Unsupervised Perception Model for UAVs Landing Target Detection and Recognition

Abstract : Today, unmanned aerial vehicles (UAV) play an interesting role in the so-called Industry 4.0. One of many problems studied by companies and research groups are the sensing of the environment intelligently. In this context, we tackle the problem of autonomous landing, and more precisely, the robust detection and recognition of a unique landing target in an outdoor environment. The challenge is how to deal with images under non-controlled light conditions impacted by shadows, change of scale, perspective, vibrations, noise, blur, among others. In this paper, we introduce a robust unsupervised model allowing to detect and recognize a target, in a perceptual-inspired manner, using the Gestalt principles of non-accidentalness and grouping. Our model extracts the landing target contours as outliers using the RX anomaly detector and computing proximity and a similarity measure. Finally, we show the use of error correction Hamming code to reduce the recognition errors.
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

Contributeur : Eric Bazan <>
Soumis le : jeudi 17 mai 2018 - 15:47:33
Dernière modification le : lundi 12 novembre 2018 - 10:59:05
Document(s) archivé(s) le : mardi 25 septembre 2018 - 12:12:01


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01794520, version 1


Eric Bazan, Petr Dokládal, Eva Dokladalova. Unsupervised Perception Model for UAVs Landing Target Detection and Recognition. 2018. 〈hal-01794520〉



Consultations de la notice


Téléchargements de fichiers