O. Araar, N. Aouf, and I. Vitanov, Vision Based Autonomous Landing of Multirotor UAV on Moving Platform, Journal of Intelligent & Robotic Systems, vol.6, issue.5, pp.369-384, 2017.
DOI : 10.1080/15599612.2012.664241

F. Attneave, Some informational aspects of visual perception., Psychological Review, vol.61, issue.3, pp.183-193, 1954.
DOI : 10.1037/h0054663

URL : http://wexler.free.fr/library/files/attneave (1954) some informational aspects of visual perception.pdf

A. Carrio, C. Sampedro, A. Rodriguez-ramos, and P. C. Cervera, A Review of Deep Learning Methods and Applications for Unmanned Aerial Vehicles, Journal of Sensors, vol.2, issue.39, pp.1-329687413, 2017.
DOI : 10.1002/rob.21423

URL : http://downloads.hindawi.com/journals/js/2017/3296874.pdf

A. Desolneux, L. Moisan, and J. M. Morel, From Gestalt Theory to Image Analysis: A Probabilistic Approach, Interdisciplinary Applied Mathematics, vol.34, 2008.
DOI : 10.1007/978-0-387-74378-3

URL : https://hal.archives-ouvertes.fr/hal-00259077

B. J. Frey and D. Dueck, Clustering by Passing Messages Between Data Points, Science, vol.315, issue.5814, pp.972-976, 2017.
DOI : 10.1126/science.1136800

URL : http://www.psi.toronto.edu/affinitypropagation/FreyDueckScience07.pdf

H. Furukawa, Deep Learning for End-to-End Automatic Target Recognition from Synthetic Aperture Radar Imagery, 2018.

R. W. Hamming, Error Detecting and Error Correcting Codes, Bell System Technical Journal, vol.29, issue.2, pp.147-160, 1950.
DOI : 10.1002/j.1538-7305.1950.tb00463.x

URL : https://calhoun.nps.edu/bitstream/10945/46756/1/Hamming_1982.pdf

S. Lacroix and F. Caballero, Autonomous detection of safe landing areas for an UAV from monocular images, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006.

S. Lange, N. Sünderhauf, and P. Protzel, Autonomous Landing for a Multirotor UAV Using Vision, SIMPAR 2008 Intl. Conf. on Simulation, Modeling and Programming for Autonomous Robots, pp.482-491, 2008.

J. Lee, J. Wang, D. Crandall, S. Sabanovi´csabanovi´c, and G. Fox, Real-Time, Cloud-Based Object Detection for Unmanned Aerial Vehicles, 2017 First IEEE International Conference on Robotic Computing (IRC), pp.36-43, 2017.
DOI : 10.1109/IRC.2017.77

C. T. Lu, D. Chen, and Y. Kou, MULTIVARIATE SPATIAL OUTLIER DETECTION, International Journal on Artificial Intelligence Tools, vol.6, issue.04, pp.801-811, 2004.
DOI : 10.1109/69.755614

D. Marr and E. Hildreth, Theory of Edge Detection, Proceedings of the Royal Society B: Biological Sciences, vol.207, issue.1167, pp.187-217, 1167.
DOI : 10.1098/rspb.1980.0020

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.577-685, 1989.
DOI : 10.1109/TPAMI.1984.4767596

URL : https://dash.harvard.edu/bitstream/handle/1/3637121/Mumford_OptimalApproxPiece.pdf?sequence=1

J. Petitot, Neurogéométrie de la vision: modèles mathématiques et physiques des architectures fonctionnelles, Editions Ecole Polytechnique, 2008.

I. S. Reed and X. Yu, Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.38, issue.10, pp.1760-1770, 1990.
DOI : 10.1109/29.60107

M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, J. Electronic Imaging, vol.13, issue.1, pp.146-168, 2010.

M. Wertheimer, Untersuchungen zur Lehre von der Gestalt. II, Psychologische Forschung, vol.4, issue.1, pp.301-350, 1923.
DOI : 10.1007/BF00410640

A. Witkin, Scale-space filtering: A new approach to multi-scale description, ICASSP '84. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.150-153, 1984.
DOI : 10.1109/ICASSP.1984.1172729

H. Yao, Q. Yu, X. Xing, F. He, and J. Ma, Deep-learning-based moving target detection for unmanned air vehicles, 2017 36th Chinese Control Conference (CCC), pp.11459-11463, 2017.
DOI : 10.23919/ChiCC.2017.8029186