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On the Consequences of the “No Free Lunch” Theorem

for Optimization on the Choice of MDO Architecture

Charlie Vanaret and François Gallard

Institut de Recherche Technologique Saint Exupéry, Toulouse, France

Joaquim R. R. A. Martins

Department of Aerospace Engineering, University of Michigan Ann Arbor, Michigan, USA

Multidisciplinary Design Optimization (MDO) based on high-fidelity models is chal-
lenging due to the high computational cost of evaluating the objective and constraints.
To choose the best MDO architecture, a trial-and-error approach is not possible due to
the high cost of the overall optimization and the complexity of each implementation. We
propose to address this issue by developing a generic methodology that applies to any (po-
tentially expensive) design optimization problem. The methodology consists in generating
a scalable analytic replacement function that can be quickly computed, yet captures the
structure and behavior of the original high-fidelity problem. One crucial characteristic of
this replacement model is that the number of inputs and outputs can be set independently,
making the problem scalable. This facilitates the evaluation of MDO architectures for the
original MDO problem. The methodology is applied to two academic MDO test cases: a
supersonic business jet design problem and a propane combustion problem. Well-known ar-
chitectures (Multidisciplinary Feasible (MDF) and Individual Disciplinary Feasible (IDF))
are benchmarked on various instances to demonstrate the dependency between the per-
formance of the architecture and the dimensions of the problem. The results show that
the “no free lunch” theorem of optimization, which states that no particular optimization
algorithm holds an advantage over another when considering all possible problems, also ap-
plies to the choice of the best suited MDO architecture for an MDO problem with scalable
dimensions.

Nomenclature

N Number of disciplines
xi Local design variables of discipline i
x0 Shared (global) design variables
y = (y1, . . . , yN ) Coupling variables
yt = (yt1, . . . , y

t
N ) IDF target coupling variables

yj 6=i Coupling variables computed by all disciplines but the ith
yi(xi, x0, yj 6=i) Disciplinary analysis of discipline i
f Objective function
g Physical inequality constraints
[x, x] Bounds on a variable x
φi i-th component of a vector-valued function φ
∂φ
∂x

Partial derivative of a function φ with respect to a variable x
dφ
dx

Total derivative of a function φ with respect to a variable x
nx Common dimension for all inputs of a scalable problem
ny Common dimension for all outputs of a scalable problem
Nx Total input dimension of a scalable problem
Ny Total output dimension of a scalable problem
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1. Introduction

1.1. Motivation

MDO is the application of numerical optimization to the design of systems dependent on multiple disciplines.
The multiple disciplines arise in a system that is intrinsically governed by multi-physics models, consists of
multiple components, or both. MDO strives to account for the multiple disciplines at two distinct levels:
the analysis level and the design level. At the analysis level, we need to ensure that all the interdisciplinary
couplings are considered in a system analysis. At the design level, we need to make sure that the optimization
problem is formulated such that there is enough information to perform optimal multidisciplinary design
tradeoffs. Coupling variables capture the interactions between the various disciplines ; a given discipline has
a subset of these coupling variables as inputs, and another subset as outputs. The sole coupled analysis
however is not sufficient to achieve tradeoffs. First, the objective function must reflect the performance
that we want to maximize, and the appropriate contributions to the objective from each discipline are
correctly accounted for. Second, the design variables must include the variables that drive the design from
each discipline. Design variables that directly affect at least two disciplines are called global variables, while
design variables that directly affect only one discipline are local to that discipline. Finally, various constraints
are required to obtain meaningful designs. Constraints can also be local or global, depending on whether
they depend directly on variables from one or more disciplines, respectively.

The general Simultaneous Analysis and Design (SAND) optimization problem1 is:

min
x,y

f(x, y)

subject to g(x, y) ≤ 0 (1)

Ri(xi, x0, y) = 0, ∀i ∈ {1, . . . , N}

where N is the number of disciplines, f is the objective function, g are design constraints, xi are the local
design variables of discipline i, x0 are global (shared) design variables, x denotes (x0, x1, . . . , xN ), y are cou-
pling variables, Ri(xi, x0, y) := yi(xi, x0, yj 6=i)− yi denotes the i-th disciplinary residual and yi(xi, x0, yj 6=i)
are disciplinary analyses in explicit form. For the sake of simplicity, equality constraints are rewritten as two
inequalities constraints, and state variables (outputs of the disciplines) have not been written explicitly, since
they can be considered as extensions of the coupling variables. In addition, a discipline that is formulated
using residuals (Ri(xi, x0, y) = 0) can be equivalently expressed in explicit form (y = y(xi, x0)), thanks to
the implicit function theorem. In the following, we formulate the disciplines in explicit form; however, the
present methodology could also be applied to disciplines in residual form.

MDO architectures reformulate the original SAND problem by generating one or multiple MDO opti-
mization problems, whose definitions may include multiple coupled simulations and additional constraints.
MDO architectures aim at lowering the overall computational cost of the optimization, enabling the use of
dedicated algorithms to the discipline subproblems, or both. Since all MDO architectures are derived from
the original SAND problem, they should provide identical solutions.

For instance, architectures based on a Multidisciplinary Analysis (MDA), such as MDF2 or Bilevel Inte-
grated System Synthesis (BLISS),3 solve the coupled simulation at each optimization iteration, while others,
such as IDF,2 decouple the analyses and thus only guarantee the consistency between the simulations at the
convergence of the optimization.

