the 
same group or the different groups in both partitions. At 
present, the Adjusted Rand Index (ARI), a corrected Rand 
index with chance normalization, is practically used. ARI 
is 1 for exactly same partitions, 0 for perfectly random 
partitions. 

 For the evaluation of clustering in this study, ARI 
between binary classes of objective clusters and those of 
decision clusters. For example, the cluster member objects 
were assigned as 1 and the non-member objects as 0. If certain pairs of objective clusters and decision 
subspace clusters have ARI values close to 1, it means that the two clusters are in agreement.     

 From the result of ARI evaluation, the best-fit pairs of objective clusters and decision subspace 
clusters would be found on objective clusters basis. Therefore, intersections of each objective cluster 
and the corresponding decision cluster with the highest ARI was chosen as the final cluster.  

Decision features Objective features 
• Floor area 
• SSE (South equivalent glazing area by 3CL-DPE method (“RT 
Existant: Outils et Guides Pour Le DPE” n.d.)) to floor area ratio 
• Compactness (exterior wall to floor area ratio) 

• Heating energy demand per 
unit area 
• Primary energy consumption 
per unit area 

 

Table 2 : Feature selection for objective and decision spaces 

Figure 2 : Workflow of the proposed 
clustering method 

(1) 

(3) 

(2) 
(4) 

(5) 

(6) 
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3. RESULTS AND DISCUSSION 

3.1. OBJECTIVE CLUSTERING 
3.1.1. The decision of the number of clusters 

Bearing in mind that the diagnostic de 
performance énergétique (DPE) and the class gaz à 
effet de serre (GES) and evaluating silhouette 
coefficients of clustering analyses with the number 
of clusters from 5 to 20, nine clusters were selected 
as the number of objective clusters.  

The result of the objective clustering is shown in 
Figure 3. The objective clusters were named from 
C01 to C09 according to the energy consumption per 
unit area. While the four most energy consuming 
clusters, i.e. C05 to C09 comprise principally 
individual houses, C01 to C04 consists of the mixture 
of three collective housing types. 

3.1.2. Feature importance of objective clustering  
 To understand which features are more 

significant for the distinction of objective clusters, F 
values of ANOVA (the ratio between the variance of 
group means, and the mean of the within-group 
variances) was compared. With greater F values, the 
selected decision features, i.e. floor area, window-to-floor area ratio, and compactness appeared 
evidently important.  

3.2. DECISION CLUSTERING  
Nine decision subspaces were determined by binary-class LDA for each objective cluster. Due to the 

binary-class LDA, the decision subspaces were limited to one-dimensional space. Decision clustering 
analysis was performed on each decision subspace. Figure 5 shows some examples of decision clustering 
and the corresponding objective cluster. The reduced subspaces by LDA are on the x-axes and the floor 
area is added as the y-axes to improve the visibility. As the consequence of the decision clustering, 111 
clusters were obtained. Unlike the objective clusters, the decision clusters could be superposed if 
originated from different decision clustering. For 
example, a building can belong to the cluster 1 of the 
decision clustering 1, and to the cluster 2 of the 
decision clustering 9 at the same time. 

3.3. FINAL CLUSTERS 
3.3.1. Evaluation of ARI 

 ARI of all possible pairs of nine objective clusters 
and 111 decision clusters were calculated. Table 3 
shows the pairs of objective clusters and the 
corresponding decision clusters of maximum ARI 

Objective 
cluster 

Maximum 
ARI 

Decision cluster of 
maximum ARI 

C01       0.336    Subspace 1, Cluster 2 
C02       0.188    Subspace 1, Cluster 3 
C03       0.228    Subspace 8, Cluster 8 
C04       0.385    Subspace 8, Cluster 1 
C05       0.315    Subspace 6, Cluster 6 
C06       0.283    Subspace 9, Cluster 5 
C07       0.286    Subspace 8, Cluster 4 
C08       0.398    Subspace 2, Cluster 7 
C09       0.550    Subspace 8, Cluster 7 

 

Table 3 : Cluster pairs selected by ARI 

Figure 3 : Objective clusters 

Figure 4 : F value of decision features  
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values. The highest ARI was 0.550, and certain objective clusters did not have corresponding decision 
clusters of high ARI values. Because of the lack of a threshold, the maximum ARI for each objective 
cluster was selected to determine the corresponding decision cluster. Figure 5 shows that the best-fit 
decision clusters for the objective clusters 4 and 9 were found in the LDA subspace 8. 

