S. Sze, Physics of Semiconductor Devices, 1969.

H. Faltakh, R. Bourguiga, M. Rabha, and B. Bessais, Simulation and optimization of the performance of multicrystalline silicon solar cell using porous silicon antireflection coating laye Superlattices Microstruct, p.283, 2014.

D. Zhou, Y. Pennec, B. D. Rouhani, O. C. Robbe, T. Xu et al., Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications, Journal of Applied Physics, vol.115, issue.13, p.134304, 2014.
DOI : 10.1063/1.3474652

URL : https://hal.archives-ouvertes.fr/hal-00974457

K. A. Salman, K. Omar, and Z. Hassan, Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers, Solar Energy, vol.86, issue.1, p.541, 2012.
DOI : 10.1016/j.solener.2011.10.030

H. R. Stuart and D. Hall, Absorption enhancement in silicon???on???insulator waveguides using metal island films, Applied Physics Letters, vol.35, issue.16, p.2327, 1996.
DOI : 10.1063/1.117513

P. Mandal and S. Sharma, Progress in plasmonic solar cell efficiency improvement: A status review, Renewable and Sustainable Energy Reviews, vol.65, p.537, 2016.
DOI : 10.1016/j.rser.2016.07.031

H. A. Atwater and . Polman, Plasmonics for improved photovoltaic devices, Nature Materials, vol.14, issue.3, p.205
DOI : 10.1557/PROC-1002-N03-05

Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung et al., Plasmonic Solar Cells: From Rational Design to Mechanism Overview, Chemical Reviews, vol.116, issue.24, p.14982, 2016.
DOI : 10.1021/acs.chemrev.6b00302

S. Fahr, C. Rockstuhl, and F. Lederer, Metallic nanoparticles as intermediate reflectors in tandem solar cells, Applied Physics Letters, vol.95, issue.12, p.12105, 2009.
DOI : 10.1364/JOSAA.12.001068

C. Rockstuhl and F. Lederer, Absorption enhancement in solar cells by localized plasmon polaritons, Journal of Applied Physics, vol.317, issue.12, p.123102, 2008.
DOI : 10.1063/1.2919094

P. Matheu, S. H. Lim, D. Derkacs, C. Mcpheeters, and E. Yu, Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices, Applied Physics Letters, vol.93, issue.11, p.113108, 2008.
DOI : 10.1364/JOSAB.19.001195

X. Y. Wang, J. L. Wang, and H. Wang, Improvement of the efficiency and power output of solar cells using nanoparticles and annealing Sol, Energy, vol.101, p.100, 2014.

, Figure 9. (a) Schematic representation of Ag-NPs/Si Schottky contact. (b) Top-view schematic

Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung et al., Plasmonic Solar Cells: From Rational Design to Mechanism Overview, Chemical Reviews, vol.116, issue.24, p.14982, 2016.
DOI : 10.1021/acs.chemrev.6b00302

J. Liu, C. Y. Chen, G. S. Yang, Y. Chen, and C. Yang, Effect of the fabrication parameters of the nanosphere lithography method on the properties of the deposited Au- Ag nanoparticle arrays Materials, p.381, 2017.

P. Gao, J. He, S. Zhou, X. Yang, S. Li et al., Large-Area Nanosphere Self-Assembly by a Micro-Propulsive Injection Method for High Throughput Periodic Surface Nanotexturing, Nano Letters, vol.15, issue.7, p.4591, 2015.
DOI : 10.1021/acs.nanolett.5b01202

A. Aberle, Surface passivation of crystalline silicon solar cells: a review, Progress in Photovoltaics: Research and Applications, vol.65, issue.5, p.473, 2000.
DOI : 10.1080/00207215808953823

A. Centeno, J. Breeze, B. Ahmed, H. Reehal, and A. , Scattering of light into silicon by spherical and hemispherical silver nanoparticles Opt, Lett, vol.35, p.76

S. Jeong, M. Mcgehee, and Y. Cui, All-back-contact ultra-thin silicon nanocone solar cells with 13, 7% power conversion efficiency Nat. Commun, vol.4, p.2950, 2013.

L. Carnel, H. Dekkers, I. Gordon, D. V. Gestel, K. V. Nieuwenhuysen et al., Study of the hydrogenation mechanism by rapid thermal anneal of SiN:H in thin-film polycrystalline-silicon solar cells IEEE Electron Device Lett, pp.163-168, 2006.

M. Otto, M. Kroll, T. Käsebier, S. M. Lee, M. Putkonen et al., Conformal transparent conducting oxides on black silicon Adv. Mater, p.5035, 2010.