When using high-fidelity models, the most efficient architecture is the one that requires the fewest dis-
ciplinary evaluations, since the high-fidelity model evaluations dominate the computational cost. The most
efficient architecture for a particular MDO problem is not known a priori. Furthermore, an architecture
that proves efficient for a particular problem may exhibit mediocre performance for a problem with differ-
ent properties. This phenomenon was described in the context of optimization algorithms by Wolpert and
Macready.4 They proved that on all possible optimization problems, all optimization algorithms perform
the same on average. The choice of an appropriate optimization algorithm is thus instance-dependent. This
is a well known issue in applied optimization: the choice of the best algorithm depends on the application,
making the development of optimization algorithm an active subject of research.

Since different MDO architectures generate different optimization problems for a given SAND problem,
one can expect that the same optimization algorithm will have a different performance on these problems.
Therefore, the performances of MDO architectures cannot be measured independently from the performances
of optimization algorithms. This makes MDO architectures subject to the “no free lunch theorem”.



An analytical scalable problem was introduced by Martins and Tedford5,6 to highlight the influence of
the problem dimensionality on the performance of architectures. This analytical problem has a quadratic
objective function and linear inequality constraints, and the governing equations consist of a linear system.
The user may tune the number of disciplines, the number of output coupling variables associated with each
discipline, the number of local design variables associated with each discipline, the number of global design
variables, and the strength of coupling between the disciplines. Figure 1 compares the performance of MDO
architectures on various dimensions of the local design variables and the coupling variables. This scalable
problem provides an insight into the performance of MDO architectures with respect to the number of design
variables or coupling variables. However, the study is limited to a simple analytical problem with a fixed
structure, and is not inspired from a physical problem.

(a) Effect of the number of local design variables (b) Effect of the number of coupling variables

Figure 1: Analytic scalable problem5

In the context of high-fidelity MDO based on computational fluid dynamics (CFD) and computational
structural mechanics (CSM), the disciplinary simulations typically run for a duration of several minutes to
hours. An MDO problem may require hundreds of simulations, which could ultimately add up to several
weeks for an optimization. A trial-and-error approach is therefore not suitable to find the best MDO
architecture, or optimization algorithm, for a high-fidelity MDO problem.

Furthermore, the numerical simulations in CFD or CSM typically involve meshes with variable dis-
cretizations, depending on the desired refinement of the models. These models, when coupled, have various
dimensions for the coupling variables (typically, the loads and displacement vectors in aeroelastic problems
are computed from the simulation meshes). The geometry description may also vary from a study to another,
impacting the number of design variables, as well as the constraints (for instance, stress limits depend on
the number of structural elements in CSM models). This paper illustrates how the numbers of design and
coupling variables impact the resolution of optimization problems generated by MDO.

The appropriate architecture is crucial for a particular high-fidelity based design optimization. We believe
that generating a scalable analytic replacement of the physical problem that is easily computed is a step
toward a better grasp of MDO architectures. Thus, we propose a methodology that transforms an expensive
physical model into a model based on analytical replacements that is cheap to evaluate. The original problem
is then replaced by the cheap problem, in order to benchmark MDO architectures.

The replacement function is not to be confused with a surrogate model, since it is not meant to provide
an actual approximation of the original model. Instead, the replacement function is just meant to mimic
the trends of the original problem. The replacement problem should therefore preserve the mathematical
structure of the original one. Additionally, the replacement model is scalable, that is, the dimensions of
the design variables and the coupling variables may be varied independently, which allows performance
comparisons of the architectures with respect to the dimensions. The generated problems illustrate the
variations in performance of the architectures and algorithms, showing that there is “no free lunch” for
MDO architectures.



The proposed methodology, presented in Section 2, first builds an interpolated model for each discipline
of the original problem with a limited number of evaluations, then extrapolates the interpolated model to an
arbitrary dimension. Our methodology preserves the interface of the original problem, that is, the names of
the inputs (design variables) and the outputs (coupling and state variables). Any high-fidelity discipline of
the original problem may therefore be replaced by a cheap scalable component generated by our methodology.
The interpolated models are not meant to be surrogate models, in that they do no accurately approximate
the values of the original functions, they merely emulate the same mathematical structure and properties.

In Section 3, we demonstrate mathematical properties guaranteed by the methodology: the existence of
solutions to the coupling problem and to the MDO problem, and the existence of bounds on the coupling
variables. This last property is particularly important for IDF. Finally, in Section 4 we apply the methodology
to two well-known benchmark problems in the MDO literature: the Supersonic Business Jet (SSBJ) problem
of Sobieski et al.,3 and the propane combustion problem.6,7

1.2. MDO architectures

MDO architectures reformulate the original SAND problem into one or multiple optimization problems, and
possibly coupling problems.

1.2.1. MDF

MDF is an architecture that guarantees an equilibrium between all disciplines at each iterate x of the
optimization process. Consequently, should the optimization process be interrupted, the best known solution
has a physical meaning. MDF generates the smallest possible optimization problem, in which the coupling
variables and the state variables are removed from the set of optimization variables. The residuals, which
are associated with the state variables, are removed from the set of constraints. MDF can be stated as:

min
x

f(x, y(x))

subject to g(x, y(x)) ≤ 0
(2)

The coupling variables y(x) are computed at equilibrium via an MDA. This amounts to solving a system
of (possibly nonlinear) equations using fixed-point methods (Gauss–Seidel, Jacobi) or root-finding methods
(Newton–Raphson, quasi-Newton). A prerequisite for invoking MDF is the existence of an equilibrium for
any values of the design variables x encountered during the optimization process. The MDF workflow is
shown in Figure 2.

