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Cédric Bulois’ (), Manuel Pubellier’, Nicolas Chamot-Rooke'?, and Matthias Delescluse’

"Laboratoire de Géologie, Ecole Normale Supérieure, PSL Research University, Paris, France, 2CNRS/UMR 8538, Paris, France

Abstract Reactivation of extensional structures is commonly inferred during rift evolution. In that context,
we present original seismic interpretation to explore the geometry and interactions of three successive rifting
events in the Coral Sea region, Papua New Guinea. The first event (R,), poorly documented, occurred during
the Triassic along an older N-S Permian structural fabric. During the Jurassic, extensional faults were
reactivated through a second extensional episode (R;), which formed small (~10/20 km) basins bounded by
N-S, NE-SW, and E-W listric faults. Extension prolonged during the Lower Cretaceous with seafloor spreading
in the Owen Stanley Oceanic Basin, now incorporated in the Papuan fold and thrust belts. A third Late
Cretaceous extensional phase (Rs) gently reactivated some of the faults with very limited landward tilt in
most basins and deformation located along the present continent-ocean transition. Seafloor spreading in the
Coral Sea followed from Danian to Ypresian. This extensional system is sealed by unequally preserved Eocene
strata that mark the onset of postrift thermal subsidence prior to the margin inversion from Oligocene
onward. This overall evolution suggests various extensional systems that are geographically and temporarily
defined the one another. The early rifting of the crust is controlled by preexisting continental features
resulting in the local Pangaea breakup. In contrast, the Coral Sea propagator cuts through the rifted margin
and is controlled by a subduction complex in accordance with the Tasman Sea opening. This evolution
underlines the interactions existing between two extension modes in agreement with variations of the
regional geodynamical setting around Australia.

1. Introduction

Rifting can either occur in the midst of continental plates depending of the mantle behavior (i.e., passive
and active hypothesis due to far-field boundary forces or mantle plume) (Sengér & Burke, 1978) or as a
result of trench pull caused by neighboring subduction zone (i.e., backarc extension due to the rollback
of the slab) (Honza, 1995; Tamaki & Honza, 1991; Uyeda & McCabe, 1983). The latter case produces rifted
slivers separated by marginal basins such as in Southeast Asia (Pubellier & Meresse, 2012) or in the West
Pacific (Cluzel et al,, 2012). In these two extreme models of rifting, polyphased direction of extension may
change over time, resulting in variations of the basin geometries and an organization of trapped sedi-
ments within specific megasequences that undersign the polyphased evolution of rifted basins.
Polyphased rifting is a common phenomenon in many extensional settings of longstanding history, such
as the North Atlantic Rift system (e.g., Doré et al, 1999; Roberts et al., 1999; Tankard & Balkwill, 1989;
Ziegler, 1989), the Red Sea/East African Rift system (e.g., Huchon & Khanbari, 2003; Montenat et al.,
1988; Versfelt & Rosendahl, 1989) or the South China Sea (e.g., Franke et al., 2014; Fyhn, Boldreel, et al.,
2009; Fyhn, Nielsen, et al., 2009; Savva et al., 2014). It implies fault reactivation and deposition of specific
sequences, among which the dynamics understanding requires much geological and geophysical informa-
tion. In that context, the frontier region of the Coral Sea, located in between Papua New Guinea and
Australia (Figure 1), constitutes a typical example of such a complexity as intimately linked juxtapositions
of rifting, seafloor spreading, and marginal accretion episodes are found adjacently (e.g., Baldwin et al.,
2012; Corbet, 2005; De Smet et al.,, 1998; Doust & Noble, 2008; Hill & Hall, 2002; Sheppard & Cranfield,
2012). Most detailed publications consist of studies that deal with specific aspects of the Cenozoic com-
pression evolution in the Papuan mainland and its associated natural resources. Offshore studies mostly
focused on the eastern Cenozoic tectonostratigraphy of the Coral Sea (e.g., Botsford et al.,, 2012; Home
et al., 1990; Jablonski et al., 2006; Mutter, 1975) or on the evolution of the Recent silicastic-carbonate sys-
tems (e.g., Francis et al., 2008; Carson et al.,, 2008; Jorry et al., 2008). Comparatively, preceding rifting archi-
tecture is poorly documented due to the paucity of regional subsurface datasets resulting from the thick
Cenozoic sedimentary cover.
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Figure 1. Simplified structural map of New Guinea and surrounding areas. Map is adapted from Bulois (2016). Words in capital letters are for lithospheric
plates, abbreviations in capital letters are for structural elements, and abbreviations in italics are for mountain ranges and fault zones. Abbreviations: AB:
Arafura Basin, AFB: Aure fold belt, AUS: Australia, AyT: Ayu Trough, BB: Bonaparte Basin, BSB: Bismarck Sea Basin, BT: Bligh Trough, BTFZ: Bewani-Torricelli
fault zone, CSB: Coral Sea Basin, CPFTB: Central Papuan fold and thrust belt, CWB: Cenderawasih Basin, EP: Eastern Plateau, EPFB: Eastern Papuan fold belt,
FP: fly platform, LFTB: Lengguru fold and thrust belt, LP: Louisiade Plateau, MaT: Manus thrust, MoT: Moresby thrust, MS: Molucca Sea, MuT: Musseau Trough,
NBT: New Britain Trench, NGT: New Guinea Trench, NF: Nubura fault, OB: Osprey Basin, OSFTB: Owen Stanley fold and thrust belt, PaR: Pandora Ridge, PP:
Papuan Plateau, PR: Pasca Ridge, PT: Pocklington Trough, PNG: Papua New Guinea, QT: Queensland Trough, QP: Queensland Plateau, RMFZ: Ramu-Markham
fault zone, SSB: Solomon Sea Basin, SST: South Solomon Trench, SFZ: Sorong fault zone, ST: Seram Trench, TT: Trobriand Trough, WB: Woodlark Basin, and
WP: West Papua.

The overall region is generally described as two following rift systems extending either along the NW Shelf
of Australia or in the Coral Sea region (Figure 1) (Struckmeyer et al., 1993; Symonds et al., 1984). Jurassic
rifting along the NW Shelf is well-understood regarding structural directions and associated infillings (e.g.,
Chen et al,, 2002; Elliott et al., 1996; Heine & Miiller, 2005; Stagg et al., 1999). In comparison, the Coral Sea
extension is mostly evidenced from early Cenozoic oceanic crust bounded by large rifted continental pla-
teaus detached from the Australian craton (e.g., Drummond et al., 1979; Ewing, Hawkins, et al.,, 1970;
Ewing, Houtz, et al,, 1970; Gaina et al,, 1999; Gardner, 1970; Symonds et al.,, 1984; Taylor & Falvey, 1977;
Weissel & Watts, 1979). The best explored features lie in shallow waters (e.g., Papuan Basin and Eastern
and Papuan plateaus) (e.g., Home et al.,, 1990; Jablonski et al.,, 2006; Botsford et al., 2012; Ott & Mann,
2015) and are often interpreted as a result of the Cretaceous rifting preceding seafloor spreading. Yet
older rifted sequences are also suggested onshore and offshore but their dynamic setting is still under
debate. In particular, it remains uncertain if the NW Shelf and Coral Sea rift systems actually connected
in the past along a large rifted margin now partially shortened and imbricated in the Papuan fold and
thrust belts (e.g., Hill, 1991; Hirst & Price, 1996).
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Hereafter, we specifically focus on detailed mapping of extensional features along the northern margin of the
Coral Sea Basin to better understand the initiation and propagation of the extension through the Australian
craton and how rift systems may interact over time. We present a comprehensive analysis of geological and
geophysical datasets, comprising original industrial 2D seismic data correlated to local wells together with
magnetic and gravimetric observations. We argue that the Coral Sea region underwent at least three over-
printed extensional episodes prior to Mid-Cenozoic basement-involved shortening, controlling the formation
and reactivation of fault systems over time.

