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Abstract. The problem of the synthesis of second gradient (meta)materials, via architectured

microstructures made of micro-lattices, has been solved [1, 2] by choosing ideal pivots as pre-

ferred constraints. The obtained homogenized macro-equations [3, 4]) show some pathologies

that reflect the exotic behavior of the considered metamaterials, even if they are of interest by

themselves [4]. The theoretical issues that they raise not only represent an intellectual challenge

but also means for disclosing potentially interesting new phenomena. To make such disclosure

evident, the related technological demand arose, namely, to find an innovative design and produc-

tion process to construct [5], by using additive manufacturing, some pantographic sheets (made

in this instance of polyamide but hopefully later also using metals or alloys) whose pivots do

twist practically without deformation and with negligible dissipation. Remarkably the specimen

could be printed in a monolith and required no post-assembly but only an easily standardized

run-in procedure. In this paper, in order to introduce a mathematical description for pantographic

sheets with perfect pivots and to avoid to face the aforementioned pathologies, a discrete, finite

dimensional, Lagrangian model is formulated. Moreover, in order to include the case in which

the beams interconnecting the pivots are long enough to store non negligible bending energy be-

tween the closest pairs of pivots, an enhanced Piola–Hencky discrete model is introduced. Two

types of nodes are distinguished, the first one interconnects two pantographic fibers, the second

one simply interconnects two different segments of the same fiber. The Vietnam long neck pe-

culiar deformed shape experimentally observed in standard extension bias test, is obtained with

very short computing time, so that the innovative code which has been elaborated can be used

as subroutine in more complex computation schemes. A preliminary digital image correlation

analysis, see [6, 7], is performed and shows that a remarkable agreement between theoretical

predictions and experimental evidence can be obtained. This circumstance is easily explained by

observing that said numerical code is based on a discrete model directly inspired by the mechan-

ical properties of pantographic sheets and that, therefore, the passages to a continuum model via

homogenization [8] and then to the subsequent re-discretization, via the introduction of more or

less suitable finite elements, are avoided. In our opinion a theory driven formulation of a directly

discrete numerical model presents many advantages and it seems suitable for attacking future

structural optimization problems.
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1. Introduction

One of the frontiers of research in mechanics must be situated at the border sharing the mod-

els introduced for describing standard materials and those for exotic materials. There are many

difficulties in recognizing where such a frontier is located, especially because the adjectives stan-

dard and exotic are very difficult to make precise. A critical reader may even start discussing

preliminarily about the most fundamental concept of material and the difficulties involving in its

definition. Questions arise: Can a complex mechanical system as the one depicted in Figs. 1, 2

and 3 be called a material? And if it actually can be called so, when such a description is appro-

priate? The aforementioned system is constituted at the micro-level by matter distributed in a

Figure 1. Rendering of the pantographic sheet frontal view, the unit cell is high-

lighted in the red box (courtesy of M. Golaszewski).

refined and complex microstructure where, for instance, micro-gaps divide different deformable

micro-parts, which, in some cases, may undergo large localized relative displacements.

The critical reader may maintain that if there is a material at all in such a system one has

to find it at the micro-level, that is at the level at which the characteristic length is a fraction

of the dimensions of the pivot (i.e. the small cylinders that link orthogonal beams) depicted in

Fig. 3. To this reader another one, even more critical, may object that, by magnifying a little bit

the image (see Fig. 4) another microstructure may appear, which is made of partially melt and

agglomerated grains of polyamide powder used as raw material of the 3D printing process to

produce the considered specimens whose theoretical analysis is reported in Ref. [9].

These critical remarks have often been made to try to understand the ultimate nature of phys-

ical phenomena [10, 11, 12, 13]). Therefore, the term homogeneous material is defined relative

to a length scale L of the corresponding Representative Volume Element (RVE), a cubic vol-

ume whose sides are L such that, by moving the RVE within the specimen the overall (macro-

)mechanical response of the material included in it does not change and can be described ex-

clusively in terms of overall (macro-)kinematic descriptors that are assumed to be uniform for

every RVE. Polyamide, when considering an RVE including a set of grains, is a material in
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Figure 2. Technical drawing with the geometry of the pantographic sheet and

the detail of the designed pivot, dimensions are expressed in mm (courtesy of M.

Golaszewski).

the sense of the previous definition. The pantographic sheet, when considering an RVE includ-

ing a set of cells (which is the set of four beam elements and four pivots shown in Fig. 1) is

another material, although it is made ultimately, at a lower length scale, of another material

(i.e. polyamide).

1.1. Definition of metamaterials. A metamaterial is defined herein as a material that has been

designed to meet a specific purpose, by combining more elementary materials (characterized

by a smaller micro-length scale) and by shaping them with geometrical structures and mechan-

ical interactions (i.e. microstructure) characterized by the same micro-length scale. The micro
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Figure 3. 3D rendering of cells of a pantographic sheet with pivots without

strain energy (courtesy of M. Golaszewski).

(a) (b) (c)

Figure 4. Micro-beam of a 3D printed polyamide pantographic sheet.

level corresponds to the scale at which the considered structure shows all its (geometrical and

mechanical) inhomogeneity and complexity. At the macro level, it behaves as a homogeneous

material.

It is worth noting that the more interesting cases (i.e. the macro-metamaterial shows a com-

pletely different behavior as its micro-constituents) are represented by microstructures in which
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extremely high contrasts of mechanical and geometrical properties occur [14, 15, 16, 8]. In

this sense the metamaterial studied herein is extreme in all aspects, namely, very thin struc-

tural elements interconnect stiffer elements, some elements have zero stiffness, others have a

soft behavior, others are much stiffer. The geometry is, also, extremely heterogeneous with

empty spaces used to partially detach the elastic response of interconnected elements (this is,

for instance, the function of perfect pivots).

