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The nonlinear dynamics of a turbulence driven magnetic island (TDMI) is investigated numerically

in a reduced magnetohydrodynamic fluid model. The significance of identifying a characteristic

signature of a TDMI for its experimental observation is discussed. The principal focus of our

simulations is on the nature of the pressure profile flattening inside a TDMI, and we show that, in

agreement with analytical predictions, a partial flattening occurs when the island size exceeds a

critical value that is a function of the small scale interchange dynamics. We also present a model

and test it numerically, which links explicitly the interchange turbulence and the island pressure

flattening. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4981230]

I. INTRODUCTION

The dynamics of turbulence driven magnetic islands

(TDMIs) has been studied numerically in a number of previ-

ous works1–4 because turbulence is suspected to be a trigger

of seed islands and therefore of neoclassical tearing modes

in tokamaks. In Ref. 5, a model has been developed to evalu-

ate the role of the turbulence in the generation of magnetic

islands. The issue is both to obtain a better understanding of

the impact of the interchange scales on the transport proper-

ties of TDMIs and to infer some signatures of TDMIs.

Indeed, the latter is a challenging experimental issue as we

will discuss below, and it is therefore important to propose

some signatures which could be detected by present day

diagnostics. The results in Ref. 5 evaluate the turbulent per-

pendicular diffusivity, show, and/or explain why there is par-

tial pressure flattening inside TDMIs and under which

conditions it occurs. It also elucidates the link between the

turbulence level and the mean pressure gradient. The purpose

of this paper is to validate numerically these findings.

This paper is organized as follows. In Section II, the pre-

sent experimental limitations to assess the role of turbulence

in the generation of seed islands and in the detection of the

TDMI signatures are discussed. In Section III, we present the

numerical setup. We investigate the drive by the small scale

interchange modes for a nonlinear magnetic island, in the

regime where there exists a clear separation of scales

between the interchange mode and the magnetohydrody-

namic (MHD) scales. The MHD modes are taken to be line-

arly stable with respect to the tearing and interchange

instabilities. In Sec. IV, we focus on the origin of the self-

sustainment of TDMI, and in Section V, we show the exis-

tence of a critical island size above which a partial pressure

flattening of TDMI occurs. In Sec. VI, we study the link

predicted in Ref. 5 between the turbulence generated in a

radially localized interchange band (IB) and the mean pres-

sure flattening throughout the magnetic island. Finally, in

Section VII, we present a discussion of our results and make

some concluding remarks.

II. EXPERIMENTAL LIMITATIONS
AND OBSERVATIONS

In simulations, the possibility that turbulence may trig-

ger seed islands is becoming quite well established, includ-

ing in the gyrokinetic framework.4 Nevertheless, to prove

the existence of a TDMI, there is a necessity to show it

experimentally. One may ask if this is feasible in terms of

present experimental capabilities or possibly, if some explicit

signatures of TDMI have already been observed. These

aspects are usually not discussed, even though this is an

important point to guide future research. From an experimen-

tal point of view, the detection of turbulence driven seed

islands and the unequivocal identification of their origin are

difficult tasks. The difficulty arises from the non-availability

of efficient diagnostic tools that can clearly quantify the

interaction between micro-turbulence and MHD modes.

While Doppler reflectometry measurements allow the recon-

struction of density spectra for typical scale lengths in the

range of 0.1< k?qs� 20, they do not cover the MHD scales.

On the other hand, using ECE (electron cyclotron emission)

or Mirnov oscillation measurements, one can obtain spectra

between 10 and 80 kHz with poloidal mode numbers m� 8

which corresponds to k?qs¼mqs/rs< 0.01. A typical island

has k?qs� 10�3, and the seed islands span an intermediate

range of scale lengths, roughly k?qs of the order of or

smaller than 0.1. When they are larger, the bootstrap current

will produce an amplification. When they are smaller, it is

difficult to distinguish them from the natural magnetic fluctu-

ations due to turbulence. Moreover, the observation of a

spectral magnetic structure on intermediate scales would not

prove that it is a turbulence driven magnetic island. Indeed,

the key diagnostic evidence for that would be to demonstrate

that there is a strong mode coupling (or a chain of couplings)
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between the island and the turbulence. However, because of

diagnostics limitations, there are very few experimental stud-

ies in tokamaks that address this problem. Most observations

are limited to MHD mode coupling phenomena using bispec-

trum analysis.6 An exception to this trend is the bi-coherence

analysis studies carried out on the Brazilian tokamak

TCABR that shows a strong correlation between MHD activ-

ity and electrostatic turbulence driven by Mirnov oscilla-

tions.7 However, the electrostatic signal was obtained by

inserting electrostatic probes close to the boundary between

the edge and the scrape-off layer. The MHD activity was not

linked to hot core plasma physics and therefore to the gener-

ation of (2,1) or (3,2) magnetic islands.