2. Geological Setting

Papuan present-day deformation is generally viewed as a result of the 70-Myr-long, oblique and rapid con-
vergence between the Australian and Pacific plates (Gaina & Miiller, 2007; Tregoning et al., 1998; Wallace
et al,, 2014). This resulted in the accretion of lithospheric terranes (Audley-Charles, 1991; Cloos et al., 2005;
Crowhurst et al,, 1996; Dewey & Bird, 1970; Hamilton, 1979; Hill & Hall, 2002; Pigram & Davies, 1987;
Quarles van Ufford & Cloos, 2005) interspaced by the formation of oceanic basins (e.g., Coral and Tasman
seas) and sometimes backarc or propagator basins (e.g., Solomon and Bismarck seas or Woodlark Basin)
(Figure 2) (e.g., Gaina & Miiller, 2007; Gaina et al., 1998, 1999; Hayes & Ringis, 1973; Joshima et al., 1987;
Martinez et al., 1999; Taylor, 1979; Taylor et al., 1999). These involve Proterozoic to Cenozoic crustal provinces
separated by major fault zones reactivated over time.

In the Coral Sea region, in particular, crustal elements and faults have been involved in a number of rift events
that are mostly recognized in the Papuan Basin (Hill & Hall, 2002; Home et al., 1990; Jablonski et al., 2006) but
remain uncertain farther east due to compression and thick sediments. It implies discrepancies regarding the
regional significance of these events.

2.1. Prerift Basement Geology

The Coral Sea region has recorded a long-lasting evolution from the Precambrian and involved crystalline base-
ment structures susceptible of locating subsequent extensional deformation (Figure 2). Basement rocks appear
as large plateaus rifted from the Australian craton (Drummond et al., 1979; Mutter, 1977; Symonds et al., 1984;
Taylor & Falvey, 1977). Drillings and seismic reflection surveys showed that the Queensland and Eastern
plateaus are largely composed of Palaeozoic or older crystalline basement overlain by thick Cenozoic
sediments. Similar crystalline rocks are indirectly evidenced in the adjacent ridges (e.g., Pandora Ridge) as well
as underneath the Papuan and Louisiade plateaus (Jablonski et al., 2006; Rogerson, Hilyard, Francis, et al., 1987).

Onshore, Mid-Proterozoic cratonic basement along the Arafura Platform and the Lengguru Fold and Thrust
Belt underlie Silurian-Devonian metasediments (Pieters et al., 1983). Eastward (Papuan fold and thrust belts),
various undeformed sediments deposited on top of Precambrian plutons and Palaeozoic (Permian or older)
metasediments intruded by Early to Middle Triassic granites (Figure 3) (e.g., Crowhurst et al., 1996, 2004;
Davies, 2012; Page, 1976; Parris, 1994; Rogerson, Hilyard, Francis, et al., 1987; Rogerson, Hilyard, Finlayson,
et al., 1987; Struckmeyer et al.,, 1993; van Wyck & Williams, 2002). This implies two basement types from east
to west, which the boundary may correspond to the northward prolongation of the Tasman Line, a major
lithospheric-scale discontinuity underlying the New England Orogen in Australia (Figure 1) (Direen &
Crawford, 2003; Schreibner, 1974). Nonetheless, its geographic extent in Papua New Guinea remains dis-
cussed (e.g., Hill & Hall, 2002).

2.2. The Australian Continental Breakup

Following Palaeozoic times, the region encompassed a period of long-lasting extension affecting Pangaea
supercontinent (Figure 3). Early synrift sediments (?Permian) are seismically interpreted west of the
Pandora Ridge (Jablonski et al., 2006). Wells drilled on the Fly Platform (Well Kanau-1) and in the Australian
part of the Papuan Basin (Well Anchor Cay-1) penetrated younger (Triassic) synrift sediments (e.g., Home
etal., 1990). Further Mid-Late Triassic formations (e.g., Kana Volcanics and the Jimi Greywacke) are interpreted
as part of this synrift setting (Home et al., 1990) or as a result from the Bowen-Fitzroy Orogeny in northeastern
Australia (e.g., Jablonski & Saitta, 2004). As a result, this early synrift episode remains poorly
constrained spatially.

During the Early to Middle Jurassic, northern Australia experienced a more widespread rifting event, result-
ing in a transgressive megasequence defined in onshore Papua as the Bol Arkose Formation (Lower Jurassic
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Figure 2. Tectonostratigraphic elements in the eastern Papuan Basin. Structural elements are principally adapted from Pigram and Davies (1987), Norwick (2003),
Collot et al. (2009), and Bouysse et al. (2014). Abbreviations in capital letters are for structural elements; abbreviations in italics are for mountain ranges and fault
zones. Wells cited in the text are also plotted on the map in blue (An for Anchor Cay; Di for Dibiri-1A; and Pa for Pasca). Abbreviations: AFB: Aure fold belt, AU:
April Ophiolite, BB: Bamaga Basin, BBT: Bena Bena Terranes, BL: Bosavi Lineament, BT: Bligh Trough, BTFZ: Bewani-Torricelli fault zone, BoT: Bogora thrust, BTT:
Bewani-Torricelli Terranes, CI: Coen Inlier, CO: Cyclops Ophiolite, CPFTB: Central Papuan fold and thrust belt, DP: Darai Plateau, EP: Eastern Plateau, EPaR: East Pandora
Ridge, EPFB: Eastern Papuan fold belt, FB: Finisterre block, FP: Fly platform, Gl: Georgetown Inlier, JT: Jimi Terranes, KB: Kutubu Basin, Kl: Kubor Inlier, LLB: Laura-
Lakefield Basins, LP: Louisiade Plateau, MO: Marum Ophiolite, MoT: Moresby thrust, NBT: New Britain Trench, NGT: New Guinea Trench, NF: Nubura fault, OB: Osprey
Basin, OSFTB: Owen Stanley fold and thrust belt, OSFZ: Owen Stanley fault zone, PaB: Pandora Basin, PaR: Pandora Ridge, PB: Papuan Basin, PDR: Penisula-Daru
Ridge, PR: Pasca Ridge, PoT: Pocklington Trough, PT: Papuan thrust, PUB: Papuan ultramafic belt, QT: Queensland Trough, QP: Queensland Plateau, RMFZ:
Ramu-Markham fault zone, SST: South Solomon Trench, ST: Schrader Terranes, TB: Trobriand Basin, TS: Torres Strait, ToB: Townsville Basin, and TT: Trobriand Trough.
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Figure 3. Simplified stratigraphic column in the study area, including the Coral Sea Basin, the Aure fold belt, and Papuan
fold belt. Stratigraphy and tectonic events are principally adapted from Home et al. (1990), Jablonski et al. (2006), and
Craig and Warvakai (2009). Interpretation in the current study differs from these publications, namely, regarding the sig-
nificance of tectonic events.