Gradient-based optimization algorithms require the computation of the total (coupled) derivatives dφ
dx

of
φ(x, y(x)), where φ ∈ {f, g}:

dφ

dx
=
∂φ

∂x
+
∂φ

∂y

dy

dx
(3)

Linearizing the MDA at equilibrium, we obtain

dR

dx
= 0 =

∂R

∂x
+
∂R

∂y

dy

dx
. (4)

Inserting the solution for dy/dx into Equation (3) leads to the expression of the total derivatives:

dφ

dx
=
∂φ

∂x
−

︸ ︷︷ ︸

−ψT
φ

∂φ

∂y

− dy

dx
︷ ︸︸ ︷
[
∂R

∂y

]−1
∂R

∂x
. (5)

The product of the three matrices in this equation can be obtained in two ways. Using the direct method,
the term dy/dx is obtained by solving the linear system:

∂R

∂y

dy

dx
= −∂R

∂x
, (6)



which is independent of the function φ and must be solved for every design variable in the vector x. The
total derivative is then given by Equation (3).

The adjoint method consists in solving Equation (5) for the adjoint vector ψTφ , obtained by solving the
linear system:

∂R

∂y

T

ψφ = −∂φ
∂y

T

, (7)

which is independent of the design variables x and must be solved for each function φ. The total derivative
is then given by:

dφ

dx
=
∂φ

∂x
+ ψTφ

∂R

∂x
. (8)

Given the equations above, it is more efficient to compute coupled derivatives using the adjoint method
when the number of variables is larger than the number of functions. Conversely, the direct method is more
efficient when the number of functions is larger than the number of variables.

x(0)

MDA
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Figure 2: MDF

1.2.2. IDF

IDF handles the disciplines in a decoupled fashion: all disciplinary analyses are performed independently
and possibly in parallel. The coupling variables yt (called targets) are driven by the optimization algorithm
and are inputs for all disciplinary analyses yi(xi, x0, yj

t
6=i),∀i ∈ {1, . . . , N}. By comparison, MDF handles

the disciplines in a coupled manner: the inputs of the disciplines are outputs of the other disciplines. IDF
can be stated as:



min
x,yt

f(x, yt)

subject to g(x, yt) ≤ 0

yi(xi, x0, y
t
j 6=i)− yti = 0, ∀i ∈ {1, . . . , N}

(9)

Additional consistency constraints yi(xi, x0, y
t
j 6=i) − yti = 0, ∀i ∈ {1, . . . , N} ensure that the coupling

variables computed by the disciplinary analyses coincide with the corresponding inputs yt of the other
disciplines. This guarantees an equilibrium between all disciplines at convergence. The IDF workflow is
shown in Figure 3.

x(0), yt
(0)

objective and
constraints

analysis 1
y1(x1, x0, y

t
j 6=1)

. . .

analysis N
yN (xN , x0, y

t
j 6=N )

consistency
constraints

min
x,yt

f(x, yt)

s.t. g(x, yt) ≤ 0

ci : yi(xi, x0, y
t
j 6=i)− yti = 0, ∀i

y(x, yt)

f, df
dx
, df
dyt

g, dg
dx
, dg
dyt

ci,
dci
dx
, dci
dyt
, ∀i

x, yt

Figure 3: IDF

2. Scalable analytic replacement function

The proposed approach consists in automatically developing a cheap scalable analytic replacement of
an expensive physical model. The function is meant to capture the trends of the original physical model
(monotonicity, convexity) and preserves the interface as well (number and names of inputs and outputs), as
shown in Figure 4. It is not meant to approximate the actual values of the original model.

Table 1 details the sequence of operations that transform the original model (a coupling or a constraint)

φ : Rn → R
m into the scalable analytic function. The second and third columns represent the functional

notation of the function before and after the transformation, respectively. The evaluation cost of the resulting
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Figure 4: Example of disciplinary interface

function is listed in the fourth column. In the following sections, we detail each of these operations. nx
denotes the size of each design vector (such as x0 in Figure 4), ny denotes the size of each coupling vector
(such as y12) and Nx represents the total size of the design space.

Table 1: Methodology steps

Transformation From To Resulting function

1D restriction φ : Rn → R
m φ(1d) : [0, 1] → R

m expensive

Interpolation φ(1d) : [0, 1] → R
m φ(int) : [0, 1] → [0, 1]m cheap

Extrapolation φ(int) : [0, 1] → [0, 1]m φ(ext) : [0, 1]Nx → [0, 1]ny cheap

2.1. One-dimensional restriction

The original model φ is restricted to a one-dimensional function φ(1d) : [0, 1] → R
m by evaluating it along a

diagonal line in the domain [x1, x1]× . . .× [xn, xn]:

φ(1d)(t) = φ(x1 + t(x1 − x1), . . . , xn + t(xn − xn)) (10)

As an example, consider the original physical model φ(x1, x2) = sin(
√

x21 + x22) over the domain [−5, 5]2,
show in Figure 5. The one-dimensional restriction of this function along the domain’s diagonal is shown in
Figure 6.

2.2. Interpolation

Let T be a set of samples in [0, 1] with cardinality |T |, on which φ(1d) : [0, 1] → R
m is evaluated. For any

component i ∈ {1, . . . ,m} of φ(1d), we define the direct image:

φ
(1d)
i (T ) := {φ(1d)i (t) | t ∈ T}. (11)

The minimal and maximal elements of this function are given by:

mi := minφ
(1d)
i (T )

Mi := maxφ
(1d)
i (T ),

(12)

The set of scaled images is defined as:

φ
(s1d)
i (T ) :=

{

φ
(1d)
i (t)−mi

Mi −mi

| t. ∈ T

}

(13)

Each component i of the function φ(1d) is then approximated by a scaled polynomial interpolation φ
(int)
i

(e.g., a third-order spline) over the data
(

T, φ
(s1d)
i (T )

)

. Note that the derivative of a one-dimensional

interpolation is generally provided by interpolation libraries. Figure 7 shows a scaled third-order polynomial
interpolation φ(int) of φ(1d) for our example function.