The above observations underscore the point that it is

necessary to have knowledge of some specific signatures

associated with TDMIs in order to experimentally detect

them and establish their existence. At the present time, diag-

nostics performing island detection and/or the reconstruction

of the q profile—which is required to determine if there is a

tearing instability—do so by measuring quantities which are

radially averaged over a typical length scale of the order of a

centimeter. In most tokamaks, an island of this size would

satisfy the relation w > wseed
c which is the threshold condi-

tion necessary for them to be amplified by the loss of the

bootstrap current,8 and therefore, they cease to be seed

islands. Thus, these diagnostics are incapable of addressing

the question of the generation of seed islands. Measurements

of island pressure flattening constitute another efficient way

of detecting islands whose widths are such that w� wflat
c .

wflat
c is the critical size above which a pressure flattening of

the pressure inside the island occurs. It is proportional to the

fourth power of the ratio of perpendicular and parallel diffu-

sivities wflat
c / D?=Dk

� �1=4
.9 The pressure is equalized over

the whole island if the sources (or sinks) of both temperature

and density inside the island can be neglected. We will see

that, in the presence of small scale instabilities or turbulence,

one should consider the presence of a source. As discussed

above, when the bootstrap current is negligible, a TDMI

presents a specific signature, namely, a partial pressure flat-

tening that can possibly be detected experimentally. The ori-

gin of a TDMI is the small-scale turbulence inside the island

or in its vicinity. The measurement of partial pressure flatten-

ing in such an island implies that its width satisfies the condi-

tion wflat
c � w � wseed

c .

Partial pressure flattening inside magnetic islands has

already been observed in experiments.10–14 In fact, when a

source perturbs or creates a magnetic island, a localised and

persistent concentration of density into the magnetic island

can be observed. In particular, it occurs when pellets are

injected into JET tokamaks and generate density and impu-

rity snakes.13 Peaked ion temperature profiles have also been

observed inside islands in mode locking phases14 after a tran-

sition from the H mode to the L mode in JT-60U. The latter

experiment also requires a source, more precisely, neutral

beam injection, which can induce a strong rotation shear at

the boundary of the magnetic island. Together with a signifi-

cant reduction in the thermal diffusivity inside the island, it

contributes to improving the confinement. Bifurcation of the

transport properties inside magnetic islands, i.e., a strong

reduction in the diffusivity, is also observed in the tokamak

DIII-D where the magnetic island is induced by an external

coil, in the LHD stellerator,15 and in the MST reverse field

pinch device after a sawtooth event.16 The reduction in the

diffusivity into the island can potentially be linked to a

reduction in the turbulence level. In the discussed cases,

either a source, a strong MHD dynamics, or an event which

reduces the global confinement in the device seems to be at

the origin of the enhanced confinement into the magnetic

islands. In contrast, in the TEXT tokamak,10 a partial flatten-

ing of density was clearly observed in a regime where a

strong interaction between the island and turbulence was at

play. No physical explanation of this observation was given.

Rather, it was attributed to limitations in the spatial resolu-

tion of the diagnostics. The hypothesis put forward in

Ref. 10 for this observation was the presence of a strong tur-

bulent diffusion in the vicinity of the X point. Indeed, one

might expect wflat
c to be proportional to Dturb

? =Dk
� �1=4

, where

Dturb
? is the turbulent perpendicular diffusivity. Therefore,

enhanced perpendicular diffusivity would enlarge the critical

island width below which there is no flattening, which could

potentially explain the observations. However, this partial

flattening is, alternatively, possibly linked to the fact that

small scale turbulence in the vicinity of the resonant surface

where the island grows inhibits a complete flattening23 when

the condition w� wflat
c is satisfied. As we shall see, turbu-

lence can, indeed, play the role of the source in the vicinity

of the resonance. In that case, the predictions based on the

ratio w� wflat
c

9 are incomplete and one should consider the

predictions presented in Ref. 5. In particular, the analytical

link between the turbulence level and the mean pressure gra-

dient inside an island could be an interesting path if one

wants to detect TDMIs experimentally. Indeed, to some

extent, it shows that the pressure gradient inside the island is

linked to a power of the turbulent thermal and kinetic ener-

gies and is also inversely proportional to the size of the

island. The measure of the impact of magnetic islands on

turbulent fluctuations has been assessed experimentally

recently.17 One may therefore expect to evaluate the con-

verse situation where by modifying the turbulence level,

one could observe a modification of the island transport

properties such as the pressure flattening. Before addressing

through numerical simulations the role of the turbulence and

the turbulent diffusivity in the pressure flattening of TDMI,

we describe below the model we shall use. Let us emphasize

that the critical island width for pressure flattening that we

will consider, in the following, will be linked to the level

of the turbulence. To specify it, we will note this width

wturb
c wturb

c � wflat
c

� �
.

