Serotonin: a new hope in Alzheimer’s disease?
Sylvie Claeysen, Joël Bockaert, Patrizia Giannoni

To cite this version:
Sylvie Claeysen, Joël Bockaert, Patrizia Giannoni. Serotonin: a new hope in Alzheimer’s disease?. ACS Chemical Neuroscience, American Chemical Society (ACS), 2015, 6 (7), pp.940-943. 10.1021/acscchemneuro.5b00135 . hal-01792388

HAL Id: hal-01792388
https://hal.archives-ouvertes.fr/hal-01792388
Submitted on 19 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Serotonin: A new hope in Alzheimer's disease?

Sylvie Claeysen¹, ², ³, *, Joël Bockaert¹, ², ³ and Patrizia Giannoni¹, ², ³

¹CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
²Inserm, U1191, F-34000 Montpellier, France
³Université de Montpellier, UMR-5203, F-34000 Montpellier, France

*Corresponding author

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia affecting 35 million individuals worldwide. Current AD treatments provide only brief symptomatic relief. It is therefore urgent to replace this symptomatic approach with a curative one. Increasing serotonin signaling, as well as developing molecules that enhance serotonin concentration in the synaptic cleft have been debated as possible therapeutic strategies to slow the progression of AD. In this viewpoint, we discuss exciting new insights regarding the modulation of serotonin signaling for AD prevention and therapy.
Alzheimer's disease is the most common neurodegenerative disorder and a major public health concern. Given the growing aging population worldwide, societal costs to treat AD patients will increase tremendously in the next decades. Currently available treatments, based on acetylcholinesterase inhibition (donepezil, rivastigmine, galantamine) or NMDA receptor blockade (memantine), provide only symptomatic relief, underscoring an urgent need for disease modifying drugs. In this viewpoint, we focus on recent data from several groups showing that serotonergic system modulation may present a promising strategy for slowing AD progression and improving cognition.

MAIN FEATURES OF AD

Alzheimer's disease is characterized by irreversible neurodegeneration, which slowly spreads over the brain and causes progressive memory loss, cognitive decline, and finally dementia. The histological hallmarks of the disease are neurofibrillary tangles comprised of hyperphosphorylated tau protein and amyloid plaques, insoluble aggregates of hydrophobic β-amyloid peptide (Aβ). The formation of Aβ peptides results from the amyloidogenic degradation of transmembrane precursor, the amyloid precursor protein (APP), by β- and γ-secretases. Amyloidogenic processing occurs mainly in early/sorting and late endosomes (See Box 1). The non-amyloidogenic proteolysis of APP within the Aβ sequence by α-secretase releases the extracellular fragment of APP (sAPPα), which is neurotrophic and increases long term potentiation. As the underlying causes of AD remain unknown, clinicians diagnose the disease by considering the results of a series of cognitive tests, sometimes in combination with brain imaging (e.g., amyloid imaging, functional and volumetric analysis) and/or biomarkers of Aβ dosage (e.g., Aβ species ratios, phosphorylated tau protein levels in cerebrospinal fluid). Incontrovertible AD diagnosis is obtained by post mortem identification of neurofibrillary tangles and amyloid plaques.

No therapeutic agents with long-term efficacy currently exist for the treatment of AD. For many years, research and clinical trials have focused on developing anti-amyloid agents. However, during the last ten years, immunotherapy trials against Aβ, as well as β-secretase inhibitor clinical studies have produced disappointing results. These outcomes have motivated a shift toward a research focus on the tau protein, the other culprit in AD pathology. Nevertheless, recent findings refocus efforts on β-amyloid in connection with serotonergic system modulators.

EVIDENCE FROM SSRI STUDIES

Studies by John Cirrito and Yvette Sheline have demonstrated that activation of serotonergic neurotransmission might be beneficial in AD. In a first study, these authors showed that acute administration of selective serotonin reuptake inhibitors (SSRIs) reduced production of toxic Aβ proteins (a hallmark of AD) in the brains of amyloid protein precursor/presenilin-1 (APP/PS1) overexpressing mice, an AD mouse model. This effect began 12-14 h after treatment, with a 25% reduction in Aβ still detectable 24 h after drug injection. Consistent with this finding, these authors further demonstrated that serotonin infusion into the hippocampus of APP/PS1 mice, via reverse microdialysis, also reduced Aβ in the brain. This reduction occurred via activation of signaling pathways involving extracellular regulated kinase (ERK) and without alteration of Aβ clearance. Moreover, chronic SSRI administration was also able to reduce Aβ plaque loads in APP/PS1 mice. Together these preclinical findings suggest that increasing extracellular serotonin is a viable means to reduce Aβ plaque formation.