In order to design a metamaterial one has to choose its governing equations and then find the

microstructure which, at the macro-level, is described by given equations. This formulation is

often called the problem of synthesis of a given set of governing equations.

1.2. Continuum versus discrete models. The ideas of continuum mechanics are used, in gen-

eral, to model the deformation phenomena occurring in any kind of material body. Therefore,

very often, the mechanical systems designed to get metamaterials are described both at the

micro- and macro-levels with continuous models. In particular, the problem of the synthesis of

second gradient (meta)materials has been confronted and solved with homogenization method-

ologies involving continuous descriptions both at macro- and micro-levels, see [17, 18, 19].

The need for synthesizing a second gradient (meta)material (i.e. to design a suitable microstruc-

ture showing a second gradient behavior at macro-level) was formulated in a purely theoretical

context in which even the consistency of mathematical theories was seriously questioned.

This scientific controversy is not new. Piola did formulate mathematical models for con-

tinuous materials by introducing deformation energies depending on higher order gradients of

displacement [12] and Peridynamics [13]). When asked about the soundness of his continuum

models and about the true physical content of his theories, he resorted to the study of a homog-

enization problem. He proved the validity of his macroscopic models by i) basing them on the

study of a micro-structured mechanical system characterized by simply interacting elementary

constituents and a well specified geometry, ii) describing such micro-system with a Lagrangian

discrete finite dimensional model, iii) finally homogenizing micro-models (via the so-called

Piola Ansatz) to get the corresponding macro-response [13]).

Under the push for the need of new metamaterials, the paradigm set up by Cauchy seems to

need an evolution, as already demanded by Piola in 1825 even before Cauchy’s full formulation

of his ideas. More generally one could attempt to solve a class of problems formulated as

follows [20, 16]). Given: a macro-length scale, set of kinematic macro-descriptors, some strain

energy functional and Rayleigh dissipation functional; find: a micro-length scale, a set of micro-

materials and a microstructure such that the complex micro-system behaves at the macro-level

as specified by the given functionals.

Coming back to the particular problem of synthesis of second gradient materials by using

architectured microstructures, it was solved with a double scale homogenization process [1, 2].

Slender continua are considered and, after homogenization, beam elements are obtained, and
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subsequently interconnected with ideal pivots, and a second homogenization step is performed.

Ideal pivots represent preferred constraints in the chosen class of micro-lattices that appear to be

essential to produce second gradient macro-continua. The homogenized macro-equations show

some pathologies that reflect the “exotic” behavior of considered metamaterials [3, 4]. These

mathematical pathologies are of interest by themselves [4] as the theoretical issues that they

provoke not only represent an intellectual challenge but also means for disclosing potentially

interesting new phenomena.

In order to make such disclosure evident, and to experimentally investigate the special role

that perfect pivots played in synthesized microstructures, the following technological demand

arose: “to find an innovative design and production process to fabricate, via additive manufac-

turing, pantographic sheets made for instance of polyamide, whose pivots actually twist without

deformation and with negligible dissipation” [5]. The specimens could be printed in a monolith

and required no post-assembly but only an easily standardized run-in procedure.

A potential vicious circle immediately appears under first examination of the previously de-

scribed conceptual procedure involving continuous systems: i) as underlined by Piola [21] a

clear understanding of the mechanical features of considered microstructures is attained mainly

by formulating finite dimensional Lagrangian models, possibly with dissipation accounted for

by a Rayleigh potential; ii) a homogenization procedure can be used to get continuum models

but the range of applicability is restricted by the finite size of the periodic cell constituting the

microstructure; iii) nowadays, to get predictions one needs to use a numerical code and there-

fore the continuum model must be discretized, for instance with a finite element scheme. One

may wonder for which reason it is necessary to use the intermediate step involving homogeniza-

tion and why one should loose all phenomenological control on the third step, i.e. discretization,

which is usually performed based only on purely computational considerations. For this reason

we have decided to completely refrain from the introduction of any continuum model for the

microstructure which we consider in this paper and we preferred to introduce and study directly

a discrete (Lagrangian) micro-model (see [22]) for a different example of similar discrete model

inspired by trusses).

1.3. A first discussion of the presented novel results. It is decided to avoid facing the patholo-

gies presented by continuum models, bypassing their formulation, and the well-posedness of

corresponding boundary value problems. Instead a finite set of Lagrangian parameters is pro-

posed in order to specify the state of considered system. This set of parameters includes, in

particular, the positions of the nodes corresponding to the twisting pivots interconnecting the

two families of fibers (Fig. 3) constituting the sheet. It is assumed that such pivots are strong

enough to ensure that the two beams they are interconnecting have a constant distance. When

this assumption is not satisfied the reader is referred to the treatment proposed in Ref. [23],

which can be possibly modified to generalize the description presented hereafter. However, the
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mechanical case is sought in which the beams interconnecting the twisting pivots are designed

to be long enough so that a non negligible bending energy is stored between the closest pairs of

pivots. It is worth noting that a twisting pivot at the micro-level will produce, at macro-level, a

shear stiffness.

In order to account for this additional deformation mechanism, which is not accounted for

in Refs. [8, 24], the discrete Piola–Hencky model is enriched by adding extra degrees of free-

dom. The discrete kinematic description is enhanced by distinguishing two types of nodes,

namely, the first one, which was already considered, interconnects the two families of panto-

graphic fibers while the second one simply interconnects two subsegments (Fig. 1) of the same

fiber. The first family of nodes is where the inter-fiber interactions are located, while the sec-

ond one is where the extra bending energy relative to the fibers is assumed to be concentrated.