III. NUMERICAL SETUP

To study the dynamics of TDMIs, we have used the

model presented in Refs. 18 and 19, which considers the

time evolution of the electric potential /, the electronic pres-

sure fluctuations p, and the total magnetic flux w ¼ weq þ ~w

@

@t
r2
?/þ /;r2

?/
� �

¼ w;r2
?w

� �
� j1

@p

@y
þ lr4

?/; (1)
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@

@t
w ¼ w;/� pf g � v?

@w
@y
þ gr2

?
~w; (2)

@

@t
pþ /; pf g ¼ �v? 1� j2ð Þ @/

@y
þ j2

@p

@y

� �
þ q̂2 w;r2

?w
� �

þ v?r2
?p: (3)

Eqs. (1)–(3) are normalized using the characteristic Alfvèn

speed vA, the magnetic shear length L?, and the Alfven time

sA¼L?/vA. A semi-spectral code called AMON3 is used

including a 2/3 dealiasing rule in the y (poloidal) direction

with 256 poloidal modes and a resolution of 1025 grid points

in the x (radial) direction. The computational box size is

Lx¼ 2p and Ly¼ 5p. The perturbed fields are periodic in the

y direction and are set to zero at the radial boundaries. The

resistivity and the perpendicular diffusion (g, v?) are taken

to be equal. The viscosity and the normalized Larmor radius

are set equal, respectively, to l¼ 10�4 and q̂ ¼ 0:058. This

simplified model takes into account interchange and tearing

instabilities and as a consequence is very useful to study

the large island generation mechanism involving small-

scale interchange modes. More precisely, using the Fourier

decomposition of the fields which is typically defined as

w x; y; tð Þ ¼
P

m2Z wm x; tð Þ � exp ikmyð Þ, one can identify

the nature of a given mode m thanks to the parity of the

eigenfunctions of the three fields: the resistive interchange

mode m has odd, even, and even parities with respect to x 2
[�Lx/2, Lx/2] for wm x; tð Þ;/m x; tð Þ; pm x; tð Þ

� �
, respectively,

and even, odd, and odd parities for a tearing mode. In this

model, the magnetic equilibrium is given by the Harris cur-

rent sheet model, namely, Beq xð Þ ¼ tanh x
a

� �
ŷ. a determines

the width of the profile and therefore, for a fixed size of the

box, the value of the tearing mode stability index parameter

D0. In order to investigate the regime where a large magnetic

island is driven by the interchange modes, all the modes are

taken to be stable with respect to the tearing instability.20–22

In particular, we have set D0 ¼ �0:45 for the mode m¼ 1:

linearly, there is no magnetic island. The interchange insta-

bility is controlled by the constant equilibrium pressure

gradient fixed by the diamagnetic velocity v?¼�0.01 and

the curvature parameter j1¼ 10.

Simulation parameters are chosen such that the small

scale modes are linearly unstable with respect to the inter-

change instability. In contrast to Ref. 2 where large scales

were weakly unstable with respect to the interchange mode,

we fix the parameters such that the largest scales are linearly

stable. Compared with the previous works where the flatten-

ing of TDMI was observed,23 we also enlarge the scale sepa-

ration between the island and interchange scales. One can

ask whether the beating mechanism of the generation of

TDMI described in Ref. 2 is still relevant in the present set

up? In order to answer this question, we have performed

new simulations for different values of the interchange

parameter j2¼ [1.05, 1.25, 1.4] and the diffusion coefficient

v? ¼ 10�4; 5� 10�5; 3� 10�5
� 	

. The corresponding linear

spectra are plotted in Fig. 1[left]. Although large scale

modes, including the m¼ 1 mode, present an interchange

parity, they are stable (negative linear growth rate) in these

new simulations. Moreover, the most interchange unstable

mode is about m?	 34, i.e., the linear setup is characterized

by a realistic ratio between (seed) islands and interchange

mode numbers.

Fig. 2 shows the time evolution of the magnetic energy

of the main modes of the dynamics m¼ 0, m¼ 1, m¼ 34,

and m¼ 35 for a nonlinear run with j2¼ 1.4 and v?¼ 10�4.