to Bajocian) and the Mogabu Coal and Balimbu Greywacke formations (Bathonian to Early-to-Middle
Jurassic) (Figure 3) (Hill & Hall, 2002; Home et al., 1990; Pigram & Panggabean, 1984). The synrift area is
usually described as being limited by a series of anticlines (e.g., Kubor and Muller) to the north and by
the Pasca Ridge to the east, although synrift sediments remains accurately untested offshore. There are
also issues regarding the opening mechanism (e.g., backarc basin versus aborted continental rift)
depending on the continuity of synrift elements (e.g., Hamilton, 1979; Monnier et al.,, 2000; Pigram &
Panggabean, 1981, 1984; Pigram & Symonds, 1991).
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Both rift events were followed by a passive margin setting (Figure 3). Postrift strata are alternatively picked
from the top of the Koi-lange Member (Middle Jurassic) or from the Barikewa Mudstone Formation and its lat-
eral lagifu or Hedinia sandy equivalents (Middle to Upper Jurassic) (Figure 3) (e.g., Hill & Hall, 2002; Home et al.,
1990; Norwick, 2003). Full thermal subsidence is marked by the development of the Imburu Mudstone
Formation (Late Callovian to Oxfordian) that seals most of Jurassic extensional features and onlap onto north-
ern structural highs until the earliest Cretaceous (Dow, 1977; Home et al., 1990). Postrift strata are likely to
have been affected by following Cretaceous extensional and Cenozoic compression events in many places.

2.3. The Cretaceous Extension and the Opening of the Coral Sea Basin

Many authors argued that the Late Jurassic passive margin setting continued during much of the Neocomian
(e.g., Home et al,, 1990; Pigram et al., 1989; Struckmeyer et al., 1993) or that this period actually corresponds to
a new phase of rifting controlling the deposition of transgressive Toro Sandstone and Lower leru Mudstone
formations (respectively Neocomian and Upper Cretaceous, Figure 3) (Hill & Hall, 2002; Norwick, 2003).
Variations are due to the duration definition and geometric relation between contemporaneous rifted basins.
Also, it is possible that an oceanic basin, now overthrusted in the Owen Stanley Fold and Thrust Belt (i.e.,
Papuan Ultramafics Belt) was separated from a second continental rift setting along an axis linking the
Kubor Anticline to the Pasca Ridge (Hill & Hall, 2002; Home et al., 1990).

Rifting continued during the Upper Cretaceous along the northeastern margin of Australia (Blight,
Queensland, and Townville basins) and in the Coral Sea Basin (Home et al., 1990; Struckmeyer & Symonds,
1997; Norwick, 2003), while most of the southern margin along the Papuan Basin and eastern Australia
was uplifting at the time (e.g., Francis, 1990; Gurnis et al., 2000; Pigram & Symonds, 1993) This resulted in
the deposition of marine mudstones (e.g., Chim and Upper leru mudstone formations) and localized sand-
stones (Figure 3) prior Palaeocene-Eocene seafloor spreading in the deep Coral Sea Basin (Gaina et al.,
1999; Weissel & Watts, 1979). Here again, the duration and extensional mechanisms have been debated as
their definition depends on the interconnexion of rift episodes (e.g., Home et al., 1990; Norwick, 2003). In
addition, large parts of these rifted basins are assumed to have been shortened or completely subducted dur-
ing the Cenozoic compression (e.g., Hill & Hall, 2002; Matthews et al., 2015; Schellart & Spakman, 2015), imply-
ing drastic variation regarding the extent of the Coral Sea extension.

3. Data Analysis and Rifting Architecture of the Coral Sea

As described in the above, the Coral Sea region experienced a long-lasting and polyphased extensional
evolution. To date, only first-scale rift-related morphostructures, (e.g., plateaus and large basins) are geo-
graphically defined (Figure 2). In addition, the lack of regional seismic and well datasets implies a strong
dating bias of stratigraphic sequences. In this paper, about 20,000 km of 2D seismic lines, supported by
occasional wells and filtered regional Bouguer gravity anomalies, were correlated along the northern Coral
Sea margin to link the well-documented Papuan Basin to eastern, poorly-explored features. Herein, wells
Dibiri-1A and Pasca C1 (Phillips Australian Oil Company, 1968, 1969, 1975a, 1975b) are selected from clas-
sical reference wells and are compared to adjacent boreholes Kanau 1 and Anchor Cay 1 (PNG Petroleum,
1975; Tenneco, 1969), to better constrain regional sequences and surfaces (Figures 4 and 5). In the area,
only Well Dibiri-1A tested pre-Cenozoic strata so that the synrift succession dating mostly relies on strati-
graphic relationships with onshore geology or on classic seismic stratigraphic methods (sensu Mitchum
et al, 1977).

3.1. Well and Seismic Correlations of the Synrift Section in the Kutubu Basin

The best preserved synrift succession is observed into the onshore part of the Papuan Basin where an almost
continuous Triassic to Lower Cretaceous section is unconformably overlain by Late Cretaceous sediments
(Well Kanau-1; Figure 4). Offshore wells recovered unequal Triassic and Jurassic sediments, and Cretaceous
sediments remain absent. In the study area, Well Pasca-C1 bottomed an approximately 50m-thick, poorly
metamorphosed quartzite dated in well reports as Upper Palaeozoic age. It is topped by an erosional uncon-
formity, undersigned by the absence of Triassic and Lower Jurassic sediments in wells Dibiri-1A and Pasca-C1
or by very coarse sandstones and conglomerates and local pyroclastics of Triassic age in adjacent wells
Kanau-1 and Anchor Cay-1. Overlying sequences show transgressive Lower Jurassic sandstones, followed
by more widespread Middle Jurassic sandstones, siltstones, and mudstones. Although the age cannot be

BULOIS ET AL.
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Figure 4. Simplified logs of selected wells in the Coral Sea Basin. Ry, Ry, and Rj refer to rift settings recognized onshore and offshore. Rift-related unconformities are
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New Guinea. Note that seismic interpretation enabled to further subdivide the sequences identified in the wells. Seismic line location is displayed in Figure 6.

determined accurately due to poor biostratigraphic information, we follow various unpublished studies from
oil companies that correlate the top marine sequence with Callovian sediments recovered in adjacent wells
Kanau-1 and Anchor-Cay-1. Subsequent sequence (Upper Jurassic) contains fine clastics and rare
carbonates witnessing of progressive terrestrial to open marine conditions, which is likely to have
prolonged during the Lower Cretaceous in the west. Subsequent sediments deposited in a terrestrial to
shallow marine setting during the Cenomanian, whose section remains on the offshore (Well Kanau-1). This
supposes a regional unconformity, which capped the Mesozoic section in all offshore wells (e.g., Brown
et al, 1980; Home et al., 1990). The surface is overlain by Eocene-Miocene carbonate correlative reefs that
preceded the deposition of thick silicastic carbonates related to the construction of the Pliocene to Recent
shelf (e.g., Francis et al., 2008; Tcherepanov et al., 2008).