   

   
Figure 5 : Objective clusters and decision clusters on some decision subspace 

3.3.2. Intersection as final clusters 
The intersection of the objective cluster and the corresponding decision cluster was determined as 

the final cluster. The buildings excluded from the intersection were considered as unclassified buildings. 
The final clusters were named from D01 to D09 which correspond to the objective clusters C01 to C09 
and D00 for the unclassified. The final clusters have 1755 buildings (43.9%) and the others (2245 
buildings, 56.1%) were assigned to the unclassified buildings.  

3.3.3. Comparison of objective clusters and final clusters 

 

 

(a) Objective clusters 

 
(b) Final clusters (c) The transition from building types to clusters 

Figure 6 : Comparison between clustering results and building types of morphology 
The comparison of the final clusters with the objective clusters and the four building types of 

morphology was shown in Figure 6. The proportion of building types in the resulting clusters kept 
constant in general. The LCBs were slightly less found in the unclassified cluster (D00) than the others. 
While the proportion of LCBs increased in D01 than in C01 (low-energy-consuming), it decreased in 

ARI 0.550 
ARI 0.385 



Conférence IBPSA France – Bordeaux – 2018 

 - 7 - 

D05 than in C05 (medium-energy-consuming). The collective buildings tended to be more unclassified 
than the individual houses. 

To find which features were significant or not to determine the clusters, significance probability (p-
value) of features were evaluated. The significance probability is defined as a probability for a given 
statistical model that the sample difference is same or greater than the actual observation. A common 
threshold of p-value is 0.05 (5% of probability) but smaller values are recommendable. 

 
(a) Final clusters 

 
(b) Unclassified objects of each final cluster 

Figure 7 : Significance probability of features (the shorter is the more significant) 
Figure 7 shows that the height, the areas, the compactness, the heating energy demand and the 

primary energy consumption are significant (f less than 0.05) features for the most clusters. On the other 
hand, the other features (WFR, SSE per floor area, and lighting energy demand) appeared more or less 
significant for certain clusters, particularly the individual houses (D02, D05, D06, D07, and D08). 
Concerning the unclassified objects, C01 divided into D01 and D00 by all the features. On the other 
hand, D03 was selected from C03 by the lighting demand. In the same way, the significant features for 
the classified objects and the unclassified ones for each objective cluster could be analyzed.  

4. CONCLUSION 
The feasibility of the introduced method for clustering in two spaces was verified. The results showed 

that the dimensionality of decision space could be reduced by the application of LDA, which is usually 
used as a classifier for a supervised learning. Some decision clusters in decision subspaces obtained by 
LDA showed a close connection with the objective clusters. The considerable part of objective clusters, 
particularly collective housings, were reproduced in decision subspaces. On the other hand, individual 
houses were found in unclassified buildings, which was the largest part of final clusters. More detailed 
analysis of the unclassified buildings might allow us interesting knowledge. The division of two spaces 
made ARI, which is usually used for the classification, a supervised learning technique, usable the 
performance estimation of clustering, which is a sort of unsupervised learning due to the division of two 
feature spaces, i.e. the objective space and the decision space. Lastly, the characterization of clusters, 
which are usually possible in a qualitative manner, was tried in a quantitative way through ANOVA and 
significance probability test, and the different tendency of clusters could be observed depending on the 
clusters. 

The results offer the possibility of further studies as well. Firstly, different dimensionality reduction 
technique can be considered. More dimensionality reduction techniques are worth to be compared with 
LDA. Secondly, other metrics of evaluation of clusters on two spaces can be reviewed. While ARI tends 
to stress on the overall agreement of two clusters, other metrics are able to find the agreement when a 
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cluster is a total subset of the other cluster. It would be possible to improve the final clusters by 
introducing more appropriate metrics. At last, the energy retrofit scenarios and their economics still 
remain as the interesting and important subject of further studies.   

