Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Environmental Science and Technology Année : 2008

Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli

Résumé

Iron-based nanoparticles have been proposed for an increasing number of biomedical or environmental applications although in vitro toxicity has been observed. The aim of this study was to understand the relationship between the redox state of iron-based nanoparticles and their cytotoxicity toward a Gram-negative bacterium, Escherichia coli. While chemically stable nanoparticles (γFe2O3) have no apparent cytotoxicity, nanoparticles containing ferrous and, particularly, zerovalent iron are cytotoxic. The cytotoxic effects appear to be associated principally with an oxidative stress as demonstrated using a mutant strain of E. coli completely devoid of superoxide dismutase activity. This stress can result from the generation of reactive oxygen species with the interplay of oxygen with reduced iron species (FeII and/or Fe0) or from the disturbance of the electronic and/or ionic transport chains due to the strong affinity of the nanoparticles for the cell membrane.

Dates et versions

hal-01793973 , version 1 (17-05-2018)

Identifiants

Citer

Mélanie F Auffan, Wafa Achouak, Jérôme Rose, Marie-Anne Roncato, Corinne Chanéac, et al.. Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli. Environmental Science and Technology, 2008, 42 (17), pp.6730-6735. ⟨10.1021/es800086f⟩. ⟨hal-01793973⟩
219 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More