Therefore, there is a specific stratigraphic distribution that is likely to reveal the complex, extensional and
compressional evolution on the region. This polyphased development is mainly characterized by specific
first-order unconformities or disconformities, which are used together with internal seismic characteristics
to map the various sequences through the seismic volume. Due to data density, the Kutubu Trough region
is specifically chosen hereafter to illustrate the regional rifting architecture (Figure 5).

Basal strata form a chaotic seismic package interspaced with local, discontinuous beddings that continue
eastward with truncated metasediments on top of the Pasca Ridge (Well Pasca-C1, Figure 4). They are inter-
preted as a part of the Palaeozoic basement that has been rifted afterward (e.g., Bain et al., 1975; Jablonski
et al,, 2006).

BULOIS ET AL. POLYPHASED RIFTING AND REACTIVATION 8
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Prerift metasediments are bounded by a strong-amplitude reflector covered by a series of continuous, lower
amplitude beds that delineate a megasequence (referred as Formation I, purple in Figure 5). It slightly thick-
ens westward (i.e., poor tilt) and is limited by the Pasca Ridge eastward. Internally, it is affected by normal
faults that did not propagate in overlying sediments. Therefore, Formation I is interpreted as resulting from
an early synrift setting (called hereafter R;). This implies that the base of the sequence corresponds to an
unconformity referred as Base Rift; Unconformity (later shorten as BR;, Figures 4 and 5). Home et al. (1990)
described a similar pattern within Triassic sediments in the vicinity of Well Anchor Cay-1, and Hill and Hall
(2002) suggested a Triassic synrift event from onshore observations. We therefore propose to remain herein
with an undifferentiated Triassic age for Formation I.

It is overlain by two main sequences that form a regional megasequence called herein Formation Il (blue in
Figures 4 and 5). They thin progressively toward the Pasca Ridge and are better observed in adjacent
Pandora Trough. Both sequences are affected by a number of normal faults that express either internally
or progressed through overlying strata. Therefore, Formation Il suggests a second synrift setting (called here-
after as R,) dated of Middle to Upper Jurassic age. It is limited by two truncational unconformities of different
meanings. For instance, the bottom one called Base Rift, Unconformity (later shorten as BR,, Figures 4 and 5)
marks the onset of the rifting R;, while the top surface correlates to the Jurassic-Cenozoic transition in Well
Dibiri-1A and therefore marks a Cenozoic event.

To the east, a package with clear growth faulting and different seismic facies is intercalated between Jurassic
and Cenozoic strata (green in Figure 5). This rift style difference implies a third rifting phase, called Rs. The
base of related Formation Ill is marked by a tenuous unconformity (Base Rift; Unconformity, later shorten
as BR3). Sediments are correlated with the Upper Cretaceous sediments identified in the onshore Papuan
Basin (Figure 4).

There is therefore a specific stratigraphic distribution in the Kutubu Trough that reveals the polyphased
extensional history (Triassic to Upper Cretaceous). It appears, in particular, that the rift megasequences are
bounded by specific synrift unconformities (called BR; to BR3) that all relate to the three subsequent rifting
events (R; to R3) (Figures 4 and 5). These synrift unconformities specifically show that the rifting evolution
was discontinuous through time in the Kutubu Basin.

3.2. Structural Expression of the Rifting Along the Northern Margin of the Coral Sea

Table 1 displays the seismic characteristics of the three different rift formations / to /Il in the Kutubu and adja-
cent basins to constrain the strata distribution and the bounding unconformities along the northern Coral Sea
margin (Figure 6). The first sediments are bounded by reactivated extensional faults in the Moresby Basin and
unconformably overlie basement rocks along a regional unconformity (BR;). Strata are usually poorly tilted
and subtlety thicken toward the East Pandora Ridge or progressively thin eastward to finally disappear in
the other basins. Internal seismic facies are similar to Formation I identified in the Kutubu Basin (Table 1),
so that deposition was likely controlled by the R; event. Similar strata may exist in other places but are traced
with less confidence, implying that the BR; Unconformity cannot be mapped accurately at a regional scale.

A much clearer rift setting, analyzed as the R, event, extends beyond the Triassic rifted basins with many normal
faults that are typically separated by 2-to-5km and along which tilting is important (Figure 6 and Table 1).
Internally, the rift-related Formation Il is composed of several onlapping units, each bounded by the BR,
Unconformity at the base and several other angular unconformities in the above. Although growth faulting
clearly occurs, it does not necessarily represent a common characteristic to all internal sediments, implying dif-
ferential thickening throughout. This likely implies timing variation between extension and sedimentation within
a progressively deepening, continental to marine environment. Thus, the distribution of Formation Il is unequal
between the various basins, and herein, we assign a Lower to Upper Jurassic age for most depocenters. Yet some
bounding faults may have been active until the lowermost Cretaceous, resulting in thin, localized deposits.

Other fault reactivation occurred along the most major Jurassic faults either without large rotation (e.g.,
Moresby Basin) or, most likely, along newly formed faults that clearly controlled the fault-blocks gradient
(Figure 6). The tilt, generally high in basins in prolongation of the continent-ocean transition, is used to dis-
criminate Early from Late Cretaceous rifted depocenters. Thus, Formation Il is generally contained into small-
rifted basins south of the study area. It corresponds to coarse to fine clastics that likely link to onshore Upper

BULOIS ET AL.
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Figure 7. Examples of seismic lines across the northern margin of the Coral Sea Basin. (a and b) Seismic line showing the overall shape of rifted basins east of the East
Pandora Ridge and the Eastern Plateau geometry. (c) Seismic line showing the overall shape of rifted basins in the vicinity of the Eastern and Papuan Plateaus. Seismic
lines location is displayed in Figure 2; noninterpreted seismic lines may be found in Figures S2-54.

Cretaceous rocks (Figure 4 and Table 1). All together, it implies a crosscutting rift setting, identified as R,
marked by a lesser density of faults.

Similar polyphased extensional settings are observed on deep lines across the region (Figure 7). The R event
appears absent in most of the eastern basins. Comparatively, the extension maximum occurs during the sec-
ond rifting phase (Ry) along major regional and counterregional, listric faults limiting crustal boudins.
Extension likely propagated in basins north of the Eastern Plateau during the Lower Cretaceous without
strong consequences on the tilting of sediments. Finally, subsequent Cretaceous faulting (Rs3) rejuvenated
locally some of the main bounding faults in the southwest of the Eastern Plateau, resulting in strong basin
tilt. In this polyphased extension, continental plateaus and ridges show coeval uplift episodes.