Therefore the overall considered set of kinematic parameters must also include the positions of

these intermediate nodes, which are allowing for the bending of the fibers between two twisting

pivots.

The Lagrangian method, the procedure for the search of minima of the total energy, and

the step-wise construction of equilibrium configurations, described by one or more parameters,

which was already exploited in Refs. [24, 25], allow for the determination of a large family

of equilibrium shapes for perfect pantographic sheets. In particular, the Vietnam long neck1

shape, which is experimentally observed in standard extension bias tests, is predicted with a very

short computing times. Further, with a very limited set of constitutive parameters, experimental

observations are predicted (e.g.quantitatively describing equilibrium shapes, reaction forces via

application of Castigliano theorem, and the first rupture mechanism [26]).

The reason for which the aforementioned agreement between numerical predictions and ex-

perimental evidences had to be expected can be explained as follows. The numerical code is

based on a discrete model that is directly constructed and closely inspired by the understand-

ing of the deformation mechanism(s) of the studied pantographic sheets. There is no need for

complex constructions but efficient numerical algorithms. This gives a further example of a the-

ory driven analysis of complex phenomenology, whose study based on data driven approaches

would produce an intractable and probably useless amount of computing processes.

After the state-of-the-art presented in this structured Introduction, we discuss the structural

design of pantographic sheet having pivots without strain energy in Sec. 2. Successively, in

Sec. 3, we report and discuss the results of an extension bias test. We tackle the presentation

of the enhanced Piola–Hencky discrete model of the pantographic sheet in Sec. 4 whereas we

report some insight about the in-house numerical code to attack the nonlinear system of equi-

librium equations in Sec. 5 and the calibration of the numerical model in Sec. 6 by using the

1see https://en.wikipedia.org/wiki/Neck/ring
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results of the extension bias test. In Section 3.1 we try to bridge experiments and numerical sim-

ulations introducing the tool of digital image correlation. Indeed, up to now, the experimental

study of pantographic sheets and the comparison of experimental evidence with numerical pre-

dictions has been performed by means of simple tools and by focusing on the measurements of

few (particularly significant) kinematical or dynamical parameters. However more systematic

and accurate analysis of deformed shapes is required and the tools supplied by digital image

correlation (DIC), see [6, 7], seem to be suitable to supply it. Some really suggestive images

are presented whose interpretation (from quantitative and qualitative point of view) is support-

ing strongly the modeling choices presented in this paper. Finally, we close the paper reporting

some remarks and future challenges.

2. Structural design: pivots without strain energy

Up to now, the pantographic sheets, which were fabricated with additive printing, necessarily

had two families of fibers interconnected with small cylindrical pivots undergoing rotations

at the expense of some non-negligible strain energy. This circumstance limits the possibility

of structural optimization, which could require the choice of pivots having variable stiffness

in different locations. Conversely, pivots without strain energy could lead to a change of the

distribution of strain energy and its partition, e.g. into bending and extensional energies, thereby

improving the damage resiliency of such structures.

The resolution of the printing process was 0.1 mm and it was exploited in order to leave

un-sintered some grains of polyamide between the two adjacent solidified male and female

parts of the printed pivots (Figs. 2 and 3). The pantographic sheet shown in Figs. 1-3 is made

of a series of parallel micro-beams linked to the orthogonal ones by means of the introduced

pivots. Cross-sections of the micro-beams are rectangular with the exception of the parts near

the pivots, which are designed to be linked with the orthogonal family of micro-beams by means

of specifically tailored the pivots.

3. Extension bias tests: experimental evidence

The aforementioned first printed specimens (overall dimensions the specimen are 213.4 mm

× 71.13 mm) were subjected to extension bias tests and the evolution of their deformed shape

recorded by acquiring image series. For the first test, an additional preparation was followed to

probe the feasibility of digital image correlation in the present context. For the second test, the

grips were left unspeckled and no DIC analysis was run.

3.1. Digital image correlation analysis. In the sequel a preliminary image analysis is per-

formed to quantify global deformation modes in an extension bias test. Digital image correla-

tion (DIC [6, 7]) will be used to measure displacement fields during the reported experiment.

To the authors’ best knowledge, such technique has never been used in this context. A series of
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42 pictures were acquired. In the present case, grey level images are reconstructed by a binning

of two process to account for Bayer’s filter. They are subsequently cropped so that their final

definition is 1147 × 261 pixels. For DIC purposes, the upper and lower parts of the grips were

speckled with black and white paints (Fig. 5). In addition, the pivots of the pantograph were

marked in black and a red background was used in order to create high contrast with the white

pantograph.

(a)

(b)

(c)

Figure 5. Grey level images of the pantograph in the reference configuration (a),

last analyzed deformed configuration (b) and at failure (c).

The analysis of pantograph motions can be performed at different scales. The most obvious,

yet the most difficult, would be to have a geometric description that would fit the actual panto-

graph shape. The corresponding kinematics could then be tailored thanks, for instance, to gen-

eralized beam theories. DIC analyses may then be possible as was shown for steel beams [27].

In the present case, it would mean having an explicit description of all the fibers that compose

the pantograph. This route will not be followed hereafter. Another path consists in measuring

macroscopic motions via so-called local or global DIC [28]. Since the final aim of such analyses

will be their comparison with numerical simulations, the displacement fields will be expressed

in the same language, namely, with finite element bases. Global DIC with 3-noded triangles

with linear interpolation functions is considered (i.e. T3-DIC). Because the mesh is not made
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compatible with the pantograph mesostructure, mechanical regularization will be used to enable

the DIC code to converge (i.e. RT3-DIC [29]). To avoid any significant bias, the regularization

length is identical to the element length (i.e. 25 pixels in the present case).

