Applying DevOps to Machine Learning: ROCKFlows, a Story from the Trenches

Abstract : The Machine Learning (ML) community is currently blooming with hundreds of new algorithms to implement tasks such as data classification for example. To support data scientists and engineers who have to chose among all these algorithms, we are defining the ROCKFlows platform to automatically create a software product line of workflows integrating such algorithms. This paper describes the approach that support this approach in a devops way.
Type de document :
Autre publication
First international workshop on software engineering aspects of continuous development and new pa.. 2018
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01792775
Contributeur : Sébastien Mosser <>
Soumis le : mardi 15 mai 2018 - 18:02:48
Dernière modification le : lundi 5 novembre 2018 - 15:52:09
Document(s) archivé(s) le : mardi 25 septembre 2018 - 03:56:30

Fichier

applying-devops-machine.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01792775, version 1

Collections

Citation

Mireille Blay-Fornarino, Günther Jungbluth, Sébastien Mosser. Applying DevOps to Machine Learning: ROCKFlows, a Story from the Trenches. First international workshop on software engineering aspects of continuous development and new pa.. 2018. 〈hal-01792775〉

Partager

Métriques

Consultations de la notice

62

Téléchargements de fichiers

79