It shows the nonlinear generation of a TDMI. It confirms the

results obtained in Ref. 2 and shows that, both scale separa-

tion and stability of the large scale do not impact the nature

of the mechanism generating a TDMI: an island is generated

in the quasi-linear phase and has a growth rate equal to 2c?.
More precisely, the dynamics can be decomposed into three

stages. For 0� t/sA� 400, the linear regime is recovered and

the mode growth rates are in agreement with the linear spec-

tra shown in Fig. 1(left): small scales modes are unstable

with a growth rate c34	 c35¼ c?¼ 1.3� 10�2 and large scale

modes (m¼ 0 and m¼ 1) are stable and present an inter-

change parity. There is no linear generation of magnetic

islands. Then, for 400� t/sA� 1000, a quasi-linear regime

FIG. 1. [Left] Linear spectra: growth rate c as a function of the poloidal mode number m. [Right] Time evolution of the island size w normalized to the turbu-

lent critical island size wturb
c . For each color, the run parameters are the same in the left and right graphs.
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arises. Large scale modes (m¼ 0 and m¼ 1) become unsta-

ble with a linear growth rate given by cNL
0 	 cNL

1 	 2c?. The

radial dependence of the large scale eigenfunction w1(x)

adopts a tearing parity in the quasilinear regime. The island

does not disappear in the nonlinear regime t/sA> 1000. The

nonlinear dynamics generating a TDMI that we have just

described is not specific to the run presented in Fig. 2. The

linear spectra we have used to perform nonlinear simulations

(see Fig. 1) exhibit various ranges of unstable modes, includ-

ing cases where there is a clear scale separation between the

MHD and interchange scales. In essence, we have found that

the generation of a TDMI does not depend on the precise

shape of the spectra. However, the spectra determine the val-

ues of the critical turbulent island size. We will show in

Section V the latter impact on the asymptotic properties of

the dynamics and the pressure profile flattening of the mag-

netic islands.

IV. SELF-SUSTAINMENT OF TDMI

One may wonder at this point about the basic mechanism

underlying the self-sustainment of the magnetic structure and

whether it differs from the one at play for the tearing instabil-

ity. The magnetic equilibrium and the D0 parameter fix the con-

dition for the tearing instability to exist and the amount of free

energy available, and the resistivity value determines to some

extent the reconnection rates. However, the fundamental rea-

son for which the magnetic structure is self-sustaining is the

presence of a quadrupolar flow. Indeed, basically, a large frac-

tion of flow is penetrating into the island transversely to the

magnetic field lines in the vicinity of the X point. It is expelled

from the island at the O point poloidal level, where radial

island extension is maximal and magnetic tension is minimal.

In particular, the acceleration of the outflow opposes the

Lorentz forces, and the balance between the two determines

the growth, the decrease, or the saturation of the flow structure.

At the same time, such a flow structure advects magnetic flux

through the v � B term and sustains the current sheet. The

growth of the dominant harmonic of both the flow and the

magnetic field, but not the higher harmonic contributions,

determines finally the dynamics of the global flow-island struc-

ture and the island width.24 Let us emphasize, that more gener-

ally, whatever the alternative known mechanisms generate and

amplify magnetic islands such as Sweet-Parker and Petschek

models, the flow presents a quadrupolar structure. It turns out

that this mechanism is still at play for TDMI. Indeed, Fig. 3

(left) presents the snapshot of the difference between the elec-

trostatic potential and the pressure, which drives the advection

of the flux in Ohm’s law Eq. (2). As far as the system enters

the quasilinear regime, breaking and reconnection of the mag-

netic field lines have occurred and a quadrupole /� p struc-

ture goes along with the island growth. By advecting the

magnetic flux, the quadrupolar structure sustains the growth of

the island. In Fig. 3(right) where the snapshot of the magnetic

flux w during the nonlinear regime is drawn, the magnetic

island structure is clearly observed. Thus, there is some univer-

sality in the presence of a quadrupole when an island is gener-

ated. The access to the full non-linear regime accelerates the

island, and the quadripolar structure disappears gradually. It

does not suppress the island. The asymptotic regime is charac-

terized by a statistically stationary state for the fluctuations. In

that case, the sustainment of the current sheet is not anymore

provided by the inductive electric field but by the dynamo

term alone f/isl � p;wg in the island frame. Here, /isl ¼ /
�vislx, and the island rotates poloidally at velocity visl.

V. EXISTENCE OF A CRITICAL ISLAND SIZE
FOR THE PARTIAL PRESSURE FLATTENING
OF TDMI

The critical island width above which a flattening of

the pressure inside the island should occur has been evalu-

ated to be5,9

FIG. 2. j2¼ 1.4 and v?¼ 10�4. Time

evolution of the magnetic energy of

the main modes of the nonlinear simu-

lation m¼ 0, 1, 34, 35.

