V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx, Modeling and Control of Complex Physical Systems, 2009.
DOI : 10.1007/978-3-642-03196-0

R. Eymard, T. Galloüet, and R. Herbin, Finite Volume Methods. Handbook of Numerical Analysis, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00346077

B. Fornberg and M. Ghrist, Spatial Finite Difference Approximations for Wave-Type Equations, SIAM Journal on Numerical Analysis, vol.37, issue.1, pp.105-130, 1999.
DOI : 10.1137/S0036142998335881

E. Godlewski and P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, 1996.
DOI : 10.1007/978-1-4612-0713-9

G. Golo, V. Talasila, A. Van-der-schaft, and B. Maschke, Hamiltonian discretization of boundary control systems, Automatica, vol.40, issue.5, pp.757-771, 2004.
DOI : 10.1016/j.automatica.2003.12.017

URL : https://www.rug.nl/research/portal/files/14408473/2004AutomaticaGolo.pdf

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2002.

A. Iserles, Generalized Leapfrog Methods, IMA Journal of Numerical Analysis, vol.6, issue.4, pp.381-392, 1986.
DOI : 10.1093/imanum/6.4.381

B. Jacob and H. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, 2012.
DOI : 10.1007/978-3-0348-0399-1

P. Kotyczka and B. Maschke, Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws. at -Automatisierungstechnik, 2017.
DOI : 10.1515/auto-2016-0098

P. Kotyczka, Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems, IFAC-PapersOnLine, vol.49, issue.8, pp.298-303, 2016.
DOI : 10.1016/j.ifacol.2016.07.457

URL : https://hal.archives-ouvertes.fr/hal-01350805

M. Kurula and H. Zwart, -D spatial domains, International Journal of Control, vol.88, pp.1063-1077, 2014.
DOI : 10.1080/00207179.2014.993337

URL : http://arxiv.org/pdf/1405.1840

L. Gorrec, Y. Zwart, H. Maschke, and B. , Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators, SIAM Journal on Control and Optimization, vol.44, issue.5, pp.1864-1892, 2005.
DOI : 10.1137/040611677

B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, 2004.
DOI : 10.1017/CBO9780511614118

URL : http://cds.cern.ch/record/835066/files/0521772907_TOC.pdf

R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, 2002.
DOI : 10.1017/CBO9780511791253

R. Moulla, L. Lefèvre, and B. Maschke, Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws, Journal of Computational Physics, vol.231, issue.4, pp.1272-1292, 2012.
DOI : 10.1016/j.jcp.2011.10.008

URL : https://hal.archives-ouvertes.fr/hal-01625008

A. Serhani, Geometric discretization methods for hyperbolic systems, and link with finite volume methods for conservation laws, 2017.

V. Trenchant, Y. Fares, H. Ramirez, L. Gorrec, Y. Ouisse et al., A port-Hamiltonian formulation of a 2D boundary controlled acoustic system, IFAC-PapersOnLine, vol.48, issue.13, pp.235-240, 2015.
DOI : 10.1016/j.ifacol.2015.10.245

V. Trenchant, H. Ramirez-estay, L. Gorrec, Y. , P. et al., Structure preserving spatial discretization of 2d hyperbolic systems using staggered grids finite difference. The 2017 American Control conference, Port-Hamiltonian Systems Theory: An Introductory Overview. Foundation and Trends in Systems and Control, 2014.
DOI : 10.23919/acc.2017.7963327

A. Van-der-schaft and B. Maschke, Hamiltonian formulation of distributed-parameter systems with boundary energy flow, Journal of Geometry and Physics, vol.42, issue.1-2, pp.166-196, 2002.
DOI : 10.1016/S0393-0440(01)00083-3