Clinical studies further support this idea. In humans, Aβ imaging via positron emission tomography with the Pittsburgh Compound B (PIB) revealed lower cortical amyloid levels in
study participants who had taken SSRIs within the past five years versus those who had not been treated with SSRIs. This first demonstration that SSRIs could have an impact on parameters involved in AD pathogenesis was reinforced by the recent demonstration that chronic administration of the SSRI citalopram blocked plaque growth in APP/PS1 mice. More importantly, citalopram reduced Aβ production and concentration in cerebrospinal fluid of healthy human volunteers.

Rather than removing amyloid plaques, reducing production of Aβ species has been demonstrated as key to the rescue of cognitive and synaptic deficits in AD mouse models. Today, plaques are often viewed as a way by which damaged cells try to diminish Aβ toxicity; namely, plaques may be an amyloid “dump”. Transient Aβ species that form oligomers have been identified as affecting neuronal structure and function. Consequently, lowering Aβ production is a promising strategy to slow AD progression in humans. However, results of recent clinical trials have led to the conclusion that anti-amyloid treatments (e.g., solanezumab), should be administered in the very early stages of the disease and for decades to have an impact on slowing AD progression. The safety of the long-term use of such drugs needs to be investigated. In the case of SSRIs, it has already been established that they are safe and globally well tolerated with chronic use, even if they induce some relatively minor side effects. Given this knowledge, clinical trials exploring the protective action of SSRIs in AD will be an exciting area of investigation in the coming years. Nonetheless, demonstrating a protective or disease modifying action of a drug-class like SSRIs will involve long follow-up trials (3 to 5 years).

5-HT₄ RECEPTOR ACTIVATION

The observation that activation of serotonergic neurotransmission may have beneficial effects in the context of AD led us to investigate which serotonin receptor subtypes might mediate this action. Among the 14 different receptors that respond to serotonin, all but 5-HT₃ receptors are G-protein-coupled receptors (GPCRs). More than 30% of currently marketed drugs target GPCRs and some already target serotonin receptors. Several of these serotonergic GPCRs modulate processing of the amyloid protein precursor (APP) including 5-HT₂A, 5-HT₂C, and 5-HT₄ receptors. Among them, the latter is an interesting candidate as 5-HT₄ receptor activation induces the non-amyloidogenic cleavage of APP (see Box 1) and release of the soluble sAPPα fragment, which possesses neurotrophic and neuroprotective properties.

Chronic administration of a 5-HT₄ receptor (5-HT₄R) agonist (i.e., RS 67333, twice a week for 2 to 3 months) slowed amyloid pathology and cerebral inflammation. This treatment also prevented cognitive deficits in an early-onset AD mouse model, 5XFAD mice (Fig. 1). By promoting α-secretase cleavage of APP, 5-HT₄R activation precluded formation of Aβ (Box 1). Decreases in amyloid plaque load in mouse brains after chronic administration of the 5-HT₄R agonist (Fig. 1) can be seen as an indicator that Aβ has not been produced. Moreover, acute administration of a 5-HT₄R agonist induced a transient increase in sAPPα in CSF of 5XFAD mice (Fig. 1). This sAPPα is known to have a neuroprotective effect against various types of brain injury such as stroke or ischemic toxicity. The precise mechanism by which the soluble APP fragment exerts its actions has not yet been resolved.

The receptor for sAPPα (if there is one) is still unknown. Chronic administration of the 5-HT₄ receptor agonist RS 67333 markedly reduced cerebral astrogliosis and microgliosis in 5XFAD mouse brains, cerebral inflammation processes associated with AD progression (Fig. 1). This effect could be a consequence of lowering plaque burden or a direct action of 5-HT₄R activation leading to the production of cAMP, which is known to have an anti-inflammatory action. Finally, this study demonstrated that the protective action of 5-HT₄R
stimulation is effective when the treatment is administrated during the prodromal stage of the disease and is sustained for at least 2 months in 5XFAD mice\(^4\).

Translating these results to the clinic will be challenging. The first issue will be to identify and to treat patients in the very early stages of the disease. Ideally, treatments should start at the prodromal stage, or in people identified as having mild cognitive impairment (MCI), even if it is impossible to know if their symptoms will evolve and if they will develop AD. Such preventive clinical trials are already underway for genetic forms of AD. As an example, the Dominantly Inherited Alzheimer Network (DIAN) enrolls asymptomatic children of parents carrying a mutated gene known to cause dominantly inherited AD. Preventive treatment with anti-A\(\beta\) antibodies (gantenerumab or solanezumab) will be administered to study participants to validate the preventive action of these drugs for developing AD.