FIG. 3. j2¼ 1.05 and v?¼ 3 � 10�5. Snapshots of the difference between

the electrostatic potential / and the pressure p in the quasi-linear regime

(left) and of the magnetic flux w in the full nonlinear regime (right).
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wturb
c ¼

ffiffiffi
8
p

vturb
? =vk

� �1=4 ffiffiffiffiffiffiffiffiffi
a=ky

q
: (4)

vturb
? � D?c?=k2

? is the turbulent perpendicular diffusion coef-

ficient. The implicit parallel diffusivity is given by

vk ¼ g�1q̂2. D? is the spectral extension of the most unstable

interchange modes which are characterized, in the nonlinear

regime, by an equipartition between magnetic and pressure

energy. We will specify it below. In this section, we check

the validity of the prediction Eq. (4) and more generally the

existence of a critical width for TDMIs above which pressure

flattening occurs. Indeed, turbulence might not necessarily

be reduced to a transport parameter at large scales for this

question. Moreover, the hypothesis that D* interchange

modes enhance a large scale turbulent transport might not be

true.

The parameter D* is linked to a natural scale separation

which appears in the nonlinear regime. To bring out this

point, we present in Fig. 4 the spectra of the kinetic, pres-

sure, and magnetic energies in the nonlinear regime. They

present properties shared by all the runs of this paper, more

generally which are valid for a wide range of parameters, as

already emphasized in Ref. 5: First, large scales m� 1 domi-

nate energetically. Second, intermediate scales are character-

ized by the equipartition between pressure and kinetic

energy. They correspond to poloidal mode numbers in the

range 3�m<mth. with mth.¼ 17<m? in Fig. 4. Fig. 5 shows

the modes m¼ 8 in real space, i.e., the sum of the mode

m¼68 in the complex space. It emphasizes that such equi-

partition is due to the adiabatic trend of the system at inter-

mediate scales, except in the vicinity of the external part of

the island (x�w/2) where /8 and p8 have the same sign.

Third, there is a tendency to an equipartition between mag-

netic and pressure energy spectra for the dominant inter-

change scales jm� m?j � D
. The fields at those scales will

be noted /0; p0;w0
� �

.

Let us now check whether or not a critical island size

wturb
c exists for the pressure flattening. In this work, the set of

parameters has been chosen such as we can explore a regime

where at saturation w=wturb
c ranges roughly from 0.5 to 3 (see

Fig. 1(b)). It was obtained by varying the curvature parame-

ter j2 and the dissipative parameter v? in order to modify

both the turbulent diffusivity and the predicted critical island

width wturb
c . In a previous work,23 the growth of the island

was such that w� wturb
c as soon as the system entered the

quasilinear phase, and therefore, it was not possible to verify

the existence of a critical width for TDMIs.

Fig. 1(b) explicitly shows the time evolution of the

island size normalised to the critical turbulent island size

wturb
c . It turns out that the asymptotic size depends on the free

energy interchange level. Indeed, the larger the dominant

growth rates and/or vturb
? , the larger the asymptotic island

size. This is true only if vturb
? is large enough. Indeed, Fig. 1

also shows that, in the nonlinear asymptotic regime, the ratio

w=wturb
c is not monotonic, below some threshold value of

D�1

 vturb

? =v?. This threshold is between 3 and 6. When c?
decreases, D�1


 vturb
? =v? decreases from 10.3 to 0.7, for the

runs presented in Fig. 1. When vturb
? =v? is below the critical

FIG. 4. Spectra in the nonlinear phase for the run j2¼ 1.05 and v?¼ 3 �
10�5 at t¼ 7500sA for which m?¼ 34 and D*¼ 15.

FIG. 5. Snapshot of the modes m¼ 8 in real space in the nonlinear phase for the run j2¼ 1.05 and v?¼ 3 � 10�5 at t¼ 7500sA. Note that these modes have

the tearing parity: (w8, /8, p8) are, respectively, even, odd, and odd with respect to x.
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value, the asymptotic island size is of the order of wturb
c .

More precisely, it fluctuates in the range wturb
c =2;wturb

c

� 	
and

seems to be roughly independent of vturb
? . A natural question

is whether or not, in this regime, the partial flattening of the

island disappears.

In order to verify if partial flattening occurs only

when w becomes significantly greater than wturb
c , we con-

sider the nonlinear dynamics of runs with v? ¼ 10�4.

Then, the asymptotic island sizes satisfy w=wturb
c � 1. We

find that, concomitantly, the radial pressure profiles of

such weak turbulence level simulations are almost not flat-

tened. It is shown in Fig. 6(left) for the case j2¼ 1.4 and

v?¼ 10�4 (blue square lines). The time evolution of the

normalized pressure gradient �hdp0=dxi=v? is also shown

in Fig. 6(right). hdp0=dxi is a mean of dp0/dx inside the

island. This ratio remains close to one, and therefore, there

is almost no flattening when w is slightly above or of the

order of wturb
c . Considering again the latter case, we

observe that a very weak flattening, oscillating in time,

exists. In fact, the island size oscillates at the same fre-

quency, in phase opposition (see Fig. 1). This is in agree-

ment with the expectation that the flattening increases with

the island size.

