Neuromorphic hardware as a self-organizing computing system

Lyes Khacef 1 Bernard Girau 2 Nicolas Rougier 3 Andres Upegui 4 Benoıt Miramond 1
2 BISCUIT - Bio-Inspired, Situated and Cellular Unconventional Information Technologies
LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
3 Mnemosyne - Mnemonic Synergy
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest, IMN - Institut des Maladies Neurodégénératives [Bordeaux]
Abstract : This paper presents the self-organized neuromorphic architecture named SOMA. The objective is to study neural-based self-organization in computing systems and to prove the feasibility of a self-organizing hardware structure. Considering that these properties emerge from large scale and fully connected neural maps, we will focus on the definition of a self-organizing hardware architecture based on digital spiking neurons that offer hardware efficiency. From a biological point of view, this corresponds to a combination of the so-called synaptic and structural plasticities. We intend to define computational models able to simultaneously self-organize at both computation and communication levels, and we want these models to be hardware-compliant, fault tolerant and scalable by means of a neuro-cellular structure.
Type de document :
Communication dans un congrès
IEEE. WCCI 2018 - IEEE World Congress on Computational Intelligence, Workshop NHPU : Neuromorphic Hardware In Practice and Use, Jul 2018, Rio de Janeiro, Brazil. pp.1-4, 2018, 〈https://arxiv.org/abs/1810.12640〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01790776
Contributeur : Sophie Gaffé-Clément <>
Soumis le : vendredi 18 mai 2018 - 16:01:01
Dernière modification le : mercredi 13 février 2019 - 10:34:30
Document(s) archivé(s) le : mardi 25 septembre 2018 - 15:06:42

Fichier

Neuromorphic hardware as a sel...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01790776, version 1

Citation

Lyes Khacef, Bernard Girau, Nicolas Rougier, Andres Upegui, Benoıt Miramond. Neuromorphic hardware as a self-organizing computing system. IEEE. WCCI 2018 - IEEE World Congress on Computational Intelligence, Workshop NHPU : Neuromorphic Hardware In Practice and Use, Jul 2018, Rio de Janeiro, Brazil. pp.1-4, 2018, 〈https://arxiv.org/abs/1810.12640〉. 〈hal-01790776〉

Partager

Métriques

Consultations de la notice

402

Téléchargements de fichiers

148