3.3. Structural Orientations Versus Time

The seismic interpretation enabled the construction of a structural map of the rift setting at the level of the
BR; unconformity (i.e., Lower to Middle Jurassic; Figure 8), to which the filtered Bouguer anomalies are super-
imposed in order to better constrain the general basin trends. Three main faults are distinguished according
to their orientations and ages. The first direction occurs along a N-S to N10 trend and corresponds to the
overall direction of the Pasca, Pandora and East Pandora ridges. It controls Triassic depocenters and is

BULOIS ET AL.
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Figure 8. Structural map of the rifted domain in the study area. Underlying bathymetric data are from Daniell (2008) and Beaman (2010). Gravimetric data are derived
from the used Bouguer anomaly database. Only main basins are named (names are derived from local ethnicities languages). Abbreviations: EPaR: East Pandora
Ridge, GKB: Grass Koiari Basin, HB: Humene Basin, HuB: Hula Basin, KB: Kutubu Basin, KeB: Keapara Basin, KoB: Koitabu Basin, KwB: Kwikila Basin, MaB: Mailu Basin, MB:
Motu Basin, MoB Moresby Basin, PaB: Pandora Basin, PaR: Pandora Ridge, PR: Pasca Ridge, and UB: Uare Basin.

therefore attributed to the R, rifting event. The second direction extends around N160 and corresponds to
the general orientation of the western Eastern and Aure fold belts. It formed during the R, rifting event
and was slightly reactivated during the Cretaceous. The third structural trend corresponds to a N100 to
N110 direction, which is the general orientation of the continent-ocean transition the Coral Sea. This R
faulting is much more prominent in the distal part of the margin.

Therefore, the overall geometry of the northern Coral Sea margin results from three groups of faults. These
express both the timing and the location of extension. In other words, three rifting episodes overlap in the
region and they all seem to have a specific expression resulting from the fault timing and orientation.

4. Synrift to Postrift Transition and Oceanic Spreading of the Coral Sea

Seismic interpretation has shown that the geometry of the three rifting events R, to Rs is different, namely in
terms of basinal rotation. This is likely to reflect the position along a margin and, in particular, to the
continent-ocean transition. The characterization of the synrift to postrift transition is never an easy matter
in polyphased rift basins, namely because extension is not necessarily followed by a clear breakup unconfor-
mity but rather by a set of unconformities and sometimes extensional faulting (Bulois, 2016). Herein, we use
detailed seismic lines to better identify the rifting event(s) responsible of the Coral Sea Basin sensu stricto,
within this overlapping rifting framework.

To do so, we have investigated the deep oceanic domain using seismic, gravimetric and magnetic data. In
particular, the easternmost seismic line of our database imaged the oceanic crust that is well dated from
IODP drillings and magnetic anomalies (Figure 9) (e.g., Gaina et al., 1999; Weissel & Watts, 1979). These
anomalies were used in turn to date sediments above and underneath the breakup unconformity. We also

BULOIS ET AL. POLYPHASED RIFTING AND REACTIVATION 13
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Figure 9. Seismic data showing the continent-ocean transition (COT) in the deep Coral Sea Basin. (a) General seismic line showing the two rift settings (Jurassic and
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and the Coral Sea oceanic crust characterized by a prominent reflector and downlaps of postrift sediments. Seismic line location is displayed in Figure 2.
Noninterpreted seismic line may be found in Figure S5.

have used academic magnetic data from the EMAG2 dataset (Maus et al., 2009) and anomaly picks supplied
by Gaina et al. (1999) to better detail the ocean-continent transition and the associated structural trends.
Free-air gravimetric anomalies from the DTU10 ocean wide gravity field (Andersen, 2010; Andersen et al.,
2009) have also been filtered to separate long and short waves and map more accurately the transform
faults in the oceanic domain.

4.1. Seismic Definition of Synrift and Postrift Packages in the Deep Coral Sea Basin

Figure 9 displays the geometry of rifted basins across the southern Papuan Peninsula to the oceanic crust and
enables to better define the breakup unconformity and, in turn, of synrift sediments. To do so, we have
derived the age of postrift sediments from the location of magnetic anomalies Chron26 and Chron25, both
of Thanetian age (~58.5 and 56.5 Myr, respectively) (Figure 9a), while anomaly Chron 24 (~53.4 Myr, Ypresian)
occurs much farther south. Therefore, the age of the postrift sediments is in between Thanetian and Ypresian.
This is in accordance with the first Cenozoic sediments (Eocene) recovered in Well Dibiri-1A (Figure 4).
Onlapping, continuous, medium- to strong-amplitude reflectors characterize pinching-out, fine-bedded clas-
tic sediment contained with strongly tilted fault-blocks (Figure 9a). Such a geometry implies that these rifted
sediments are therefore of Late Cretaceous age and represent the synrift setting responsible of the Coral Sea
opening. We therefore correlate them to Formation Ill. Internal seismic patterns (Table 1) imply a deepening
marine synrift deposition with sourced sediments derived from the nearby Papuan Plateau.

BULOIS ET AL.
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Figure 10. Magnetic and gravimetric data set in the deep Coral Sea Basin. (a) Magnetic data showing the differences in between the oceanic (smooth) and conti-
nental crusts in the deep Coral Sea Basin and the related position of the continent-ocean transition (COT, heavy dashed line). Magnetic anomalies are derived
from Gaina et al. (1999); they are particularly useful for mapping transform zones and ridge segments. Note the presence of the strong anomaly at the COT, which
correlates with the structural high displayed in Figure 9. (b) Filtered free air gravimetric data showing the signature of the continental and oceanic crusts in the study
area. (c) Magnetic profiles showing the correlation of magnetic anomalies and the three main elements in the deep Coral Sea Basin. The position of magnetic
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In this region, fault-blocks show growth along reactivated Jurassic counterregional faults (Figure 9b), which
are different (but not incompatible) with previously proposed basinward dipping faults in the region (Ott &
Mann, 2015). This geometry differs from the other poorly-tilted Cretaceous fault-blocks observed westward
(Figure 7). Therefore, we suspect two different rift systems that spatially overlap in this region.

4.2, Events Associated With the Synrift to Postrift Transition in the Deep Coral Sea Basin

The transition of synrift Late Cretaceous sediments with overlying Palaeocene to Oligocene sediments
(breakup unconformity) is dated at 61.8 Myr from magnetic anomalies (Figure 10). Nonetheless, it is possi-
ble that the first postrift sequences deposited late after the first seafloor spreading event. Additional
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localized normal faults within these postbreakup packages seem also associated with unconformities
or disconformities.

The top of the thickening sequences is characterized by a strong amplitude reflector that can be mapped
landward from a series of more or less well-pronounced onlapping reflectors and is correlatable to the
Eocene-Miocene unconformity observed in Well Dibiri 1A (Figure 4). It appears therefore likely that the first
postrift sediments (i.e., post-Ypresian) corresponds to a transitional stage and that the “true” postrift succes-
sion actually occurred from the Miocene onward.

The age of this unconformity confirms the analysis of Ott and Mann (2015) who considered a first postrift sub-
sidence setting during the Eocene, followed by a second deepening phase during the Oligocene to early
Miocene. Burns et al. (1973) also proposed a clear postrift deepening of the Coral Sea during the early
Middle Miocene, based on ODP 210 cores that tested deep-sea clays overlying unconformably fine-grained
silicastics and shales. Their set of unconformities implies that postrift deepening was not continuous. This
may be due to sea level fluctuations or fault reactivation during the transitional setting, possibly associated
with plate reorganization.