A larger turbulence level regime can be analysed by

decreasing the parameter values to j2¼ 1.05 and v?¼ 3

� 10�5. As predicted, Fig. 1 shows that the island size is

increased, reaching w=wturb
c � 3 after the quasi-linear phase.

As a consequence, the pressure flattening is intensified

and/or the ratio dp0=v? fluctuates around 0.25 in this phase,

see Fig. 6(right). Moreover, in the far nonlinear phase, there

is a simultaneous decrease in the island width and the flatten-

ing of the pressure profile. The origin of the reduction of the

island size is due to a weakening of the interchange power

source. The latter is due to the flattening effect. The pressure

profiles are also shown in Fig. 6(left). In contrast to the

results with a higher w=wturb
c ratio,23 we observe a slow dis-

appearance of the flattening inside the island.

VI. AN EXPLICIT LINK BETWEEN THE TURBULENCE
AND PRESSURE PROFILE INSIDE THE ISLAND

In Ref. 5, in particular in Eq. (41), it has been proposed

that the constant in the space mean pressure gradient of the

magnetic island rPisl
0 is linked to the interchange small scale

turbulence through the identity

rPisl
0 tð Þ ¼ �v? þ b

*
2

w

ðt

0

dt

�
*

2
X

jm�m?j�D
;m>0

km
d

dx
I p̂m/̂

?

m

� �+
x

+
: (5)

The integrated term in brackets h:ix corresponds to the inter-

change source term �S/0;p0 introduced in Ref. 5 and results

from the nonlinear transfer of energy from interchange scales

to the island scales through the advection term f/; pg.
p̂m xð Þ and /̂m xð Þ are the eigenfunctions of the interchange

mode with mode number m. Moreover, one has b ¼ l?=wm

� 0:5d=wm, where wm is the maximal size of the island

reached at the end of the quasilinear phase, d is the radial

width of the interchange band (IB) around the resonance,

and l? ¼ Ly=m?. The brackets h:ix indicate a mean value in

the IB, and the simple brackets h:i indicate a temporal mean

on the nonlinear time scale sNL, a characteristic time of the

evolution of the large scales. Let us emphasize that Equation

(5) describes the link between the pressure gradient in the

island and the turbulence level. Indeed, the RHS of Eq. (5) is

a measure of the intensity of the turbulence in the inter-

change band.

In order to test the validity of the model developed in

Ref. 5, and, in particular, to test Eq. (5), we consider the run

j2¼ 1.05 and v?¼ 3 � 10�5 for which w is of the order of a

few wturb
c . In Fig. 7, a zoom on the source term profile

�S/0;p0 xð Þ is shown for time t¼ 14 522sA. As argued in Ref. 5

where the model is derived, the source is well localized in

the vicinity of the resonance x¼ 0 in the IB (the IB is

FIG. 6. For each color, the run parameters are the same in the left and right graphs of this figure and, also, in Fig. 1: (a) pressure profile at t/sA¼ 5078 (dashed

line) and at the end of the nonlinear simulation t/sA¼ 14 037 (full lines). (b) Time evolution of the gradient of the mean pressure profile into the island normal-

ized to the equilibrium pressure gradient v?.
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delimited by jxj � d=2 � 0:39) and has, predominantly, an

odd parity. In order to give a self-consistent definition of

means in Eq. (5), we explicitly set

h�S/0;p0 ix tð Þ ¼
ðxm

0

dx�S/0;p0 x; tð Þ ; (6)

where xm is the position of the maximum of the source term

in the IB. This choice allows us to follow the IB width fluctu-

ations as shown in Fig. 7. Moreover, by definition,

hf i ¼ 1

sNL

ðt�sNL=2

t�sNL=2

f tð Þ ; (7)

where sNL ¼ dlnw=dtð Þ�1 � 980 sA is computed in the quasi-

linear phase where the island width w is almost a linear func-

tion of time. Let us emphasize that in the subsequent

nonlinear phase, sNL also corresponds, roughly, to the char-

acteristic time of oscillations of the large scale quantities.

For instance, this behavior can be seen in Fig. 8 which shows

the time evolution of the pressure gradient in the island dP0/

dxisland (the slope of the mean pressure in between the two

radial extremities of the island).