5. BIBLIOGRAPHY  
Biljecki, F., H. Ledoux, and J. Stoter. 2016. “Generation of Multi-Lod 3D City Models in Citygml 

With the Procedural Modelling Engine Random3Dcity.” ISPRS Annals of Photogrammetry, 
Remote Sensing and Spatial Information Sciences IV-4/W1 (September): 51–59. 
https://doi.org/10.5194/isprs-annals-IV-4-W1-51-2016. 

CSTB. 2008. “Méthode de Calcul TH-C-E Ex : Annexe à l’arrêté Portant Approbation de La Méthode 
de Calcul TH-C-E Ex.” 

Deb, Chirag, and Siew Eang Lee. 2018. “Determining Key Variables Influencing Energy 
Consumption in Office Buildings through Cluster Analysis of Pre- and Post-Retrofit Building 
Data.” Energy and Buildings 159. Elsevier B.V.: 228–45. 
https://doi.org/10.1016/j.enbuild.2017.11.007. 

Delphine, Destruel, and Boisson Pierre. 2016. “Rapport : Règles d ’ Estimation Des Quantitatifs Pour 
Le Module de Calcul de CASIE2.” 

Gauthier, Noémie. 2014. “Analyses Morphologiques de Formes Urbaines et Etude de l’impact Des 
Formes Urbaines Sur Les Gains Energetiques Solaires.”  

Geyer, Philipp, Arno Schlüter, and Sasha Cisar. 2017. “Application of Clustering for the Development 
of Retrofit Strategies for Large Building Stocks.” Advanced Engineering Informatics 31. Elsevier 
Ltd: 32–47. https://doi.org/10.1016/j.aei.2016.02.001. 

Lee, Yunseok, Pierre Boisson, Mathieu Rivallain, and Olivier Baverel. 2016. “Application de 
Techniques de Clustering Pour La Segmentation de Parcs de bâTiments à Rénover.” In 
Conférence IBPSA France. Marne-la-Vallée. 

LSE Cities, and EIFER. 2014. “Cities and Energy: Urban Morphology and Heat Energy Demand.” 
London. 

Mata, É, A. Sasic Kalagasidis, and F. Johnsson. 2014. “Building-Stock Aggregation through 
Archetype Buildings: France, Germany, Spain and the UK.” Building and Environment 81. 
Elsevier Ltd: 270–82. https://doi.org/10.1016/j.buildenv.2014.06.013. 

Nikolaou, T., I. Skias, D. Kolokotsa, and G. Stavrakakis. 2009. “Virtual Building Dataset for Energy 
and Indoor Thermal Comfort Benchmarking of Office Buildings in Greece.” Energy and 
Buildings 41 (12): 1409–16. https://doi.org/10.1016/j.enbuild.2009.08.011. 

R. A. Fisher. 1936. “The Use of Multiple Measurements in Taxonomic Problems.” Annals of Eugenics 
7 (2): 179–88. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x. 

“RT Existant: Outils et Guides Pour Le DPE.” n.d. Accessed April 20, 2018. http://www.rt-
batiment.fr/batiments-existants/dpe/outils-et-guides-pour-le-dpe.html. 

Silva, David Da, Jean-marie Alessandrini, Jean-baptiste Videau, and Jean-robert Millet. 2016. 
“Evaluation et Perspectives Du Modèle Thermique de COMETh , Le Cœur de Calcul de La 
Réglementation Thermique Des bâTiments Neufs.” In Conférence IBPSA France. Marne-la-
Vallée. 

Stein, Britta, Tobias Loga, Nikolaus Diefenbach, Bogdan Atanasiu, Aleksandra Arcipowska, Eleni 
Kontonasiou, Gašper Stegnar, et al. 2014. “Inclusion of New Buildings in Residential Building 
Typologies Steps Towards NZEBs Exemplified for Different European Countries National 
Observatory of Athens.” Darmstadt, Germany. 

TABULA Project Team. 2012. “Typology Approach for Building Stock Energy Assessment - Main 
Results of the TABULA Project,” no. June 2009: 43.  