4.3. Delimitation and Trends of the Oceanic Crust

Magnetic data from the EMAG2 mosaic show a strong character contrast between the oceanic crust (smooth
and regular) and continental plateaus (rough) (Figure 10a). The boundary between both crustal domains is
marked by two strong anomalies of more or less symmetrical but anticorrelative values. Correlation with seis-
mic lines (Figure 9) shows that the northern anomaly corresponds to a structural high composed of basement
rocks at the shoulder of the Upper Cretaceous rift system. Thus, both anomalies delineate the Papuan and
Queensland plateaus of continental nature. The continent-ocean transition is also confirmed by gravity data
from roughness variations (Figure 10b).

In the oceanic domain, magnetic data show a N110 fabric that runs parallel to the oceanic ridge system. It
is offset by a series of structures which the direction markedly varies from N45 to the east (anomalies 27 to
25) to a N10 orientation to the west (absence of anomaly 27) (Figure 10a). Such a variation is more poorly
constrained on gravity data (Figure 10b). This variation may correspond to a change in the spreading
propagation around the Ypresian (anomaly 24) controlled by the onset of the regional compression
(Bulois, 2016).

The accurate mapping of the continent-ocean transition enables to show that the strongest fault-block rota-
tion is located along an area of about 100 km wide and 250 km long. This follows the strong anomaly marking
the zone of hyperstretched continental crust that led to the Coral Sea Basin seafloor spreading (Figure 8). In
that context, the Papuan Plateau somehow acts as a buttress for the propagation of the Coral Sea toward
the north.

5. Discussion
5.1. Integration of the Coral Sea Rift Megasequences With Regional Geology

Our seismic analysis has shown three distinct extensional phases in the Coral Sea region. They are all respon-
sible of specific regional rift-related megasequences deposition (referenced as Formation | to Formation Il).
However, their significance may differ from previous regional interpretations. For instance, Ott and Mann
(2015) did not analyze Jurassic sediments in the study area and synrift sediments were only related to the
Late Cretaceous-Palaeocene extensional event of the Coral Sea. In contrast, Swift (2012) underestimated
postrift sedimentary thickness, resulting in thick synrift sequences deposited in overlapping poorly dated rift
basins. These geometry and age differences most likely result from the data coverage and resolution; also, we
correlate herein offshore and onshore stratigraphic information to better delimitate the spatial extent of
these three identified extensional settings R;, Ry, and R3 at the scale of the northern Australian margin
(Figure 11).

The Triassic rift setting Ry is limited eastward to the Gulf of Papua in the Coral Sea (Formation I, Figure 11).
Unconformities (BR; in the Kutubu Basin) and correlative disconformities in other places (Figure 5) bound var-
ious correlatable clastic sequences (e.g., Jimi Formation in the Aure Fold Belt, Bain et al.,, 1975; Home et al,,
1990, Tipuma Formation in the Lengguru and Central Papuan fold and thrust belts, Fraser et al.,, 1993;
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margin rifting is similar on the NW Shelf and Papuan New Guinea from the Late Permian to the Cretaceous and one can assume that there was a connexion between
the basins nowadays jammed in the Papuan fold and thrust belts. Stratigraphic information are summarized from many sources among which (1) Geoscience
Australia (2011) and Ahmad and Munson (2013a, 2013b) for the Bonaparte and Arafura regions; (2) Bailly (2009), Bailly et al. (2009), and Cloos et al. (2005) for the
Lengurru and central Papuan region; (3) Home et al. (1990), Hill and Hall (2002), Jablonski et al. (2006), and Craig and Warvakai (2009) for the Aure Fold Belt and the
Papuan Basin; (4) Dow et al. (1986), Struckmeyer (1990), Jablonski et al. (2006), Hill and Hall (2002), Corbet (2005), De Smet et al. (1998), and Sheppard and Cranfield
(2012) for the Northern Papuan Peninsula and Coral Sea Basin; and (5) Symonds et al. (1984, 1996) and Struckmeyer et al. (1994) for the Queensland Trough.
Abbreviations: AB: Arafura Basin, BB: Bonaparte Basin, CPFTB: Central Papuan fold and thrust belt, CSB: Coral Sea Basin, LFTB: Lengurru fold and thrust belt, NPP:
Northern Papuan Peninsula, QT: Queensland Trough, and WPB: Western Papuan Basin.

Gunawan et al, 2012, Cape Londondery Formation and Malita Formation along the NW Shelf, Ahmad &
Munson, 2013a, 2013b). These are grouped into a regional synrift megasequence, called Megasequence
EM;, which the definition is broadly equivalent to the Gondwana Synrift Megasequence A of Home et al.
(1990) or the Tipuma Formation of Visser and Hermes (1962) and Pieters et al. (1983). Megasequence EM; wit-
nesses of an early stage of graben formation throughout the region.

Subsequent rifting episode R, affected the entire northern Australian margin during the Jurassic and con-
trolled the deposition of Megasequence EM, (Figure 11). The rifting onset is characterized by a regional basal
unconformity (BR,). It is situated at similar stratigraphic level of surfaces in Australia that were previously
interpreted as the result of the Bowen-Fitzroy Orogeny in Australia (Jablonski & Saitta, 2004; Norwick,
2003) or of significant coeval volcanism (Pieters et al., 1983; Pigram & Panggabean, 1984). However, evi-
dence of Triassic compression and volcanics are unclear in the Papuan region and extension may actually
correspond to a backarc system. Subsequent sediments deposited in rifted basins observed all over the mar-
gin despite Cenozoic compression. For instance, the Plover Formation deposited from the earliest Lower
Jurassic along the North West Shelf (Gunn, 1988; Pattillo & Nicholls, 1990; O'Brien et al., 1993; Baillie et al.,
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1994; Struckmeyer et al., 1998; Tovaglieri & George, 2014) and extends in West Papua into the squeezed
Lower to Middle Jurassic basins containing the Lower Kopai, Bol Arkose and Magobu coarse clastic
formations (Bailly et al., 2009; Bain et al., 1975; Pigram et al., 1982). These are correlatable to Formation Il
in the Coral Sea Basin, and we interpret them farther east with the lowermost part of the marine protolith
of the Owen Stanley Metamorphics (individualized herein as the Lower Owen Stanley Formation and now
thrusted under the Jurassic Papuan Ultramafics, Glaessner, 1949; Pieters, 1978; Davies, 1980; Davies &
Jaques, 1984). Consequently, the Papuan Ultramafics and the subsequent Middle Owen Stanley
Metamorphics mark the onset of regional postrift conditions in the study area. These are characterized
anywhere else by thick mudstone deposits (e.g., Imburu, Barikewa, Flamingo, Frigate) and localized
sandstone intervals (e.g., Koi-lange, Hedinia-lagifu, Elang) (Figure 11). Corresponding Megasequence EMj is
therefore broadly equivalent to the Gondwana Synrift Megasequence B of Home et al. (1990).

The final rifting event R, restricted to the eastern part of the study area, controlled the deposition of a third
megasequence (Megasequence EMs) on top of an erosional surface (BRs) (Figure 11). It is marked at the base
by typical lowermost Cretaceous sandstones and mudstones, known onshore as the Woniwogi-Piniya and the
Toro-leru intervals (Granath & Hermeston, 1993; Hirst & Price, 1996; Pieters et al., 1983; Pigram et al., 1982).
These are stratigraphically correlative to Formation Ill in the Coral Sea Basin (indirectly dated from magnetic
picks, Figure 8) and to the Upper Owen Stanley Formation (dated as Middle to Upper Cretaceousby Glaessner,
1949). Coeval rifted sediments are also reported in the Queensland and Townville basins (e.g., Struckmeyer
et al,, 1994; Symonds & Davies, 1988; Symonds et al., 1984). Megasequence EMj3 is broadly similar to the
Coral Sea Syn-Rift Megasequence of Home et al. (1990), although lateral extent and dating differ in between
the two interpretations.