Fig. 8 also shows the time evolution of the R.H.S of

Eq. (5), with and without the temporal mean h:i. As

expected, the temporal mean strongly smooths the curve. In

agreement with the spectrum shown in Fig. 4 corresponding

to this simulation, we have computed the R.H.S. by adding

all the interchange mode contributions in Eq. (5) by taking

D*¼ 15 and m?¼ 35 (m 2 [20, 50]). In this graph, by defini-

tion, C1 ¼ �S/0;p0 x; tð Þ is the interchange contribution from

the convective term in the mean pressure evolution equa-

tion. The other nonlinear contributions are neglected in this

model and will be discussed below. It is found that the

model predicts very well the time evolution of the mean

pressure gradient into the island, including the nonlinear

phase until t� 5000sA. The reason for which the model

probably breaks down on large time scales is that it is not

a dissipative model. To include dissipative effects, one

should carefully model the energy cycle from interchange

scales to large scales and the back transfer of this energy to

interchange and dissipative scales. The latter mechanism is

not included in the model and should decrease the value of

the pressure gradient in the long time dynamics. However,

the important point is that the model appears to be valid

beyond the time where it reaches its maximal size. After

this moment, the seed island growth is expected to be

driven by neoclassical physics in tokamak devices. Thus, it

becomes a neoclassical tearing mode which saturates on

resistive time scales. This physics is not included in this

model and is out of the scope of this paper. It is instructive

to measure the robustness of this result by computing the

same quantity for different D*. Two cases are presented in

the left graph of Fig. 9. First, we consider the impact of the

modes m?6 1, i.e., D*¼ 1. It is found that the mean pres-

sure gradient modification is strongly underestimated by the

model. Second, for the case D*¼ 25, the model overesti-

mates in both the quasi-linear and nonlinear phase the gra-

dient. The case D*¼ 32 shows a result close but not as good

as the case D*¼ 15 and confirms the hypothesis that the

quasi-adiabatic-modes do not give a net contribution to the

generation of the mean pressure gradient. Note that it also

shows that the modes are not fully adiabatic, otherwise

D*¼ 32 and D*¼ 25 would give the same result. Finally, in

Fig. 8, the impact on the model of the nonlinear term

q̂2fw;r2
?wg in the pressure equation evolution is shown.

More precisely, we consider the interchange source term

C2 ¼ 2q̂2
X

jm�m?j�D
;m>0

km
d

dx
I ŵmĵ

?

m

� �
: (8)

The figure clearly shows that the contribution would be too

large if one would take it into account in the model. There is

in fact no reason to limit the sum of interchange modes for

this nonlinearity, because there is no property equivalent to

FIG. 7. S/0;p0 x; tð Þ at t¼ 14 522sA for the run j2¼ 1.05 and v?¼ 3 � 10�5.

FIG. 8. Run j2¼ 1.05 and v?¼ 3 �
10�5: time evolution of the mean pres-

sure gradient and comparison with the

model Eq. (5). Interchange modes cor-

respond to D*¼ 15 and m?¼ 35.
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the quasi-adiabaticity. The point is that this term is almost

canceled by the lower mode number contributions.

Eq. (5), coupled with the fact that in the quasi-linear

phase the island size grows almost linearly with time, indi-

cates that, in fact, the pressure flattening is linked to the

mean energy transferred to large scales through the convec-

tive term. Indeed, introducing the ansatz w tð Þ ¼ _wqlt, we

obtain the following estimate:

rPisl
0 tð Þ ¼ �v? þ a


1

t

ðt

0

dthC1ix
�
; (9)

with a ¼ 2b= _wql. The latter model is tested as shown in

Fig. 9, without the mean on sNL time scales to make explicit

the fluctuation level of hC1ix. As just stated, we find that the

model Eq. (9) works well in the quasilinear phase and a dis-

crepancy between the model and the measure mean pressure

gradient appears in the nonlinear phase. This is the most

important phase. Indeed, it is at the end of the quasilinear

phase that the seed island may reach its larger size and, thus,

exceed the critical size wql
c to become an neoclassical tearing

mode (NTM). We should point out that the nonlinear dynam-

ics is characterized by multi-scale burst events. During these

periods of characteristic duration, a fraction of sNL, the island

structure, and its width are not substantially affected.

However, the source term �S/0;p0 is not anymore localized in the

IB as shown in Fig. 10 even though it has a reduced amplitude.

In the long time dynamics, these phases disappear. For the ref-

erence run j2 ¼ 1:05; v? ¼ 3� 10�5, and the last observed

event occurs around t¼ 5700sA. These events seem to occur

after phases of pile up of energy at large scales and correspond

to phases where there is a release of large scale energy to the

smaller scales throughout the island and up to the dissipative

scales. They are probably linked to the fact that interchange

scales, by feeding island scales, tend to destabilize the island

structure, which, in turn, relax quite abruptly the excess of

energy in an intermittent and/or cyclical manner. The proof of

this assertion and its study are out of the scope of this paper.