Figure 6(a) shows the region of interest (ROI) that extends over the whole pantograph and

part of the speckled grips. This setting allows the RT3-DIC code to converge first in the grips

and then in the central part of the pantograph where most of the deformation takes place. In

the present case, the convergence criterion was set to 10−5 pixel for the norm of the mean

displacement corrections. This very low value could be achieved thanks to the regularization

strategy used herein.

(a)

(b)

Figure 6. Region of interest (red box) analyzed via RT3-DIC (a) and finite ele-

ment mesh with 25-pixel T3 elements (b).

Figure 7 shows the results of the RT3-DIC analysis of the 5th loading step. First, the grey

level residuals should be checked, see Figure 7(a). They correspond to grey level differences

between the picture in the reference configuration and that of the deformed configuration cor-

rected by the measured displacement field. If perfect match were achieved, this difference

should only contain acquisition noise. This is not observed in the present case since there still

are some stigmata of the pantograph geometry. It confirms that a continuous kinematic basis

made of 3-noded triangles cannot fully capture the present kinematics. However, the deviations

remain very small. Consequently the displacement fields shown in Figure 7(b-c) are deemed

trustworthy at the macroscale. The transverse ux displacement field shows that there is a huge

contraction in comparison with the longitudinal uy motions. This is due to the geometry of

the pantograph. This observation translates into the nominal strain components reported in

Figure 7(d-f). In the present case, they are computed from the deformation gradient, which is
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constant per element. Thus the pixelisation of the strain maps is due to the underlying mesh

used in the RT3-DIC calculations. The central part of the pantograph contracts more in the

transverse direction, εxx, than its longitudinal expansion, εyy. This phenomenon is accompanied

with more moderate shear εxy.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Correlation results for the 5th loading step: grey level residuals (a),

ux (b) and uy (c) displacement fields (expressed in pixels); εxx (d), εxy (e), εyy (f)

nominal strain fields.

In Figure 8 the same fields are shown for the 10th loading step. The grey level residuals only

slightly degrade in comparison with the previous loading step, see Fig. 8(a). The pattern of the

transverse and longitudinal displacement fields is very similar with higher overall levels. The

same observation applies for the strain fields. The deformation mode remains unchanged. It is

worth observing that all strain levels in the grips remain close to zero, which is to be expected.

This is a further validation of the present results.

The last load level prior to damage inception, i.e. first beam failure, is reported in Fig. 9.

In that case the grey level residuals, see Figure 9(a), are significantly higher than the previous

two cases (see Figures 7(a) and 8(a)). The chosen kinematics is no longer able to properly

describe, in a continuous way, the actual kinematics of the central region of the pantograph.

For the parts of the pantograph closer to the grips and the grips themselves, the registration

quality is significantly better. This result validates the choice of including part of the speckled

grips in the analysis. For this last step the highly deformed region has grown toward both ends

of the pantograph, which can be understood by the fact that when struts touch each other, the

deformation mechanism moves away from these zones.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Correlation results for the 10th loading step: grey level residuals (a),

ux (b) and uy (c) displacement fields (expressed in pixels); εxx (d), εxy (e), εyy (f)

nominal strain fields.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Correlation results for the 30th loading step: grey level residuals (a),

ux (b) and uy (c) displacement fields (expressed in pixels); εxx (d), εxy (e), εyy (f)

nominal strain fields.
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The DIC results reported herein show that such analyses can be run on pantographs. Prior

to damage inception, longitudinal nominal strains of the order of 50% and transverse strains as

high as -90% were achieved. Such levels could be measured thanks to the sample procedure

followed herein, namely, the grips of the pantograph were speckled. In the future, it is likely

that speckled pantographs should be analyzed in order to make the DIC analyses easier. It was

also shown that a continuous displacement basis was only partly capturing the actual kinematics

of the experiment. This calls for more advanced registration techniques that would be consistent

of the particular geometry of the pantographs and their specific kinematics.

3.2. Second test. The peculiarity of the observed behavior was the very low force level, well-

below the sensitivity of the load cell, that was needed to deform the specimen up to very large

elongations (of the order of 30 % of the initial specimen length. Figure 10 shows the mea-

sured displacement-force response. The displacement is made non-dimensional, with λ varying

between 0 and 1, when the applied displacement of the shorter side of the pantographic sheet

along the direction of the longer reaches 60 mm. The displacement-force plot is more like a

band than a line, whose thickness is about 1 N in the first part (approximately until λ < 0.7).

The reaction forces were less than the load cell uncertainty (which is about 2 N) for elongations

up to 14 %. This calls for more resolved load cells [25].

0 0.2 0.4 0.6 0.8 1
-5

0

5

10

15
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45
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R

Figure 10. Extension bias test. Measured force R vs. nondimensional displace-

ment λ.

The deformed specimens assumed a very peculiar appearance, which which will be referred

to as Vietnam long neck shape (see Figs. 5(b) and 11). In these shapes the fibers undergo
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finite bending between the interconnecting pivots and, ultimately, the first rupture occurs in a

fiber which is extremely elongated, close to the corners between the long and short sides of the

specimens (Figs. 5(c)).

The pattern of damage and final failure is very similar to those observed when the pivots

supply a significant amount of macro-shear strain energy [26], which is sometimes more than

60 %-80 % of the total strain energy [30]. Therefore it is concluded that the pantographic

microstructure determines such a pattern.