It therefore appears that there is a vertical stack of extensional megacycles marked by characteristic exten-
sional megasequences (EM; to EM3) of specific temporal and geographical definitions (Figure 11). Each
extensional megasequence is typically composed of synrift fining-upward rifted clastics bounded by uncon-
formities (“R” nomenclature) and terminate by deep marine, postrift facies that are sometimes associated
with seafloor spreading (“P” nomenclature). Unconformities may switch from postrift to synrift natures in
such a context of overlapping extension, implying a strong control on strata preservation throughout.

5.2. Extension and Fault Reactivation in the Coral Sea Region

The overtime repetition of the three extensional megacycles, Ry, R, and Rs, implies fault reactivation within
the basement or from previously formed rift systems. Herein, we propose a simple stretching model of the
northern Australian margin in which preexisting continental structures have a decreasing influence
through time.

5.2.1. Old Structural Trends and Early Development of Rift Basins (Triassic)

According to our seismic interpretation, Triassic sediments are most likely confined to poorly tilted graben
systems containing coarse clastics. These basins mark the eastern boundary of an early rift system that pro-
pagated through the NW Shelf and West Papua and stopped in eastern Papua New Guinea along the align-
ment composed of the Kubor Anticline to the north and the Pasca-Pandora-East Pandora to the south
(Figure 12). In the study area, the rifted system formed alongside NS trending Permian granites (e.g., Coen
and Georgetown inliers, Peninsula-Daru Ridge) and older terranes belonging to the New England Belt (e.g.,
Glen, 2005; Norwick, 2003).

This easternmost border roughly aligns along the NS trending Tasman Line that controlled the polyphased
tectonics of the Tasmanides Orogen across Australia since the Neoproterozoic (Direen & Crawford, 2003;
Powell, 1996; Schreibner, 1974). The prolongation of the New England Orogen from the Queensland
Peninsula to Papua is enigmatic as much of deep geophysical data do not enable to trustfully image related
structure underneath the overprinted Papuan fold and thrust belts (Hill & Hall, 2002). Herein, we propose that
the structure may extend in the Gulf of Papua through the Palaeozoic ridges (i.e., Pasca, Pandora and East
Pandora). Another alternative is a series of NNE-SSW transform faults that controlled the rift axis and among
which the Bosavi Lineament is probably the most characteristic feature (Figure 12) (e.g., Davies, 1990, 1991;
Smith, 1990; Hill et al., 2004, 2010; White et al., 2014). These are associated with characteristic Neogene, ada-
kitic volcanoes and older mantle-derived intrusives. Therefore, these crustal structures are likely to mark a
change in the strength of the lithosphere behavior, inferring a strong basement influence to the west (i.e.,
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stable Precambrian craton of Australia) which tends to decrease eastward with the presence of Palaeozoic
metasediments intruded by Early to Middle Triassic granites (e.g., Crowhurst et al, 1996; Page, 1976;
Rogerson, Hilyard, Francis, et al., 1987; van Wyck & Williams, 2002).

In our model, the small lineaments (e.g., Bosavi) characterizes transfer zones ahead of the Australian craton,
while the ridges system represents a limit of unrifted terranes in prolongation of the Tasman Line. The Triassic
extensional megacycle R; was therefore controlled by basement structures (Figure 13a). However, it is still
remains unclear whether extension initiated from an orogenic collapse or from global tectonic forces
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pulling the Australian and Gondwana continental masses apart. Yet the presence of conglomerates and very
coarse clastics (Figure 4) suggests the development of molassic basins at the time.

5.2.2. Full Basin Development During Overprinted Extension (Jurassic-Lower Cretaceous)

The Lower to Middle Jurassic rift system R,, recognized over much of the northern Australian margin
(Figure 11), has controlled highly subsiding grabens by reactivating Triassic faults west of the Pasca-
Pandora ridges and forming new basins in the Coral Sea (Figures 5 and 7). It resulted in crustal boudins
along what we interpret as the southern margin of an oceanic basin now overthrusted in the Papuan fold
and thrust belts (Figure 12). The so-called Owen Stanley Oceanic Basin contained distal marine sediments
(Lower and Middle Owen Stanley Metamorphics) associated with the ophiolite of the Papuan Ultramafic
Formation (Figure 11). This hypothesis is consistent with dating realized on the gabbroic zone and basalts
of the ophiolite (respectively, 147-150 Ma and 116 Ma) (Lus et al., 2004). The age of sediments, although
more debatable due to Cenozoic barrovian metamorphism (Dow et al., 1988; Pieters, 1978), is necessarily
slightly older than the ophiolite emplacement dated at 66-56 Ma from granulites hornblendes at the sole
(Lus et al., 2004). Various other authors proposed a Lower to Middle Cretaceous age for the Owen Stanley
units protolith and for the Papuan Ultramafics before emplacement (Webb et al., 2014; Zirakparvar et al,,
2012), which is consistent with our hypothesis. In our model, this implies that the Jurassic rifted strata and
their overlying Cretaceous sediments deposited into the Owen Stanley Oceanic Basin rather than the
Coral Sea, so that much of the Coral Sea actually remains intact from subsequent Cenozoic compression.

The presence of a large basin north of the Coral Sea has been earlier proposed by several authors but the geo-
metries and extensional propagation are variable. Hamilton (1979) assumed a Middle Jurassic seafloor
spreading along the entire margin, resulting in a large oceanic basin linking all Papuan ophiolites together.
In contrast, Pigram and Panggabean (1981, 1984) and Pigram and Symonds (1991) suggested diachronous
seafloor spreading with southwestward propagation from the Early Jurassic and a final breakup between
Australia and Gondwana at Bajocian times. Other studies proposed the presence of a separated, aborted con-
tinental rift (e.g., Carman, 1990; Home et al., 1990; Boult, 1997; Swift, 2012). Our model considers that the
Owen Stanley Oceanic Basin actually correlates with several other suprasubduction ophiolites and their
related sedimentary covers (e.g., Marum Ophiolite and April Ultramafics) (Davies & Hutchison, 1982; Davies
& Jaques, 1984; Jaques, 1981). This is confirmed by geochemical analysis showing a similar suprasubduction
context for most Papuan ophiolites (e.g., Monnier et al., 2000; Pubellier et al., 2004; Worthing & Crawford,
1996). Although some ages may appear controversial due to Cenozoic tectonism (e.g., Hill & Raza, 1999;
Jaques & Robinson, 1977; Jaques et al., 1978; Page, 1976), Francois et al. (2016) showed that the dating
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bias corresponds to the ophiolites emplacement rather than a particularly long-lasting spreading. Herein, we
propose a southward dipping subduction zone north of Papua (Figure 12), which may connect southwest-
ward to the New Caledonian ophiolites (e.g., Cluzel et al, 2001; Matthews et al., 2012; Whattam et al.,
2008). To the west (i.e., from the Bird’'s Head to the NW Shelf), rifting also took place from the Late Permian
to the Cretaceous but does not seem to be directly related to a backarc extension (Bradshaw et al., 1994;
Norwick, 2003). Yet the extension could possibly be a response to a northwest subduction beneath the
Sunda Plate (subduction of the Ceno-Tethys) (Metcalfe, 1998).