To conduct similar clinical trials using 5-HT\(_3\)R agonists, the safety of these drugs must first be demonstrated. Several agonists of 5-HT\(_4\) receptors have been developed to stimulate motility of the gastrointestinal tract. However, the 5-HT\(_4\) agonists cisapride and tegaserod have been restricted in use or withdrawn from the market for adverse cardiac effects. Nevertheless, prucalopride, a highly specific 5-HT\(_3\)R agonist has been commercialized for use for five years now in Europe and Canada for the treatment of chronic constipation in women. Safety studies on this molecule did not show an increase in QT interval or other severe adverse reactions, which is encouraging for clinical studies to evaluate the ability of prucalopride to slow AD pathology.

5-HT\(_6\) RECEPTOR INHIBITION

Another serotonin receptor subtype that has received attention in the AD field is the 5-HT\(_6\) receptor. This GPCR is coupled to G\(_6\) similar to 5-HT\(_3\)R. However, unlike 5-HT\(_3\)R, several reports indicate that beneficial effects on cognition arise from inactivation of 5-HT\(_6\) receptors via mechanisms that may not involve primary G\(_6\) coupling (Fig. 1). Administration of 5-HT\(_6\)R antagonists to rodents improves cognitive performance in numerous behavioral tests through stimulation of glutamate, acetylcholine, and catecholamine release in cortical and limbic areas. Inhibition of the mTOR pathway or stimulation of neurite outgrowth may also be involved in the positive action of 5-HT\(_6\)R antagonists on cognitive processes.

More recently, the phase II clinical trial of idalopirdine, a 5-HT\(_6\)R antagonist, found cognitive improvement in donepezil-treated patients with moderate AD who received idalopirdine as a combination therapy\(^5\). Interestingly, the authors of this study pointed out that while some monotherapies administered with 5-HT\(_6\) antagonists failed to show positive effects in the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-cog) compared to placebo at the completion of the two-year study, the combined action of idalopirdine and donepezil revealed a clear improvement in the cognitive indicators compared to the group treated with placebo and donepezil.

Nevertheless, many questions remain. For example, is improvement due to idalopirdine or to the combination therapy? Is it possible that the combination therapy accelerates pro-cognitive effects so that differences between the two treatment groups are amplified and visible earlier? Would treatment with a 5-HT\(_6\)R antagonist alone have been beneficial if administered earlier or for a longer period of time? A phase III trial will try to answer these questions and hopefully confirm the promise of using 5-HT\(_6\)R antagonists for AD therapy.

MULTI-TARGET ACTION
As mentioned, combination therapy modulating the serotonergic system and simultaneously inhibiting acetylcholine degradation is promising for the treatment of AD. Here, we develop the concept of multi-target action for AD therapy.

For a number of years now, 5-HT₄R agonists have been considered nootropics due to their ability to enhance learning and memory in rodents. Moreover, 5-HT₄R stimulation induces release of acetylcholine, an action that can compensate for the loss of cholinergic neurons, a cellular population that is one of those affected by neurodegeneration in AD and whose loss impairs memory processes. Combination of sub-threshold doses of 5-HT₄ agonists with acetylcholinesterase inhibitors has shown synergistic effects on memory performance in rodents (SL 65.0155/rivastigmine, RS 67333 or VRX-03011/galanthaminium, RS 67333 or prucalopride/donepezil).

Donecopride, a new molecule combining 5-HT₄R agonism and acetylcholinesterase (AChE) inhibition was recently released⁶. This compound exerts symptomatic actions (inhibition of ACh degradation via blockade of the AChE catalytic site and release of ACh via activation of 5-HT₄Rs) that could restore cholinergic neurotransmission (Fig. 2). Moreover, donecopride has disease-modifying properties (i.e., inhibition of Aβ aggregation via the blockade of the AChE peripheral anionic site and promotion of non-amyloidogenic processing of APP via 5-HT₄R activation) that could help to slow AD progression. Combining several beneficial actions at different targets via a single drug facilitates pharmacokinetic studies, decreases the risk of drug interactions, and simplifies therapeutic dose and treatment compliance. Pre-clinical follow-up of donecopride will be needed to verify whether this single molecule acting simultaneously on two targets produces beneficial action beyond co-administration of two active substances directed towards the same two targets.