4. Enhanced Piola–Hencky discrete model

Pantographic sheets were modelled [24], and evaluated for several loading conditions [31, 32,

33] with a finite dimensional Lagrangian system, consisting of nodes interconnected two by two

by extensional springs, and by rotational springs storing energy when two adjacent segments,

interconnecting close nodes, change their relative angle. These nodes are called interconnecting

nodes as they establish a mechanical interaction between the two families of fibers constituting

the pantographic sheet.

The model introduced in Ref. [24] presents some difficulties if the described experimental

evidences are to be predicted. There is a significant amount of strain energy that is stored

via bending of the fibers between the interconnecting nodes that cannot be described by the

rotational springs [34]. Additional nodes, which are called intermediate nodes, are considered.

They only connect two segments of the same fiber, without coupling it with the transverse family

of fibers. As a result, an enhanced Piola–Hencky discrete model is obtained.

The enhanced Piola–Hencky discrete model is formulated for improving the description of

the strain energy related to the bending mode of each micro-beam. From experiments it is ob-

served that the beam segment of fibers do bend between two nodes and that it is not possible

to properly describe the corresponding bending energy solely with an elastic joint in correspon-

dence with the pivot positions. The simplest way to address this issue is to introduce additional

elastic joints between those already used. In this way one avoids the introduction of beam

elements of varying sophistications [35, 36, 37, 38] that can add computational complexities.

Figure 12 shows three elastic joints, depicted by P j−1, P j and P j+1 in the reference position

(on the top), and by p j−1, p j and p j+1 in the current position (on the bottom). The bending strain

energy contribution related to the elastic joint P j (distinguished with a black bullet) reads

Eb = b f (β) , (1)

where b is the bending stiffness of the elastic joints, and β the angle between the rigid links p j−1–

p j and p j–p j+1. The cosine of the angle β, which expresses the bending strain, is computed by

means of Carnot’s theorem making use of the coordinates of p j−1, p j and p j+1.
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(a) λ = 0

(b) λ = 0.25

(c) λ = 0.5

(d) λ = 0.75

(e) λ = 1

Figure 11. Extension bias test. Deformed shape for five values (0, 0.25, 0.5,

0.75 and 1) of the non-dimensional displacement λ.

An enhanced representation of the bending strain energy is obtained by further adding elastic

joints between those already mentioned, see Fig. 13, where these additional joints are repre-

sented as open circles. The bending contributions related to the elastic joints both between P j−1

and P j, and between P j and P j+1 have to be considered. In Fig. 13 the case of three additional
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b

P j−1

P j

P j+1

β

p j−1

p j

p j+1

Figure 12. Kinematics of a discrete micro-beam. Reference (on the top-left) and

current (on the bottom-right) configurations.

elastic joints between P j−1–P j and P j–P j+1) are shown, whose contributions are computed by

using Eq. (1). In Fig. 13, γ is the angle, in the current configuration, between the rigid links

sharing the considered additional elastic joints.

b

b
P j−1

P j

P j+1

β

γ

p j−1

p j

p j+1

Figure 13. Kinematics of the enhanced approximation of a micro-beam. Refer-

ence (on the top-left) and current (on the bottom-right) configurations.

The relationship between the assumed bending strain energy and the constitutive parameter

b of the elastic joint, the stiffness of the rotational spring, is determined as the solution to a

simple structural problem. The single degree-of-freedom problem is illustrated in Fig. 14. A

rigid bar with length ℓ is loaded on the right end with a shearing force F. The displacement on

the left end is completely constrained whereas the rotation is resisted by the rotational spring

with stiffness b.
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ϕ

ℓ

b F

Figure 14. Cantilever beam loaded with a shearing force as a simple one degree

of freedom problem.

Let us consider three types of bending strain energy Eb differentiated by subscripts 1, 2 or 3

Eb1
=

1

2
b1ϕ

2 , (2)

Eb2
=

1

2
b2ϑ

2 , ϑ = 2 tan
ϕ

2
, (3)

Eb3
= b3(1 − cos ϕ) . (4)

Equations (2) and (4) utilize the Lagrangian parameter ϕ to describe the displacements, while

that in Eq. (3) uses the Lagrangian parameter ϑ, which is linked to ϕ by the change of variables

reported in Eq. (3). The first expression is widely used in structural mechanics for modeling

linear elastic behavior known to be applicable for small rotations. For finite rotation problems,

the second [39] and third [8]) forms have been considered. A simple power series expansion

shows that the forms adopted for finite rotations reduce to first order expressions for quadratic

terms, while they differ with each other in the higher order terms of ϕ. For all cases, the external

work W reads

W = Fℓ sinϕ . (5)

The stationarity condition of the potential energy gives the equilibrium equations for each

type of assumed strain energy and, consequently, the relationship between the non-dimensional

force Fℓ/bi and the Lagrangian parameter ϕ

Fℓ

b1

=
ϕ

cosϕ
, (6)

Fℓ

b2

=

2 sin
ϕ

2

cosϕ cos3
ϕ

2

, (7)

Fℓ

b3

=
sinϕ

cosϕ
. (8)

Figure 15 reports the plots of the non-dimensional force Fℓ/bi (i = 1, 2 and 3) assuming

that the rotation 0 ≤ 2ϕ/π < 1. The three plots show that when large rotations occur, the

non-dimensional force can be significantly different for the assumed models. In particular, the

second form represents a stiffening behavior with deformation, while the third form shows a

gradual softening behavior. However, it is possible to minimize the difference in the results



18 E. TURCO, A. MISRA, M. PAWLIKOWSKI, F. DELL’ISOLA, AND F. HILD

from the three predictions by selecting a (different) most suitable value for the stiffness pa-

rameter bi. The expression most appropriate for modeling the bending energy for the present

problem is not immediately apparent. It is clear, however, that for the considered pantographic

sheets modeled by the enhanced Piola–Hencky discrete model, which considers thousands of

rotational degrees of freedom, the rotations can take values that are relatively small, typically

close to the boundaries, as well as those that are rather large, typically in the central part of

the sheet. For the sake of convenience, and considering that the stiffness parameter bi will be

determined in an empirical manner, the third expression is selected in this work.
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Figure 15. Non-dimensional force Fℓ/bi versus rotation ϕ/ϕmax.