Thus, the extensional megacycle R, marks a further stage in the breakup of Pangaea intimately linked to a
backarc setting along the northern Papua margin. The resulting opening of the Owen Stanley Oceanic
Basin was facilitated by an already thinned Triassic margin, implying an “in-sequence” Jurassic extension
(Figure 13b). Thus, the present-day northern margin of the Coral Sea Basin corresponds to the southern mar-
gin of the Owen Stanley Oceanic Basin, so that the various Papuan ophiolites formed ahead of the Coral Sea.
5.2.3. Crosscutting Opening of the Coral Sea Basin

The final rifting stage R; (Late Cretaceous) formed narrow (>100 km) fault-blocks containing Extensional
Megasequence EM;3 (Figures 11 and 12). These basins are part of a crosscutting extensional system, younger
than the northern Owen Stanley Oceanic Basin, resulting in the Coral Sea seafloor spreading during the
Danian-Ypressian period (Chron27 to Chron24) (Figure 10).

In our model, we relate the opening of the Coral Sea to the opening of the Tasman Sea between Chron33 and
Chron24 (80 and 52 Myr, respectively) (Hayes & Ringis, 1973). The tectonic history of the Tasman Sea cannot
be simply described as a rift propagator that cut through the Australian craton but rather as several blocks or
microplates stretched apart (e.g., Weissel & Hayes, 1977; Stock & Molnar, 1982) accordingly to the southwest
Pacific subduction history (e.g., Collot et al., 2009; Gaina et al., 1998; Seton, Flament et al., 2012; Seton, Miiller,
et al., 2012). We consider that the transition between both oceanic domains is controlled by a NE-SW trans-
form system (Figure 12), visible on gravity data through the Marion and Kenn-Mellish plateaus and which
rotated orthogonally the Tasman Sea hyperextension into the already-thinned Coral Sea region. Such
assumption broadly confirms the description of a triple junction between the Queensland and Louisiade
Plateaus and the Mellish Rise (Gaina et al, 1999) and also explains the apparent rejuvenation of the
Eastern and Papuan Plateaus north of the Coral Sea (Figure 7).

This model also applies an important role to a series of transverse preexisting structures west of the Coral Sea
Basin (e.g., Tasman Line and Pasca-Pandora-East Pandora ridges) that progressively attenuated the extension
(Figure 12). This partially confirms Weissel & Watts, 1979 in which the Coral Sea spreading stopped along a
sinistral strike-slip system from Chron 26 (58.5 Myr) and did not propagate westward along the Cretaceous
rift system. This interruption may be due to a regional change of the plate tectonic setting.

Therefore, this late extensional megacycle cut through prior extensional settings (Figure 13b). This out-of-
sequence scenario is consistent with the global transform faults orientation and the regional plate dynamics
models which show a continuation of the Coral Sea with the Tasman Sea (e.g., Gaina et al., 1998, 2004;
Matthews et al,, 2012; Seton, Flament, et al., 2012; Weissel & Watts, 1979). Also, the orthogonal pattern
between both oceanic domains may be due a dynamic change of the Pacific subduction eastward. At a regio-
nal scale, the Coral Sea should be therefore regarded as a propagator in prolongation of the Tasman Sea
rather than an oceanic domain that has partially subducted.

6. Conclusion

The opening of the Coral Sea region shows three discontinuous extensional megacycles which controlled the
deposition of specific megasequences separated by unconformities of local or regional extents. Each exten-
sional megacycle is defined spatially and temporarily such as:

1. Extensional megacycle R, (Triassic), developed on the northern edge of the New England Orogen by reac-
tivating old structural trends related to the Tasman Line (Figure 13a). Evidence of Triassic sediments is
restricted to the west of the study area (ridges) and extends onshore in continuation of the synrift setting
along the NW Shelf. Herein, we propose that old orogenic structures locate the propagation of the
extension.

2. Extensional megacycle R, (Jurassic to Lower Cretaceous) marks the continuation of a wide rift setting
along the northern Australian margin (Figure 13b). It first formed on top of the Triassic rifted basins and

BULOIS ET AL.

POLYPHASED RIFTING AND REACTIVATION 21



@ AG U Tectonics

10.1002/2017TC004783

Acknowledgments

The study was funded by Ecole Normale
Supérieure (Paris, France) through a
research contract with Total S.A,, La
Défense (Paris). Permission to publish
seismic lines has been kindly provided
courtesy of Searcher Seismic. High-
resolution bathymetric data displayed
on Figure 8 have been accessed thanks
to Robin J. Beaman from James Cook
University and raw magnetic picks data
in Figure 10 from Carmen Gaina from
University of Oslo. We also would like to
thank Professor Paul Mann and an
anonymous reviewer for their construc-
tive comments over the submission.
Two authors, Manuel Pubellier and
Nicolas Chamot-Rooke, belong to
Centre National de la Recherche
Scientifique, France.

then extended in a number of newly formed basins that are likely to connect to Jurassic-Lower
Cretaceous; marine sediments and ophiolites now shorten in the Papuan fold and thrust belts system
to form the so-called Owen Stanley Oceanic Basin. This oceanic domain is thought to connect with other
Papuan ophiolites westward, which evolved in a suprasubduction domain.

3. Extensional megacycle R; (Upper Cretaceous to lowermost Eocene) is restricted to the northern margin of
the deep Coral Sea and formed EW trending, 100 km narrow-rifted basins that bound the oceanic crust
(Figure 13c). It had a minor impact on preexisting rifted basins (Triassic and Jurassic-Lower Cretaceous),
suggesting a crosscutting extensional system with different boundary forces. Herein, we show that the
Coral Sea Basin is the northward continuation of the Tasman Sea and that the oceanic spreading was con-
trolled by the presence of major crustal discontinuities such as the Tasman Line to the west or transform
fault systems along the southeastern margin of the Coral Sea Basin.

This spatial overlap implies to consider the reactivation of preexisting features that relate to the regional var-
iations in the geodynamical settings and, as a result, to a succession of boundary forces that may evolve with
time (Figure 13). The early extension phase R;, guided by cratonic heterogeneities (basement highs), was, in
turn, reactivated during the second rifting phase R, to control the crustal boudinage oceanward (i.e., in-
sequence deformation). The late rift setting R; penetrated the previous rifted areas and stopped along trans-
versal discontinuities (i.e., out-of-sequence deformation). Such an evolution suggests a progressive decrease
of the continental crust influences that may illustrate the polyphased denudation processes of an old stable
continental mass. These highlight the changing regional geodynamical framework through Geological Times
with continental rifting sensu stricto (i.e.,, Gondwana breakup) and backarc extension (i.e., Pacific subduction).
Because the extension of the margin is driven by the boundary forces imposed the Pacific subduction, one
may consider that these specific extensional periods relate in turn directly to the variation of the dynamics
of the subduction.
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