Figure 5: Surface of the function φ(x1, x2) = sin(
√

x21 + x22)

Figure 6: One-dimensional restriction φ(1d) of φ(x1, x2) = sin(
√

x21 + x22)



Figure 7: Scaled one-dimensional interpolation φ(int) of φ(x1, x2) = sin(
√

x21 + x22)

2.3. Extrapolation

Based on a vector of one-dimensional interpolations φ
(int)
i , i ∈ {1, . . . ,m} that are fast to compute, the ex-

trapolation step generates a function φ(ext) whose input and output sizes vary independently. The way inputs
and outputs of arbitrary sizes are handled is determined by two data structures: one that establishes the de-
pendency of the outputs of the scalable function φ(ext) with respect to its inputs (described in Section 2.3.1),

and the other that defines the correspondence between the interpolations φ
(int)
i and the components of the

scaled function φ(ext) (described in Section 2.3.2).

2.3.1. Input-output dependency

Within a discipline, the dependency of scalable functions (with ny components each) with respect to their
inputs (each of size nx) may be fixed by constructing a sparse dependency matrix S. Each block row of S
represents a function of the problem (constraint or coupling), and each block column represents an input
(design variable or coupling). A nonzero element represents the dependency of a particular component of a
function with respect to a particular component of an input.

The matrix S is randomly generated with a given density factor d, which determines the degree of
dependency of outputs with respect to inputs for the original model. Figure 8a illustrates the dependency
matrix of the SSBJ problem (see Section 4.4). The variables xshared (block column on the right) are global
design variables, shared by all disciplines. The three remaining blocks in the matrix correspond to the three
disciplines (aerodynamics, structures, and propulsion). Figure 8b shows the dependency matrix, generated
at random, of the scalable SSBJ problem with the same dimensions as the original problem, and density
factor d = 0.4. Figure 8c shows the dependency matrix, generated at random, of the scalable SSBJ problem
with dimensions nx = 4 and ny = 4, and density factor d = 0.4.

In order to generate a family of consistent problems, we first generate a large random dependency
matrix S, which is then restricted to the desired dimensions (Figure 9). This approach guarantees that the
dependency of a given output with respect to its inputs does not change when their sizes change. Figure 9a
and Figure 9b represent restrictions of the large matrix in Figure 9c (for which the inputs and outputs are
scaled independently), for (nx = 2, ny = 2) and (nx = 3, ny = 3), respectively. Note that the constraints gi
have the same size nx = 10 as the xi design variables.

Figure 10 illustrates various density factors of the dependency matrix. The density increases with this
coefficient, from 0.2 in Figure 10a up to a full dependency matrix in Figure 10c. It is not desirable to use



(a) Original model (b) Scalable analytic replacement func-
tion (original sizes) with d = 0.4

(c) (nx, ny , d) = (4, 4, 0.4)

Figure 8: Dependency matrix for the SSBJ problem

(a) (nx, ny , d) = (2, 2, 0.4) (b) (nx, ny , d) = (3, 3, 0.4) (c) (nx, ny , d) = (10, 2, 0.4)

Figure 9: Effect of the dimensions on the dependency matrix of the SSBJ problem

a density factor of 1.0, since this does not generate independent combinations for the components of the
outputs ; as a result, many components would become equal.



(a) (nx, ny , d) = (10, 10, 0.2) (b) (nx, ny , d) = (10, 10, 0.5) (c) (nx, ny , d) = (10, 10, 1.0)

Figure 10: Effect of the density factor on the dependency matrix of the SSBJ problem

2.3.2. Component dependency

Each component of the extrapolated function φ(ext) depends on a unique component of the one-dimensional
interpolation φ(int). The correspondence between the m original components and the ny extrapolated com-
ponents may be established by picking for each extrapolated component i a random number ki in {1, . . . ,m}
that represents the index of the selected original component.

Figure 11 illustrates a random mapping between m = 3 components of the interpolation and ny = 8
components of the extrapolated function. The first component (in purple) is selected four times (components
2, 5, 6 and 8), the second component (in orange) is selected twice (components 1 and 7) and the third
component (in green) is selected twice (components 3 and 4).

Figure 11: Component dependency between the interpolation and the extrapolation



2.3.3. Extrapolated function

The function φ(ext) : [0, 1]Nx → [0, 1]ny extrapolates φ(int) to ny dimensions. The i-th component (i ∈
{1, . . . , ny}) of φ(ext) is given by:

φ
(ext)
i (x) =

1

|Si·|
∑

j∈Si·

φ
(int)
ki

(xj). (14)

where Si· represents the nonzero elements of the i-th row of the dependency matrix S, and |Si·| their number.

The function φ
(int)
ki

is detailed in Section 2.3.2 and its arguments are explained in Section 2.3.1.

2.4. Inequality constraints

By construction, the scaled constraints take their values in [0, 1], which is incompatible with the original
constraints gi ≤ 0. We propose to translate a scaled constraint g̃i by a threshold τi ∈ [0, 1] as follows

g̃i − τi ≤ 0. (15)

The thresholds (τi)i are computed such that the initial point is always feasible. It activates a given
percentage p ∈ [0, 1] of the constraints, while the rest of the constraints are initially satisfied but inactive.