The strain energy is completed by adding the extensional contribution of each micro-beam

Ea =
1

2
a (ℓ − ℓ0)2 , (9)

where ℓ and ℓ0 are the length of the micro-beam in the current and reference configuration,

respectively, and a its axial stiffness.

For the considered pantographic structure, the two types of strain energies (i.e.rotational and

extensional) described above are the only quantities necessary to reconstruct the complete equi-

librium path, that is to find the set of couples {λi, qi} in which λi is a scalar parameter that

represents the applied displacement andqi the vector that collects the parameters which com-

pletely define the corresponding deformation.
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5. Numerical code details

The above described enhanced Piola–Hencky discrete model of the pantographic sheet was

implemented an in-house MatLab code able to reconstruct the complete equilibrium path using

a step-by-step strategy (i.e. find an unknown equilibrium point on the basis of the knowledge of

the previous known equilibrium point). The energy associated with the pantographic sheet can

then be obtained simply by summing all elementary contributions. If the Lagrangian parameters,

which describe the actual configuration, are collected in the vector q then the total strain energy

becomes E = E(q). The gradient and the Hessian of the strain energy give the structural

response vector s(q) and the tangent stiffness matrix K(q), respectively.

For cases without applied forces (as considered in the experiment presented here), the action

is the applied displacement on the smaller side of the sheet along the direction of the longer side

and the nonlinear system of equations that expresses the equilibrium conditions reads

s(q) = 0 . (10)

Vector q, which collects the Lagrangian parameters used to describe the actual configuration, is

rearranged as

q =















u

λū















, (11)

where the vector u is the collection of the free Lagrangian parameters, and λū of those pre-

scribed. The non-dimensional displacement parameter λ then regulates the step-by-step incre-

mentation of the assigned displacements.

The solution to the nonlinear system of equations (10) is obtained, in the framework of a step-

by-step strategy, by an algorithm based upon Newton’s scheme. If the couple (λ1, u1) belongs

to the equilibrium path, in other words if the associated residual is zero (i.e. its norm is less than

a fixed threshold), a nearby equilibrium point (λ2, u2) is computed by means of the iterative

scheme based on the first-order approximation of the residual defined as

∆u := u2 − u1 = −K̃−1s (u1, (λ1 + ∆λ)ū) , (12)

where, in order to make the notation compact, ∆λ = λ2 − λ1 and

s (u1, (λ1 + ∆λ)ū) = s





























u1

(λ1 + ∆λ)ū





























. (13)

Furthermore, the stiffness matrix K̃ is the part of the tangent stiffness matrix, computed in u1,

related to the unknowns collected in u.

The drawback of Newton’s scheme, see Eq. (12), is related to the singularity of the tangent

stiffness matrix. An arc-length strategy, see [40], is implemented. The equilibrium path is

described by using as parameter its arc-length. A detailed description of an efficient implemen-

tation of the arc-length iterative scheme can be found in [41]. Here we only describe necessary
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computational details of the present code. A simple way to introduce some form of orthogonal-

ity conditions is to start from the residual expression

r
(

u1 + ∆u + u̇, (λ1 + ∆λ + λ̇)ū
)

≈ s (u1 + ∆u, (λ1 + ∆λ)ū) + K̃















u̇

λ̇ū















= 0 , (14)

where λ̇ and u̇ define the needed corrections to the extrapolations λ1 + ∆λ and u1 + ∆u. As

before, K̃ is the part of the tangent stiffness matrix, now computed in u1 + ∆u, related to the

free unknowns. A general form of the constraint equation necessary to make the number of

equations equal to the unknowns reads

∆uT Cu̇ + γ∆λλ̇ = 0 , (15)

where C and γ are a matrix and a scalar, respectively, that can be chosen to, e.g., improve

the convergence or make simpler the necessary calculations. The condition (15) is general

and can be interpreted as a representation of orthogonality between extrapolation (∆λ,∆u) and

correction (λ̇, u̇).

From Equation (14) the correction u̇ on the displacement are obtained

u̇ = −K̃−1s
(

u1 + ∆u, (λ1 + ∆λ + λ̇)ū
)

, (16)

Using Eq. (15), the correction λ̇ becomes

λ̇ =
∆uT CK̃−1s (u1 + ∆u, (λ1 + ∆λ)ū)

γ∆λ − ∆uT CK̃−1∆s
, (17)

where

∆s =
s
(

u + ∆u, (λ + ∆λ + λ̃)ū
)

− s (u + ∆u, (λ + ∆λ)ū)

λ̃
. (18)

Equations (16) and (17) are general but can be particularized to obtain very simple expres-

sions and computational efficiency. Choosing as (γ,C) the couple (0, K̃) very simple expres-

sions for the corrections are obtained. The corresponding expression for λ̇ is given by

λ̇ = −
∆uT s (u1 + ∆u, (λ1 + ∆λ)ū)

∆uT∆s
. (19)

The algorithm outlined above requires the definition of the first extrapolation in each step.