H. Lee, T. Tachibana, N. Ikeno, H. Hashiguchi, K. Arafune et al., for solar cell application, Applied Physics Letters, vol.100, issue.14, p.143901, 2012.
DOI : 10.1063/1.1385803

W. C. Wang, C. W. Lin, H. J. Chen, C. W. Chang, J. J. Huang et al., Surface Passivation of Efficient Nanotextured Black Silicon Solar Cells Using Thermal Atomic Layer Deposition, ACS Applied Materials & Interfaces, vol.5, issue.19, p.975211, 2013.
DOI : 10.1021/am402889k

N. M. Terlinden, G. Dingemans, M. Van-de-sanden, and W. Kessels, Role of field-effect on c-Si surface passivation by ultrathin (2???20 nm) atomic layer deposited Al2O3, Applied Physics Letters, vol.96, issue.11, p.112101, 2010.
DOI : 10.1016/j.tsf.2009.01.076

URL : https://pure.tue.nl/ws/files/2863671/Metis236779.pdf

G. Dingemans and W. Kessels, -based surface passivation schemes for silicon solar cells, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.30, issue.4, p.40802, 2012.
DOI : 10.1116/1.4728205

S. Mack, A. Wolf, C. Brosinsky, S. Scmeisser, A. Kimmerle et al., Silicon Surface Passivation by Thin Thermal Oxide/PECVD Layer Stack Systems, IEEE Journal of Photovoltaics, vol.1, issue.2, p.135, 2011.
DOI : 10.1109/JPHOTOV.2011.2173299

J. Schmidt, B. Veith, R. Brendel, B. Veith, F. Werner et al., Effective surface passivation of crystalline silicon using ultrathin Al 2 O 3 films and Al 2 O 3 /SiN x stacks Phys, Comparison of the thermal stability of single Al 2 O 3 layers and Al 2 O 3 /SiN x stacks for the surface passiviation of silicon Energy Procedia, pp.287-307, 2009.
DOI : 10.1109/pvsc.2010.5614132

W. Dawei, J. Rui, D. Wuchang, C. Chen, W. Deqi et al., Optimization of Al 2 O 3 /SiN x stacked antireflection structures for N-type surface-passivated crystalline silicon solar cells J. Semiconduct, p.94008, 2011.

L. Temple and D. Bagnall, Broadband scattering of the solar spectrum by spherical metal nanoparticles Prog, Photovolt., Res. Appl, vol.21, p.600, 2013.
DOI : 10.1002/pip.1237

Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Baillie et al., Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons, Solar Energy Materials and Solar Cells, vol.101, p.217, 2012.
DOI : 10.1016/j.solmat.2012.02.009

T. Xu, Z. H. Tian, O. Elmi, C. Krzeminski, O. Robbe et al.,

, Physica E, vol.93, p.190

K. Yee, IEEE Trans. Antennas Propag, vol.14, p.302, 1966.

D. Zhou, T. Xu, Y. Lambert, O. C. Robbe, and D. Stiévenard, Enhancement of Electrical Properties of Nanostructured Polysilicon Layers Through Hydrogen Passivation, Journal of Nanoscience and Nanotechnology, vol.15, issue.12, p.9772, 2015.
DOI : 10.1166/jnn.2015.10897

Y. Lambert, D. Zhou, T. Xu, O. Cristini, D. Deresmes et al., Progressive multi-layer drop-casting of CdSe nanoparticles for photocurrent down shifing monitoring Appl, Phys. Lett, vol.103, p.51102, 2013.

X. Loozen, J. B. Larsen, F. Dross, M. Aleman, T. Bearda et al., and Poortmans J 2012 Passivation of a metal contact with a tunneling layer Energy Procedia, p.75

V. E. Ferry, J. Munday, and H. Atwater, Design considerations for plasmonic photovoltaics Adv. Mater, vol.22, p.4794, 2010.

H. R. Stuart and D. Fall, Island size effects in nanoparticle-enhanced photodetectors, Applied Physics Letters, vol.73, issue.26, p.3815, 1999.
DOI : 10.1103/PhysRevLett.80.5663

F. Werner, B. Veith, D. Zielke, L. Kühnemund, C. Tegenkamp et al., interface, Journal of Applied Physics, vol.109, issue.11, p.113701, 2011.
DOI : 10.1063/1.2240736

URL : https://hal.archives-ouvertes.fr/hal-00856439

R. Kotipalli, R. Delamare, O. Poncelet, and X. Tang, Francis L A and Flandre D 2013 Passivation effects of atomic-layer-deposited aluminum oxide EPJ Photovolt, p.45107

J. C. Hulteen, V. Duyne, and R. , Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.13, issue.3, p.1553, 1995.
DOI : 10.1116/1.579726