A threshold τi is given by:

τi =

{

g̃
(0)
i if U(0, 1) ≤ p (active)

αi + (1− αi)g̃
(0)
i otherwise (satisfied)

(16)

where U(0, 1) is a random number picked in [0, 1] with uniform probability, g̃
(0)
i is the constraint evaluated

at the initial point, and αi ∈ [0, 1] determines to what extent inactive constraints are satisfied. Figure 12
illustrates the effect of the threshold τi on the feasibility of the constraint g̃i − τi ≤ 0 at the initial point.

τi

0 1

g̃
(0)
i α+ (1− α)g̃

(0)
i

activeviolated satisfied
Figure 12: Effect of τi on the feasibility of the constraint g̃i − τi ≤ 0 at the initial point

3. Theoretical properties

As previously mentioned, the proposed methodology aims at creating an analytical replacement function
that preserves the functional characteristics of the physical model, and thus captures the properties that
drive the optimization performance. For instance, if the objective function of the problem is linear or convex,
the objective function of the scalable problem should also be linear or convex.

3.1. Assumptions on the interpolation

The interpolation φ
(int)
i should be continuous for any value of the generated samples. This is the case of

many standard one-dimensional interpolation methods, such as cubic splines.

3.2. Existence of a solution to the coupling problem

We show that the explicit definition of the coupling variables in the methodology guarantees that a solution
to the coupling problem between all disciplines always exists, for any value of the design variables. This
result is based on Brouwer’s fixed point theorem.8,9

Theorem 1 (Brouwer’s Fixed Point (1912)). Every continuous function from a convex compact subset K
of an Euclidean space toK itself has a fixed point.
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Figure 13: One-dimensional example illustrating Brouwer’s fixed point theorem

Figure 13 illustrates Theorem 1 in one dimension. The function x 7→ cos(x) is continuous and maps [0, 1]
to itself. Therefore, cos has a fixed point x̃ such that cos(x̃) = x̃. Graphically, this implies that the curves
of cos and x 7→ x necessarily intersect.

Theorem 2 states the existence of a solution to the coupling problem for any value of the design variables,
which is a prerequisite for benchmarking MDF. However, the theorem does not guarantee that a unique
solution exists, or that any numerical method (fixed-point method or root-finding algorithm) will converge.

Theorem 2 (Existence of a solution to the coupling problem). An equilibrium between all disciplines exists

for any value of the design variables x, that is there exists couplings at equilibrium y(eq) such that:

yi(xi, x0, y
(eq)
j 6=i ) = y

(eq)
i , ∀i ∈ {1, . . . , N} (17)

Proof. Let us define the function µ that takes coupling variables as arguments and computes the disciplinary
analyses in explicit form for fixed values of the design variables x:

µ : [0, 1]N → [0, 1]N

y 7→ µ(y) =







y1(x1, x0, yj 6=1)
...

yN (xN , x0, yj 6=N )







(18)

By construction of the one-dimensional restriction whose inputs and outputs are scaled in [0, 1] (see
Table 1), µ is continuous and maps [0, 1]N into itself. From Theorem 1, µ has a fixed point, and therefore
there exists a solution to the coupling problem for any value of x.

3.3. Preservation of the ratio of original components

We now show that the ratio of components of the interpolation φ(int) is preserved in the extrapolation φ(ext).

Theorem 3 (Preservation of ratio). When ny approaches +∞, the ratio of components of the original

functions is preserved.

Proof. The ny components of the extrapolation φ(ext) are randomly drawn with uniform probability from the

m original components of the interpolation φ(int). φ
(ext)
i is linear with respect to the interpolation function

φ
(int)
ki

. As ny approaches +∞, all draws become equally possible with probability 1
m
, which preserves the

proportions.



3.4. Existence of a feasible solution to the scalable problem

Theorem 4 (Existence of a minimum). There exists a feasible solution to the scalable problem, for any

dimension of inputs and outputs.

Proof. By construction:

• The initial point is feasible with respect to the bound constraints and the nonlinear constraints. A
translation is applied to the nonlinear inequality constraints, so that their value on the initial point is
nonpositive (see Section 2.4). The feasible set is therefore nonempty ;

• By construction of the one-dimensional restriction and because the interpolations are continuous, the
objective function is continuous and bounded from below on a closed set.

3.5. Existence of derivatives

Since the interpolation method generates continuously differentiable (C1) one-dimensional interpolations,
which is the case of standard methods such as splines, the scalable replacement functions are also C1. This
is required for gradient-based optimization.

Theorem 5 (Existence of derivatives). The scalable extrapolations are continuously differentiable with respect

to their inputs.

Proof. The extrapolation φ
(ext)
i is linear with respect to the interpolation functions, which are assumed to

be C1 (see Section 2.3.3). Therefore φ
(ext)
i is also C1.

3.6. Existence of bounds on the target coupling variables

All inputs and outputs belong to [0, 1], which ensures that all optimization variables are bounded, in partic-
ular coupling variables in IDF.

4. Numerical results

We apply the methodology presented in Section 2 to two benchmark problems: the Supersonic Business
Jet problem proposed by Sobieski et al.,3 and a propane combustion problem.7 The aim is to produce a
benchmark plot of architectures performances, similar to Figure 1.5 For our numerical experiments, we use
the best practices for comparing methods on random problems recommended by Johnson.10

4.1. Comparison criterion

The computational time alone is not relevant to compare the variety of architectures on a particular instance
of the scalable problem: since the original (expensive) disciplines have been replaced by analytic functions
that are quickly evaluated, the total time gives no indication on the execution time of the initial problem.