The straightforward way is its evaluation using the results of the previous steps. Using the

quantities already defined

∆λ = m(λ1 − λ0) ,

∆u = m(u1 − u0) ,
(20)

having used the adaptive coefficient m to modify the arc-length during the step-by-step proce-

dure. In practice, the adaptive coefficient serves to increase the step-length in the parts of the
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equilibrium path that are practically linear, and decrease the step-length in the parts of the equi-

librium path that are highly nonlinear. A simple and efficient formula for the adaptive coefficient

m, see [42], is

m = 1 −
rl − nl

rl + nl

, (21)

which modifies the arc-length on the basis of rl, the actual loops, and nl, the needed loops,

necessary to achieve the convergence in the current step. For the first step m = 1 and the value

of ∆λ is fixed. In this way, the arc-length is implicitly defined by computing the corresponding

value of ∆u.

6. Calibration of the numerical model

The determination of the constitutive parameters introduced in the enhanced Piola–Hencky

model starting from the geometry and the mechanical properties of the pantographic specimens

is not straightforward [43]. The issue concerning micro-macro identification processes has

been addressed from many points of view [16] and we refrain from studying it here. Instead the

introduced micro-constitutive parameters are calibrated in order to fit the experimental data at

the macro-level. To this end a parametric study was performed wherein some simple estimates

of the stiffness parameters are obtained, and then varied over a range suggested by these first

estimates. Given the DIC results reported in Section 3.1, another could be followed in the future,

provided the measurements are performed at the micro-level.

The procedure starts by considering the geometrical data of the technical drawing reported

in Fig. 2. From these a simple first estimate of the stiffness parameters of the discrete model is

obtained using the results given by the solution of De Saint Venant problem. In practice, for a

straight beam of initial length L, cross-sectional area A, and inertia J, the stiffnesses a and b are

estimated as

a =
YA

ℓ
,

b =c
Y J

ℓ
,

(22)

where Y is the Young’s modulus=, L/ℓ the number of segments whose sum is the length of the

beam, and c = 1 − ℓ/L a coefficient accounting for the actual number of bending elastic joints.

This coefficients rapidly goes to one when the number of segments increases (this hypothesis is

not made herein).

Geometric data taken from the technical drawing reported in Fig. 2 may be considered ac-

curate of within 0.1 mm. Conversely, the value of the Young’s modulus, which affects both

stiffnesses a and b, has to be evaluated carefully. Technical references on the polyamide used in

the 3D printing process suggest a value of 1700 MPa.2 Figure 16 reports the computed global

2see https://www.shapeways.com/rrstatic/material docs/mds-strongflex.pdf.
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structural reaction R (in red), by means of the Piola–Hencky discrete model, and the same quan-

tity obtained by measurements (in black). The numerical model using the nominal stiffness

parameters overestimates R(λ = 1).
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Figure 16. Extension bias test. Global reaction R computed (in red) and mea-

sured (in black) vs. non-dimensional applied displacement λ for Y = 1700 MPa.

As another estimate that can provide an improved fit, the results of the numerical simulation

are rescaled simultaneously modifying the stiffness parameters a and b with an additional con-

dition, for example that R(λ = 1) be the same for the computed and measured global reactions.

The Young’s modulus Y was determined minimizing the discrepancy, through a suitable mea-

sure of chosen quantities, between numerical and physical models. A leasts squares approach

has been selected [44]

δ = ‖x − x̄‖2 , (23)

where δ is the measure of the discrepancy, in this case the L2-norm of the differences between

x and x̄, that is between the predicted, by the numerical model, and the measured, from the

physical experiment, data. There are many possible choices (e.g.the discrepancy between the

configuration of the pivots relative to the same value of the non-dimensional applied displace-

ment λ, or the discrepancy between the predicted and measured global reaction(s) for various

levels of λ).

The best identified values, using as additional condition that R(λ = 1) be the same for the

numerical simulation and physical experiment, for the stiffnesses are a = 307.1 N/mm and

b = 62.23 Nmm, which correspond to an identified value of Y = 950 MPa. The numerical
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results relative to this set of stiffnesses a and b are reported in Figs. 17 and 18. In Fig. 17

0.5 1 1.5 2 2.5 3 3.5 4 4.5

(a) λ = 0.25

0.5 1 1.5 2 2.5 3 3.5 4 4.5

(b) λ = 0.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5

(c) λ = 0.75

0.5 1 1.5 2 2.5 3 3.5 4 4.5

(d) λ = 1

Figure 17. Extension bias test. Deformation history for four values (0.25, 0.5,

0.75 and 1) of the non-dimensional applied displacement λ for a = 307.1 N/mm

and b = 62.23 Nmm (the color map shows the strain energy density on each

micro-beam).

the history of deformation is reported for four selected valued of the non-dimensional applied

displacement λ (0.25, 0.5, 0.75 and 1) whereas in Fig. 18 the comparison between the computed

and measured reactions versus λ (a) and the strain energy split in axial and bending parts are

shown when λ increases (b).

The most important differences between the numerical simulation and the experiment are:

(1) the pronounced shrinkage in the middle part of the specimen mostly for high values of

λ;
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Figure 18. Extension bias test. Global reaction (in black: measured force) R (a)

and contributions to the strain energy E of the axial Ea and bending Eb parts (b)

vs. non-dimensional applied displacement λ when a = 307.1 N/mm and b =

62.23 Nmm.

(2) the experimental curve R(λ) may be approximatively considered as bilinear formed by

two straight lines; the same could be said for the computed curve with the transition

point shifted forward and a steeper second segment.

Guided by the estimates described above a parametric study of the stiffness set was performed

by computing the global reaction R when λ varies between 0 and 1. For the sake of clarity, only

the curves obtained by varying the axial stiffness a from 50 to 500 N/mm and the bending

stiffness b from 20 Nmm to 200 Nmm are reported (Fig. 19).