It may also be of interest to target several serotonin receptors at the same time. In this context, SSRI treatment is relevant. However, activation of all serotonin receptors is not necessarily the best route since stimulating some receptor subtypes may be beneficial (e.g., 5-HT₄Rs), whereas activating others (e.g., 5-HT₆Rs) may be deleterious. Thus, combining 5-HT₄R activation and 5-HT₆R inhibition may produce greater therapeutic benefit than SSRIs alone. Such a pharmacological combination has yet to be investigated (Fig. 2).

In sum, there appears to be support for the idea of modulating the serotonergic system as a promising therapeutic strategy for treatment of AD. Moreover, combination therapy is an approach to be considered for treating complex illnesses such as AD.
BOX 1

Metabolism of the amyloid precursor protein (APP).

Two APP pathways co-exist. The amyloidogenic pathway leads to production of the amyloid-β peptide (Aβ) following the cleavage of APP by β-secretase (BACE1) and γ-secretase. The Aβ peptides form oligomeric toxic species, which aggregate into extracellular senile plaques. An alternative non-amyloidogenic pathway relies on the cleavage of APP by α-secretase (ADAM10 in neurons). The α-cleavage site located within the Aβ sequence precludes formation of the Aβ species and releases the soluble sAPPα fragment, which has neurotrophic and neuroprotective properties. Stimulation of 5-HT4 receptors promotes the non-amyloidogenic cleavage of APP by activating the α-secretase ADAM10.

FIGURE LEGENDS

Figure 1. Major positive actions of 5-HT4R agonists and 5-HT6R antagonists in the context of Alzheimer’s disease. Principal transduction interactions of these two receptors subtypes are indicated and beneficial pharmacological responses are illustrated. Representative results are taken from4.

Figure 2. Multi-target-directed action that could be beneficial to slow AD pathology. Names of the different compounds and their targets are depicted. Putative types of effects are indicated with a color code corresponding to the target engaged. AChE, acetylcholinesterase; CAS, catalytic active site of AChE; PAS, peripheral anionic site of AChE.

AUTHOR INFORMATION

Corresponding Author
*Mailing address: Institut de Génomique Fonctionnelle, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France. E-mail: sylvie.claeysen@igf.cnrs.fr

Funding
Supported by grants from CNRS, INSERM, the French Research National Agency ANR (ANR-12-BSV4-008-01 ADAMGUARD project to J.B.), France Alzheimer Association (to S.C.), Soroptimist International (French Union, to S.C.), the Languedoc Roussillon Region (“Chercheuse d’Avenir” 2012, to S.C.) and the Ligue Contre La Maladie d’Alzheimer (L.E.C.M.A., to SC).

Notes
The authors declare no competing financial interests.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Drs. John R. Cirrito, Yvette I. Sheline, Patrick Dallemagne, Christophe Rochais, Michel Boulouard, and Cedric Lecoutey for their contributions to the studies described in this article.
REFERENCES

5-HT₄R agonists

5-HT₆R antagonists

ADAM10

Gᵢ/o

G₁₃

Gₛ

Src

β-Arr

NF1

G₉/₁₁

Gₛ

cdk5

mTOR

Signal transduction pathways

Decrease of plaques and Aβ level

Increase of sAPPα production

Reduction of inflammation

Procognitive effects

Mood control (antidepressant- and anxiolytic-like effects)

RS 67333

Non injected

Vehicle

Proinflammatory cytokines

Time (min)

CSF sAPPα (ng/ml)

0 30 60 90 120 150 180 210 240

0 25 50 75 100

5-HT₄R

5-HT₆R

â-arr
Donecopride

AChE 5-HT₄R

- Restoration of cholinergic neurotransmission
 - Inhibition of AChE CAS site
 - ACh release

- Decrease of amyloid burden
 - Inhibition of AChE PAS site
 - sAPPα release, Aβ decrease

Donepezil

AChE 5-HT₆R

- Restoration of cholinergic neurotransmission
 - Inhibition of AChE CAS site
 - ACh release

- Improvement of cognition
 - Consolidation of episodic-like and working memory

- Decrease of amyloid burden
 - Inhibition of AChE PAS site

- Mood control
 - Antidepressant and anxiolytic

5-HT₆R antagonists

5-HT₆R

- Decrease of amyloid burden
 - sAPPα release, Aβ decrease

- Improvement of cognition
 - Improvement of episodic-like and working memory (acquisition phase)
 - Consolidation of episodic-like and working memory

5-HT₄R agonists

5-HT₄R

- Mood control
 - Antidepressant and anxiolytic
sAPPα - secretase
β-secretase
γ-secretase

5-HT₄R

AICD
C83

C99

AICD

APP

sAPPβ

Aβ₄₀
Aβ₄₂

Plaque

Non-amyloidogenic pathway
Amyloidogenic pathway