In experiments, pressure profile flattening of large neo-

classical tearing modes can be observed despite the presence

of the turbulence. For weak positive D0, in the long term

dynamics, the flattening is also observed in our model23

despite the presence of turbulence. The validity of the pre-

sent study is restricted to the seeding process of NTMs by

turbulence, i.e., TDMIs. After the seeding by turbulence in

the quasilinear phase, when the island is amplified, one may

expect that some new mechanisms reduce the flattening.

Indeed, in our interchange model, there is no amplification

by neoclassical mechanisms and we do not take into account

the multi-helical nature of the turbulence in devices. When

the width of the island increases after the seeding, as shown

in Ref. 3, on the long term, dynamics of the island also

depends on the turbulence level outside the magnetic island.

It follows that some other mechanisms may possibly reduce

the role of the source—which imposes the partial character

of the flattening5—in the interchange band from where the

island arises and therefore lead to a cancellation of the partial

character of the flattening.

In our interchange model, the turbulence transport

parameter is weakly reduced nonlinearly23 because the pres-

sure gradient and therefore the turbulence level are reduced

in the island. As the critical island width above which pres-

sure flattening occurs is proportional to vturb1=4

? / c1=4
? , the

FIG. 9. Run j2¼ 1.05 and v?¼ 3 � 10�5: (a) time evolution of the mean pressure gradient and comparison with the model Eq. (9) with D* 2 {15, 1, 25, 32}.

(b) Time evolution of the mean pressure gradient and comparison with the model Eq. (9), D*¼ 15 and m?¼ 35.

FIG. 10. Run j2¼ 1.05 and v?¼ 3 � 10�5: S/0 ;p0 x; tð Þ at the beginning of,

during, and after a burst event.
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reduction in the turbulence level has almost no impact on the

flattening process. The impact is stronger on the source S/ c?
in the interchange band, but one should have a decrease of at

least one order of magnitude to observe an equilibration of the

pressure into the island, which is not observed. Note that, the

opposite situation, an enhancement of vturb
? by the turbulence

in an island induced by a tearing instability, has been observed

numerically for the ion temperature profile in a multi-helical

electromagnetic model.25 For a stronger pressure flattening to

emerge, the microturbulence level should be strongly reduced,

for instance, by zonal flows which are underestimated in fluid

models. A strong reduction in ion thermal diffusivity and

therefore in the turbulence level in an island has already been

measured in a magnetic island.14

VII. CONCLUSIONS

We have pointed out the difficulty in studying experi-

mentally the interaction between microturbulence and seed

islands. A consequence of this is that the experimental detec-

tion of TDMI requires a signature to detect them. We have

numerically investigated the generation of seed islands by

small scale interchange modes in cases where they are char-

acterized by a well established scale separation with MHD/

island physics and are localized in the vicinity of a resonant

surface. We have shown that when the island size is signifi-

cantly greater than the critical island width wturb
c , the flatten-

ing occurs. We have shown that, when the ratio w=wturb
c is

close to unity, TDMIs do not exhibit a pressure flattening.

When the ratio is larger, it is dynamically correlated with it.

We have also shown that the growth of TDMIs is self-driven

by the presence of large scale quadripolar flow. It confers

and confirms the ubiquitous character of these flows in

reconnection problems. We have also shown that the pres-

sure gradient inside a turbulence driven magnetic island can

be explicitly linked to the properties of the interchange tur-

bulence. All these results present a good agreement with the

analytical model presented in Ref. 5. We have also shown

that the nonlinear modification of the pressure gradient

inside the island is proportional to the mean energy trans-

ferred to large scales through the convective term in the

phase where the island grows.

As a future work, it would be interesting to validate this

theory over a large parameter space and to extend it to multi-

helical turbulence induced by ion temperature gradient

modes. Indeed, such a study would allow us to include spe-

cific turbulence scale lengths and their relationship with the

seeded TDMIs. Nevertheless, this work indicates that a par-

tial pressure profile flattening may not be linked to the size

of the island (w < wturb
c ) but to the fact that the seed island

has been generated by turbulence. We have found that TDMI

should be sensitive to the modulation of the turbulence into

the islands on slow time scales compared with the turbulent

time scales, i.e., MHD scales. This might give a signature if

one wishes to detect them experimentally. Indeed, our results

suggest that one may bring into light TDMIs in experiments

by modulating the turbulence level inside magnetic islands.

One might observe a modification of the mean pressure gra-

dient proportional to w�1
ffiffiffiffiffiffiffiffiffiffiffiffi
Ep0Ek0

p
, where Ep0 and Ek0 are,

respectively, the kinetic and thermal energy of the turbulent

bath.
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