From the previous results, it is concluded that:

(1) a reduction of the slope of the second part of the R(λ) curve is obtained increasing b;

(2) the value R(λ = 1) is largely influenced by a and much less from b;

(3) the slope of the first part of R(λ) curve is constant and the curves are shifted upward

increasing b and much less increasing a.

These observations suggest a further refinement on the stiffnesses a and b, using as best fit

criterion that of minimizing the discrepancy between the whole curve, keeping the value R(λ =

1), gives the values 190 N/mm and 180 Nmm, respectively. Figures 20 and 21 show the results

obtained by using this set of stiffnesses. Figure 20 reports the history of the deformation for λ

varying in the set {0.25, 0.5, 0.75, 1} (color map shows the density of the energy level on the

micro-beam).

Figure 21 compares the computed and measured R(λ) responses, and the strain energy contri-

butions, split into extensional Ea and flexural Eb parts, respectively.
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Figure 19. Global reaction R vs. non-dimensional applied displacement λ vary-

ing the stiffnesses a and b.

Conversely, minimizing the discrepancy between the second part of the curve, and keeping

always the reaction R(λ = 1), gives the values 148 N/mm and 280 Nmm, respectively (Figs. 22

and 23).

This last fitting procedure seems rather reliable. The coefficients that were obtained by fitting

the shapes and force/displacement relationship for selected elongations continue to be effective

in predicting the experimental results outside the range of fitting as well. The procedure could

be further refined by introducing some shear resistance in the pivots, thereby introducing some

spatial variability.

7. Concluding remarks and future challenges

A discrete Lagrangian model of the considered mechanical system was introduced based

on the physical understanding of its properties. No continuum model was considered or con-

structed as the result of a homogenization step. The most suitable continuum model should

include the dependence of strain energy on the second gradient of displacement, and this re-

quires the introduction of more complex modeling concepts and constitutive parameters. The

lack of micro-scale torsional (and macro-scale shear) strain energy in the interconnecting pivots

is the ultimate cause of the Vietnam long neck shapes that are observed both in experiments



26 E. TURCO, A. MISRA, M. PAWLIKOWSKI, F. DELL’ISOLA, AND F. HILD

1 2 3 4 5 6 7 8 9

(a) λ = 0.25

1 2 3 4 5 6 7 8 9

(b) λ = 0.5

1 2 3 4 5 6 7 8 9

(c) λ = 0.75

1 2 3 4 5 6 7 8 9

(d) λ = 1

Figure 20. Extension bias test. Deformation history for four values (0.25, 0.5,

0.75 and 1) of the non-dimensional applied displacement λ for a = 190 N/mm

and b = 180 Nmm (the color map shows the strain energy density on each micro-

beam).

and numerical simulations. These shapes are also the source of many conceptual and numer-

ical difficulties whose rigorous mathematical treatment requires, when using continuum mod-

els [45, 46, 47], the use of advanced functional concepts [4].

There is another reason for which a discrete model was preferred herein. There are many ma-

terial systems in which the discrete approach is preferable over a continuum formulation. The

presented discrete model and the second gradient continuum Ansatz are not able to describe the

effects of compression when fibers actually touch each other in very large deformation regimes

[48]. In order to handle such phenomenology some strongly nonlinear nodal interactions need

to be incorporated, which in discrete models make energetically difficult the too close placement

of adjacent fibers, or exponentially increasing deformation potentials in the continuum model.
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Figure 21. Extension bias test. Global reactions (in black: measured force) R

(a) and contributions to the strain energy E of the axial Ea and bending Eb parts

(b) vs. non-dimensional applied displacement λ when a = 190 N/mm and b =

180 Nmm.

Finally, some future challenges, which will be tackled in the next future, are listed:

(1) the numerical model developed herein considered the elastic regime. Repeated load-

ing/unloading steps should be analyzed and extra constitutive parameters will be re-

quired [49];

(2) the experimental evidence compared with numerical predictions involved very few data

(e.g. reaction forces, some global elongations); it has been observed a posteriori that

the deformed and predicted shapes are rather close. This methodology, however reliable

and effective, does not allow for a complete use of all available data. It was shown that

digital image correlation could be used to quantify the whole experimental kinematics.

A complete comparison between measured and computed displacement fields is to be

performed for validation and calibration purposes.

(3) the experimental set up has high performances. However, its elongation is insufficient to

always achieve failure. Changing the geometry of the pantographic substructure (e.g. the

fiber angle [30]) may lead to failure of specimens in the available range of applied

displacements, say, in shear tests [26]. Similarly the beam spacing or their sections can

be altered;

(4) in this paper the stiffnesses of the enhanced Piola–Hencky model were assumed to be

invariable over the whole pantographic sheet. This hypothesis may be relaxed with

no increasing computational cost. That allows the study of pantographic sheets with

defects, see [50], or the optimization of the stiffnesses of micro-beams and pivots;

(5) the extension of this study to dynamic cases could give some suggestions for the use of

pantographic sheets for mitigating the effects of shocks and vibrations [51, 52, 53, 54];
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Figure 22. Extension bias test. Deformation history for four values (0.25, 0.5,

0.75 and 1) of the non-dimensional applied displacement λ for a = 148 N/mm

and b = 280 Nmm (the color map shows the strain energy density on each micro-

beam).

(6) an adaptation of the discrete model presented herein could be profitably used to model

wrinkling mechanics of specifically designed specimens [55];

(7) the enhanced Piola–Hencky discrete model could be considered in the study granular

media [56, 57, 58, 59], or foams with Pott’s model [60, 61, 62].
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