We define a criterion equivalent to an effort in terms of disciplinary evaluations. This criterion aggregates
the following factors:

1. nevali : number of disciplinary analyses performed (possibly in parallel) in IDF over all disciplines i ;

2. nlini
: number of linearizations (partial derivatives) over all disciplines i ;

3. nLU: number of LU factorizations during the computations of the total derivatives in MDF ;

4. nMDA: number of MDAs in MDF.

The comparison criterion is given by:

C =
∑

i∈disciplines

nevali

︸ ︷︷ ︸

analyses

+

linearizations
︷ ︸︸ ︷

clin
∑

i∈disciplines

nlini
+ cLUnLU

︸ ︷︷ ︸

LU factorizations

+

MDA
︷ ︸︸ ︷
cMDAnMDA (19)



where clin represents the time ratio between a linearization and an analysis, cLU represents the time ratio
between an LU factorization and an analysis, and cMDA represents the time ratio between an MDA and an
analysis. These time ratios can be estimated on the original problem.

4.2. Convergence criterion of the optimization algorithm

According to Johnson,10 the optimum value (within a given tolerance) known a posteriori is not a valid
termination criterion for the optimization algorithm, since it cannot be applied in practice on real problems.

Figure 14 portrays the evolution of the residual on the iterates of MDF and IDF for a scalable instance
(nx, ny, d) = (2, 8, 0.4) of the SSBJ problem (see Section 4.4) with the iterations. It highlights the presence
of oscillations around the optimal solution for IDF, probably due to the difficulty to numerically satisfy
equality constraints at convergence. The history of the objective function may therefore exhibit undesired
plateaus at the end of convergence, which biases the comparison between architectures.

Figure 14: Evolution of the residual on the optimization iterates of MDF and IDF with the iterations

Our approach to address this is twofold. First, we impose strict relative and absolute tolerances (equal

to 10−12 on both the solution and its objective value), so that the optimization algorithm converges towards
identical values for both architectures on a given instance. Then, we perform an a posteriori filtering of the

optimization histories by removing any later iterations that do not improve the solution by at least 10−6.
This eliminates undesired plateaus at the end of the convergence. The corresponding number of evaluations,
linearizations, and MDAs are truncated accordingly.

4.3. Implementation of the architectures

The MDO architectures and test cases are implemented in the MDO platform of the MDA-MDO project
at IRT Saint Exupéry.11 In particular, GEMS (Generic Engine for MDO Scenarios), an in-house Python
framework, is used to generate the optimization processes and host the present methodology.

4.3.1. MDF

The strongly and weakly coupled disciplines are computed via analysis of the coupling graph (see Figure 15
illustrating the SSBJ problem). Tarjan’s algorithm12 identifies the strongly connected components of the
coupling graph, that is the subgraphs in which every vertex is reachable from every other vertex. A cou-
pling problem is then created for each strongly connected component. The processed graph (see Figure 16
illustrating the SSBJ problem) represents the sequential evaluation of an MDA (equilibrium between the
strongly coupled disciplines) and a weakly coupled discipline. The weakly coupled discipline is therefore not
evaluated within the MDA.
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Figure 15: Initial graph of the SSBJ problem
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Figure 16: Processed graph of the SSBJ problem

4.3.2. IDF

The initial values of the coupling variables yt that are driven by the optimization algorithm have a consid-

erable influence on the convergence. We initialize yt at equilibrium by computing an MDA for the initial

design variable values, yt
(0)

= y(x(0)). Consequently, the equality consistency constraints (Section 1.2.2) are
satisfied at the initial point.

4.4. Supersonic Business Jet

4.4.1. Problem description

The Supersonic Business Jet (SSBJ) MDO problem was introduced in the first publication on the BLISS
architecture,3 and is now a benchmark for MDO methods. The problem consists in maximizing the range
of an SSBJ subject to various constraints. It is composed of three disciplines (structure, aerodynamics,
and propulsion) based on semi-empirical and analytical models.13,14 All disciplines depend on local design



variables, shared design variables and coupling variables, and compute disciplinary constraints. A fourth
discipline, which is weakly coupled to the others, computes the range using the Breguet–Leduc formula. The
dimensions of the inputs and outputs of the disciplines are fixed, and lower than 15. Table 2 provides the
initial design and the solution of the SSBJ problem.

Table 2: Reference results of BLISS architecture applied to the SSBJ problem

Variable Initial value Optimum value

Range (nm) 535.79 3,963.88

λ 0.25 0.38757

x 1 0.75

Cf 1 0.75

Th 0.5 0.15624

t/c 0.05 0.06

h (ft) 45,000 60,000

M 1.6 1.4

AR 5.5 2.5

Λ (deg) 55 70

SW (ft2) 1,000 1,500

4.4.2. One-dimensional restrictions

Assisted by the methodology described in Section 2, we generated scalable analytic replacement functions
based on the SSBJ problem. Figure 17 and Figure 18 display the one-dimensional interpolations of the
objective function and the outputs (constraints and couplings) of the problem.

Figure 17: Interpolation of SSBJ objective function

For a comparison and qualitative validation of the methodology, Figure 19 represents samplings of the
original SSBJ functions when varying a single input in its full range of variation. A subset of these numerous
(150) figures has been selected, among the representative ones in terms of variations, linearity, etc. Besides,
all the constant outputs have been removed. Figure 18 and Figure 19 are qualitatively similar, demonstrating
that the methodology conserves the functional characteristics: magnitude of variations, linearity, smoothness,
and multimodality. Two specific functions in Figure 19 can cause problems to gradient-based algorithms:
y23 = f(y12) and y24 = f(y12), since they are constant on a certain range, and then quadratic. Since we
want to use gradient-based algorithms in the next experiments in order to address optimization problems
with nearly 1000 design variables, we reduced the input range of these functions, to crop the ranges where
the functions are constant. This preserves the original solution, which is not in these ranges. The present
methodology could be used with the original intervals, but then, suitable optimization algorithms should be
used, which may not scale up to such high dimension. And finally, the aim of this work is not to benchmark
optimization algorithms but to compare MDO architectures, which justifies this choice.
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Figure 18: Interpolations of the SSBJ functions



Figure 19: Some representative cuts of the original SSBJ functions



4.4.3. Parametric study of the dimensions of design variables and couplings

Figure 20 shows the evolution of the objective history with the optimization iterations for IDF and MDF,
for a particular instance (nx, ny) = (6, 16). The density factor d is set to 0.4, which is similar to that of the
Jacobian matrix of the original SSBJ problem. The fixed-point algorithm invoked to converge the MDA in
MDF is the Gauss-Seidel method.

Figure 20: Objective function history for MDF and IDF optimizations with (nx, ny, d) = (6, 16, 0.4)

Figure 21 and Figure 22 display the constraint histories on the same instance for IDF and MDF, respec-
tively. They represent the evolution of the values of the physical inequality constraints with the optimization
iterations. Red indicates that a constraint is violated, green indicates that a constraint is satisfied and inac-
tive, and white indicates that a constraint is active.

Figure 23 and Figure 24 show the cost for both architectures with a wide range of dimensions. The cost
is estimated using Equation (19), with coefficients clin = 0.5, cMDA = 2, cLU = 2 that represent a typical
aerostructural MDO problem. The abscissa represents the total size Ny of the coupling variables, and the
multiple curves represent the two architectures over various numbers Nx of design variables. Similarly to the
results obtained by Martins et al.,5 IDF performs better for this problem, for the same dimension values.
Table 3 shows the breakdown of the cost estimate.

Based on these results, we observe that on average, the cost increases with Nx and Ny, as expected.
On average, IDF is more efficient than MDF, which is probably specific to the SSBJ problem. Particular
instances, such as (Nx = 20, Ny = 160) and (Nx = 80, Ny = 120), seem harder than others, and do not
satisfy the general trend. They prove that there is no free lunch for MDO architectures: a particular MDO
architecture does not surpass other architectures on all instances. However, the performance of an MDO
architecture depends on the dimensions of the design or coupling variables.



Figure 21: History of the constraints for IDF with (nx, ny, d) = (6, 16, 0.4)

Figure 22: History of the constraints for MDF with (nx, ny, d) = (6, 16, 0.4)



Figure 23: Estimated cost for MDF and IDF optimizations on the SSBJ test case with Nx ∈ [20, 60] and
Ny ∈ [40, 200]

Figure 24: Estimated cost for MDF and IDF optimizations on the SSBJ test case with Nx ∈ [80, 120] and
Ny ∈ [40, 200]



Table 3: Statistics for MDF and IDF with respect to the dimensions for the SSBJ problem

MDF IDF

Nx Ny nMDA

∑
i
nlini

nLU C
∑

i
nevali

∑
i
nlini

C

8 16 10 40 10 140 65 68 133

8 40 8 32 8 112 53 56 109

8 64 24 96 24 336 64 64 128

8 88 10 40 10 140 41 44 85

8 112 13 36 9 146 40 40 80

8 136 12 48 12 168 53 56 109

20 16 18 72 18 252 104 104 208

20 40 17 64 16 229 65 68 133

20 64 23 92 23 322 121 124 245

20 88 28 112 28 392 217 216 433

20 112 23 72 18 277 117 120 237

20 136 28 112 28 392 161 164 325

32 16 46 184 46 644 193 196 389

32 40 34 136 34 476 125 128 253

32 64 27 108 27 378 105 108 213

32 88 26 104 26 364 108 108 216

32 112 47 188 47 658 125 128 253

32 136 29 116 29 406 120 120 240

44 16 32 128 32 448 172 172 344

44 40 42 168 42 588 221 224 445

44 64 48 192 48 672 185 188 373

44 88 26 104 26 364 108 108 216

44 112 37 148 37 518 133 136 269

44 136 46 184 46 644 229 232 461

56 16 41 164 41 574 209 212 421

56 40 49 176 44 641 217 220 437

56 64 50 200 50 700 225 228 453

56 88 31 124 31 434 140 140 280

56 112 39 156 39 546 156 156 312

56 136 37 148 37 518 145 148 293

68 16 50 200 50 700 209 212 421

68 40 44 176 44 616 189 192 381

68 64 41 164 41 574 153 156 309

68 88 50 200 50 700 200 200 400

68 112 66 264 66 924 220 220 440

68 136 63 252 63 882 248 248 496



4.5. Propane combustion problem

4.5.1. Problem description

The propane combustion problem was transcribed from the NASA MDO test suite.7,15 It describes the
chemical equilibrium reached during the combustion of propane in air. The variables represent each of the
ten combustion products as well as the sum of the products.

In the original problem, a system of eleven nonlinear equations must be solved. To obtain an MDO
problem, the equations were divided into three components such that:

• coupling exists between the disciplines ;

• the evaluation of the objective function and constraints requires the solution of the coupled system of
equations.

The problem has a single shared design variable (x0 ∈ R) and invokes three disciplines, governed by 2,
2, and 3 residual equations, respectively:

Discipline 1







x0 + y1 − 3 = 0

y0y1 − x0y2 = 0

Discipline 2







0.1x0 − y1y3
40
y6

= 0

0.1x20 − y21y5
40
y6

= 0

Discipline 3







2(y0 + y2) + x2 + x3 − 8 = 0

2x1 + y4 − 40 = 0

y6 − x0 − x1 − x2 − x3 − y0 − y1 − y2 − y3 − y4 − y5 = 0

(20)

where y = (y0, y1, y2, y3, y4, y5, y6) ∈ R
7 are coupling variables. The local design variables x = (x1, x2, x3) ∈

R
3 are used only in the third discipline. The propane combustion optimization problem is defined as follows:

minimize
x,y

f2(x, y) + f6(x, y) + f7(x, y) + f9(x, y)

where f2(x, y) = 2x0 + x3 + y0 + y1 + y3 + y4 + 2y5 − 10

f6(x, y) =
√
y0y1 − x2

√
40x0

y6

f7(x, y) =
√
x0y0 − x3

√
40y1
y6

f9(x, y) = x0
√
x1 − y1y4

√
40
y6

subject to 0 ≤ f2(x, y), 0 ≤ f6(x, y), 0 ≤ f7(x, y), 0 ≤ f9(x, y)

0 ≤ x

residuals R1 : x0 + y1 − 3 = 0

R2 : y0y1 − x0y2 = 0

R3 : 0.1x0 − y1y3
40
y6

= 0

R4 : 0.1x20 − y21y5
40
y6

= 0

R5 : 2(y0 + y2) + x2 + x3 − 8 = 0

R6 : 2x1 + y4 − 40 = 0

R7 : y6 − x0 − x1 − x2 − x3 − y0 − y1 − y2 − y3 − y4 − y5 = 0

The optimal solution is x∗ = (1.378887, 18.426810, 1.094798, 0.931214), and the minimum objective value
is 0. All inequality constraints are active at this solution.

4.5.2. One dimensional restrictions

Similarly to Figure 18, the interpolated functions of the propane combustion problem are plotted in Figure 25.
Again, for comparison, some samplings of the original propane combustion problem functions are plotted
in Figure 26.
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Figure 25: Interpolations of the propane problem functions



Figure 26: Representative cuts of the original propane combustion functions



4.5.3. Parametric study of the dimensions of design variables and couplings

A scalable problem based on the original propane combustion problem is generated. Figure 27 shows the cost
estimates for IDF and MDF architectures for a wide range of dimensions for design and coupling variables.
The density factor d is set to 0.7. The fixed-point algorithm invoked to converge the MDA in MDF is the
Gauss-Seidel method. The cost coefficients are set to clin = 0.5, cMDA = 4, cLU = 2, which approximate
the relative costs of the original problem. We set cMDA = 4 since the disciplines are analytical and weakly
coupled, so the MDA consists in the sequential execution of the four disciplines, which costs four times that
of the execution of one discipline.

On average, the cost increases with Nx and (linearly with) Ny, as expected. IDF proves more efficient
than MDF for Ny < 100, while MDF outperforms IDF for Ny > 100. This attests that the performance of
the architectures is use case dependent, since we obtained a different trend for the SSBJ test case. Similarly
to the SSBJ test case, particular instances, such as (Nx = 180, Ny = 225), seem computationally harder
than others and do not follow the general trend. Again, this proves that there is no free lunch for MDO
architectures, and that a particular MDO architecture is not more appropriate than other architectures on
all instances.

Figure 27: Estimated cost for MDF and IDF optimizations for the propane test case with Nx ∈ [120, 200]
and Ny ∈ [15, 225]

5. Conclusion and perspectives

A new method for deriving scalable analytic problems based on a given physical problem is proposed.
The analytic replacement problems preserve the functional characteristics of the original problem and they
proved useful in performing a rapid benchmarking of MDO architectures.

This approach is then used to construct two scalable problems: one based on the SSBJ problem, and
another based on a propane combustion problem. Numerical experiments on these two problems showed
that the choice of an MDO architecture for solving a particular problem, based on performance criteria,
proved to be dependent on multiple parameters, such as the dimensions of the design variables and coupling
variables. A modification of these parameters may alter the performance of the architectures, thus changing
their relative ranks in a benchmark. Therefore, any comparison between MDO architectures should take into
account multiple design variables dimensions, coupling variables dimensions, and multiple MDO problems.

For a particular MDO problem, the most appropriate MDO architecture may be chosen using our me-
thodology. The set of available MDO architectures was limited to MDF and IDF in this paper, but may be
extended to other architectures such as BLISS and CO, or even in-house architectures.



The proposed methodology provides insights on the scalability of MDO architectures with respect to the
dimensions of the problem. This may be achieved without having to execute the MDO processes with the
original models. Our methodology thus requires a limited number of evaluations of the original models that
is independent of the desired dimensions of the design and the coupling variables of the scalable problem.

Glossary

BLISS Bilevel Integrated System Synthesis. 2

IDF Individual Disciplinary Feasible. 1, 2, 4, 5, 14, 15, 20–22, 27

MDA Multidisciplinary Analysis. 2, 4, 14–16, 20, 27

MDF Multidisciplinary Feasible. 1, 2, 4, 5, 13–15, 20–22, 27

SAND Simultaneous Analysis and Design. 2, 4
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